CONFERENCES AT UNIVERSITY COLLEGE DUBLIN September 1994

7th Annual Meeting of the Irish Mathematical Society

5-6 September 1994

Speakers: J. M. Anderson (London), P. M. Gauthier (Montreal), B. Goldsmith (DIT), A. J. O'Farrell (Maynooth), J. V. Pulé (UCD), R. Ryan (UCG).

Requests for accommodation should be submitted by 1 July, 1994. Conference dinner on Monday 5 September, 1994.

Further information: S. Dineen, S. Gardiner (addresses below).

Polynomials and Holomorphic Functions on Infinite Dimensional Spaces

7-9 September, 1994

Further information: S. Dineen, P. Mellon, C. Boyd.

Tel:

+353 1 706 8242

 $+353\ 1\ 706\ 8265$

Fax:

+353 1 706 1196

email:

sdineen@irlearn.bitnet

 ${\bf gardiner@irlearn.bitnet}$

TRACE-ZERO MATRICES AND POLYNOMIAL COMMUTATORS

T. J. Laffey and T. T. West

Let \mathbb{F} denote a field and $M_n(\mathbb{F})$ the algebra of $n \times n$ matrices over the field \mathbb{F} . If $X \in M_n(\mathbb{F})$, $\operatorname{tr}(X)$ will denote the trace of the matrix X. A well known result of Albert and Muckenhoupt [1] states that if $\operatorname{tr}(X) = 0$ then there exist matrices $A, B \in M_n(\mathbb{F})$ such that X is the commutator of A and B,

$$X = [A, B] = AB - BA.$$

Let p denote a polynomial in $\mathbf{F}[x]$ of degree greater than or equal to one. The *Polynomial Commutator* of A and B relative to p is defined to be

$$p[A,B] = p(AB) - p(BA).$$

It is easy to check, by examining the eigenvalues, that $\operatorname{tr}(p[A,B])$ is always zero. The Albert-Muckenhoupt result states that if $X \in M_n(\mathbb{F})$ with $\operatorname{tr}(X) = 0$ then, for p(x) = x,

$$X=p[A,B],$$

for some $A, B \in M_n(\mathbb{F})$. We show that, if the field \mathbb{F} has characteristic zero the Albert-Muckenhoupt result may be extended to general polynomials of degree greater than, or equal to, one.

Theorem. Let \mathbf{F} be a field of characteristic zero and let $p \in \mathbf{F}[x]$ have degree greater than or equal to one. If $X \in M_n(\mathbf{F})$ is of trace zero then there exist matrices $A, B \in M_n(\mathbf{F})$ such that

$$X = p[A, B].$$

First we prove the following elementary

Lemma. If \mathbb{F} is a field of characteristic zero and $X \in M_n(\mathbb{F})$ is of trace zero then we can choose a basis of \mathbb{F}^n such that, relative to this basis, X has zeros on its main diagonal.

Proof: Since tr(X) = 0 and \mathbb{F} is of characteristic zero, X is not a scalar matrix. Thus there exists a vector $v \in \mathbb{F}^n$ such that v and Xv are linearly independent.

Set $v_1 = v$, $v_2 = Xv$ and extend to a basis v_1, v_2, \ldots, v_n of \mathbb{F}^n . Relative to this basis

$$X = [x_{ij}]_{n \times n} \quad \text{with } x_{11} = 0.$$

Further the matrix

$$Y = [x_{ij}]_{(n-1)\times(n-1)}$$
 $(2 \le i, j \le n)$

has trace zero and the proof may be completed by induction.

Proof of Theorem: Since tr(X) = 0 we may take

$$X = [x_{ij}]_{n \times n} \quad \text{with } x_{ii} = 0 \qquad (1 \le i \le n).$$

Now

$$X = L - U$$

where L is a lower triangular matrix, U is an upper triangular matrix and both have zeros on the main diagonal.

Let D be the diagonal matrix

$$D = \operatorname{diag}(d_1, \ldots, d_n).$$

then p(D) is the diagonal matrix

$$p(D) = \operatorname{diag}(p(d_1), \dots, p(d_n)),$$

and since \mathbb{F} is an infinite field and the degree of p is greater than, or equal to, one, we may choose the d_i so that the $p(d_i)$ are distinct $(1 \le i \le n)$.

Then

$$X = (L + p(D)) - (U + p(D))$$

= $L_1 - U_1$

where $L_1 = L + p(D)$ is lower triangular and $U_1 = U + p(D)$ is upper triangular. The diagonal entries of L_1 and U_1 are $p(d_i)$, $(1 \le i \le n)$, and since these have been chosen distinct, the matrices L_1 , U_1 and p(D) are all similar. Thus there exist invertible $S, T \in M_n(\mathbb{F})$ so that

$$X = S^{-1}p(D)S - T^{-1}p(D)T,$$

= $p(S^{-1}DS) - p(T^{-1}DT).$

Taking $A = S^{-1}T$ and $B = T^{-1}DS$ gives

$$X = p(AB) - p(BA) = p[A, B] \tag{*}$$

which completes the proof.

Remarks

- 1. The result does not remain true if the restriction that **F** is of characteristic zero be dropped.
- 2. It would be interesting to investigate the latitude in equation (*), for fixed X and p, in the possible choices of A and B.

Reference

 A. A. Albert and B. Muckenhoupt, On matrices of trace zero, Michigan J. Math. 4 (1957), 1-3.

T. J. Laffey, University College, Dublin. T. T. West, Trinity College, Dublin.