A THEORETICAL BASIS FOR
PADE APPROXIMATION

Patrick Fitzpatrick

Abstract: The theory of Qrdbuer bases of polynomial ideals and mod-
ules has opened up new horizons in computational commutative algebra
and algebraic geometry. We review this theory briefly and show how it
leads to a new interpretation of the construction of (multivariable) Padé
approximants as minimal elements in Grébner bases. One of the more
interesting aspects of this interpretation is its application to {1-variable)
Padé approximation over a finite field, which is the key step in decod-
ing the well-known classes of BCH and Goppa codes, normally carried
out using the Berlekamp-Massey algorithm or the extended FEuclidean
algorithm. This leads to a new theoretical derivation for a deceding al-
gorithm, which is—in its practical implementation—equivalent to that
based on the extended Euclidean algorithm,

1. Introduction—Grdbner bases of ideals

The main difficulty in passing from the 1-variable polynomial ring
k[z] to'the multivariable ring k[, ..., Tn] is that there is no
longer a uniquely specified division algorithm. In fact, it is no
longer clear what is meant by a quotient and a remainder and
whether or not these are well defined. In klz], division is based
on successive comparison of the leading term of the divisor with
that of the dividend/remainder—it is clear what these leading
terms are and we implicitly use an ordering of monomials based
on degree. In k[z1, ..., 7,] many monomial orders (defined more
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precisely below) are possible and each has its own division al-
gorithm.

For example, consider ordering the monomials nsing lex or-
der, that is, lexicographically, and let us take z > y > z. Then
dividing z* + 2%y? + yz by z +y (we work over Q unless otherwise
stated) gives

2 + 2%y +yz = (z -+ y)(2® + 2y’ ~zy —y° +y%)
+yt =1 e

On the other hand using gradlez—or graduated lezicographic—
order, that is, using total degree first and ordering lexicographic-
ally the monomials of the same total degree, we obtain

2y + ¥ty = (4 )@ - )+t + 2 e

In both cases the algorithm stops because the leading monomial of
the divisor does not divide the leading monomial of the remainder.

Remark. In the second case we could continue a little further by
moving the y* term to the remainder and carrying out a further
division based on comparison of the leading z of the divisor with
the z° term of the remainder to give

(z+9)(z® -y’ + 2> —zy + ) + ¢ = + 92

This difficulty is intimately related to the ideal membership
problem. In k[z] each ideal I is principal, that is, it can be gener-
ated by a single element g say, written I = (g). Thus the division
algorithm solves the ideal membership problem: by a simple ar--
gument f € [ if and only if the remainder on division of f by g is
0. In kf[z1, ..., 2,] ideals are not usually principal (although by
Hilbert’s Basis Theorem they all have finite generating sets which
we indicate by writing I = (g1, ..., ¢gr)), and the monomial or-
der plays a crucial role. For example, suppose to investigate the
membership or otherwise of a polynomial f in the ideal T we di-
vide successively by the generators g; of I, determining the order
of division by the leading monomial of g;. Then we can derive
seemingly contradictory equations as in the following example.
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Example 1. In Q[z,y, z] we have

$3+2$y2+$y+y=$(m2+yz)+y(sf;z+a:+1)
) 2$yz+wa+Ccy+yz2m(yz+a:2)+0(a:z+a:+l)
—$3+my+y

where the first equation—based on gradlex with z > Yy > oz
indicates that the polynomial on the left is in the ideal (2% + yz,
zz+x+1), while the second—based on gradlex with z > Yy > r—
seems to imply that it is not.

These difficulties were resclved by B. Buchberger [i] by the
i;itroduction of what he called Grébner bases of polynomial ideals
(in honour of his supervisor W. Grébner who had suggested to
him the problem of finding constructively a multiplication table
for the quotient ring k21, ..., 2,,)/ and indicated a possible avenue
of exploration). The existence of such bases—although not their
construction—had already been discovered independently a year
earlier by H. Hironaka {8] who called them standard bases. Since
the early *70s their theory and applications have received wide
attention and Grébner basis routines are now implemented in all
the major computer algebra packages.

Essentially, Buchberger focussed on the set of leading terms
- of the ideal 7 in question, where the leading term Li(p) of a
polynomial p is the greatest monomial of p under the chosen
monomial order. This monomial order < can be varied—and dif-
ferent Grobner bases of J will result—but it must have certain
" properties, namely, it must be compatible with the multiplica-
tion so that if @, §,+ are monomials and o < 3 then oy < F,
and also it must be a well-ordering (equivalently, 1 < o for every
monomial ). The set of leading terms of (non-zero) polynomials
in [ is denoted Lt(I) and it generates an ideal (Lt(I)). The exist-
ence of a finite basis for (Lit()) may be established using Dickson’s
Lemma (cf. [3]) so there exist py, ..., p, € T such that (Lt(I) =
(Lt(p1), ..., Lt(p,)). Now it is clear that if{g:, ..., ¢} is a basis
of I then (Lt(g1), ... , Lt{g,)) € (Lt{J)) but the reverse inclusion
. 18 not always true as the example above shows. There—using
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gradlex with & > y > z—we have | = (g1,92) = (0% + yz, 2z +
£+ 1) so (Lt(g), Lt{g2)) = (2% xz), whereas (Lt{[)) contains
Lt(zg1 — zg3) = Lt{yz® — 2% — 2) = yz* which is not in (22, z2).
The definition of a Grébner basis is precisely that this reverse in-
clusicen should hold, that is, {g1, ..., 9} i3 a Grébner basis of I
if (Lt(g1}, ..., Lt(g-)) = (Lt{I)). Morcover, it can be shown that
if {g1, ..., gr} I8 a subset of T such that (Li{g), ..., Lt{g)) =
(Lt{I)) then indeed {g1, ..., g-} is a basis—a fortiori a Grébner
basis—of I. (In this approach Hilbort’s Basis Theorem is derived
as a corollary of Dickson’s Lemma.)

Henceforth we write GB for Grébner hasis. The ideal mom-
bership problem is solved completely by GBs: f € I if and only
if f has remainder 0 under division by a GB of 7. By division
here we mean successive reduction of f by multiples of the gen-
erators based on comparison of the leading terms of the GB with
the leading terms of the dividend/remainder. The defining prop-
erty of the GB ensures that such a reduction is always possible
when the remainder is in 7. In the example above with gradlex
and z >y >z, (yz+z*,zz+ 2+ 1,27 — 22y — ) is a GB for
(yz +z* 2z +x + 1) and the division algorithm now gives

2ryz + 2® + oy +y = 2a(yz +22) + 0zz 4z + 1)
~1{z’ — 2y — y)

showing the polyncmial on the left hand side to be in the ideal as
required,

The construction of GBs-—more about this later—is (unfortu-
nately!) computationally complex in the general case and a groat
deal of research has gone into finding iinprovements to Buchber-
ger's original algorithm, for example by studying the effects of
changing the monomial order used. Examples are known however,
that, no matter what refinements are introduced, will always take
up large amounts of time and/or space because of expansion in the
degrees of the polynomials in the hasis or in the coefficients of the
polynomials invoived in the intermediate computasions, This has
not deterred the use of GBs in practice since it is believed that
the constructions are “on the average” {and particularly when
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only two or three variables are invelved) much less complex than
the worst case, '

A number of other fundamental problems in commutative
algeb;a and algebraic geometry may be solved algorithmically us-
ing GBs (cf. [2]). Among these are the determination of whether
or not a system of polynomial equations has finitely or infinitely
many solutions {or none at all) and the constructive evaluation of
these solutions in the finite case, the construction of the elimina-
tion ideals I Nkfzy, ..., 2,], 1< j < n, the implicitization prob-
lem (elimination of parameters), and the construction of bases of
syzygy modules. It is this latter application that interests us here.

2. Grébner bases of modules, syzygies
- and Padé approximants

We consider submodules M of the free module R™ where B =
k[z1, ..., zn]. Each such module has a finite basis and the theory
of GBs can be extended in a natural way. The set of terms of
length r (replacing the monomials) is

T = {(D: cooy 0,a4,0, ... ,0)-: oy is a monomial}.

If < is a monomial order then we define a term order < on T} by
0, .. 05 ...,0) < 0o yay, ... ,0) if o <ogorifa; = q
and j < I. In fact, we require something slightly more general,
namely, let w = (11, ..., %,) be any weight vector where the
%; are monomials and let < be a monomial order. Then the.
term order <, on T, induced from < and w is defined by the
}‘elation 0, ..,y ...,0) < (0, ... vy L 0) i hiay < oy or
if Yo, = Yoy and 7 < 1. The terms form a vector space basis
of R". Henceforth, for definiteness, we shall use gradlex with
%1 <... <2, as our chosen monomial order.

We are particularly interested in modules of syzygies: giveh
a set of polynomials G = {g,, ..., gr}, the module of syzygies of
G is defined as

syz(G) = < (hy, ... ,h.) CR": Zhjgj =0

=1
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In fact the construction of a GB from a given basis

G={g,-.-, g}

of the ideal I C R proceeds by calculating certain “S(yzygy)-
polynomials” ag; + fg;, namely, those that eliminate the leading
terms of the pairs of polynomials g;, g;. These are then appended
to the given basis and it was Buchberger’s original contribution
to prove that this procedure eventually terminates with a basis G
in which all these S-polynomials may be expressed with certain
restrictions on the coefficients. This property is equivalent to the
defining property of a GB given above and thus it turns out that
the construction of the GB @' = {g1, ..., gr, Grp1, .. ygerfor 7 =
(g1, ... ,9») actually produces, in addition, a GB for syz(@) under

. the term order induced from the monomial order in R and the

weight vector (Lt(g1), ... ,Lt{g.)). For more details see Méller
and Mora [12].

We need one final piece of terminology: if ¢ is a monomial and
I'is an ideal then ¢ is said to be reduced modulo I if ¢ ¢ (Lt(I)).
Also, a polynomial p is reduced modulo I if each of its monomialy
is reduced modulo I. It is easy to see that if G is a GB for 7 then
each polynomial f € R can be reduced using G to a polynomial p
which is reduced modulo I. This is just the remainder on division
of f by & provided that the division algorithm is extended—as in
the remark at the beginning of section 1—to allow reduction as
far as possible by every element g of @, by comparing the leading
term of ¢ with every monomial in the remainder rather than just
the leading monomial.

Turning now to the problem of constructing Padé approxim-
ants we observe that this is a special case of solving for the pair

{a,b) the congruence
a = bh mod I (%)

where h is a given polynomial and I is a given ideal. For the
purposes of this exposition we restrict to the case that [ is a
monomial ideal (that is, generated by monomials). The polyno-
mial k is derived by various means (such as Taylor expansion) from
some more or less known function u and the classical 1-variable
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Padé approximation problem is to derive (a,b) such that the quo-
tient a/b agrees with the expansion k of u as far as terms of a
certain degree n — 1 say, where restrictions are placed on deg{a)
and deg(b) so that deg(a) + deg(b) < m. This may be interpreted
as the solution of (*) where J = (z™). In the classical theory a
great deal of attention is (Justifiably) paid to questions of conver-
gence, but here we ignore such considerations altogether and deal
only with the construction problem, One of the most interesting
aspects of (x) from our point of view is that in the l-variable case
it may be solved using the following theorem,

Theorem 1 (cf. McEliece [11], Theorem 8.5, p.177). Leta, b, h
be polynomials satisfying ,

a = bh mod z™

and suppose that deg{a) -+ deg(b) < m. Then in the extended
Euclidean algorithm applied to h and ™ giving a sequence of
remainders r;, two sequences of auxiliary polynomials %4, v5, and
a sequence of equations

Ush +v;z™ = fj
there is a unique index k and a polynomial ¢ such that
& =cry, b= ClUL.

Thus the construction of Padé approximants is completely
solved in this case by the extended Euclidean algorithm. Of
course, this does not make sense unless compuiations in the field
k are exact—so, for example, it makes no sense to consider using
this method for Padé approximation using a machine representa-
tion of the real numbers. (For example what is the degree of the
polynomial 10~1% 41, if the computer only has 8 decimal places
of precision?) However, in another case of interest, congruence (%)
arises in the context of decoding BCH, Reed-Solomon and.Goppa
error correcting codes: A is the syndrome polynomial, & is the
error locator polynomial and a is the error evaluator polynomial
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(for Goppa codes z™ is replaced by the Goppa polynomial), and
there the computations—over a finite field—are exact,

An alternative to this method of solution in the I-variable
case is to use the Berlekamp-Massey algorithm (cf. [10]); for the re-
lationships between the extended Euclidean algorithm, the Berle-
kamp-Massey algorithm and linear recurring sequences see [4],
[6]). The Berlekamp-Massey algorithm was generalized to n vari-
ables by Sakata [13].

In [7], we gave a generalization of the Euclidean algorithm
method by interpreting the solution of (x)—for arbitrary J—as
a minimal element in a GB of a certain syzygy module. We
outline this method in the next section, noting that becaus~ of
the relative complexity of computing GBs this provides a theoret-
tcal “basis” for Padé approximation rather than a new practical
method. However, in the 1-variable case our method turns out
in practice to lead to an algorithm equivalent to that based on
the extended Euclidean algorithm—we shall return to this point
in Section 4. Moreover, in the context of multivariable codes and
Goppa geometric codes, there are grounds for believing that our
techniques may be valuable in the search for a general decoding
algorithm alternative to that based on Sakata’s extension of the
Berlekamp-Massey algorithm.

3. Changing the term order
Further details for this section may be found in [7).

Let {g1, ..., g} be a GB for I and consider the set
F='{“—1, h, Ty v 0ay g,-}

which is clearly a GB for R (since it contains a scalar multiple of
1). We may assume that 4 is reduced modulo 7. Each solution of
(*) corresponds to an equation

a{—1) + bh + Zc:jgj =0,

i=1

in other words to a syzygy on F. The algorithm for construct-
ing a GB (in this case verifying that the set is a GB) gives a
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basis for syz(F) C R™*2 relative to the term order on Triq in-
duced by the chosen monomial order < and the weight vector
(1, Lt(h), Lt(g1), ..., Lt(gr)). This basis consists of the elements
{(h,1,0,...,0), (g:,0,...,0,1,0, ... 0), 1 < j < r}, where the
second vector has a 1 in the 7 -+ 2 place. These are just the “ob-
vious” syzygies that one would write down immediately; what is
important is that they form a GB.

Now write M for the submodule of R? formed by the solutions
{a,b) of (¥). Then by projection on the first two places we find that
M has a GB {(h,1), (85,0), 1 < j < r} under the term order on
T3 induced by < and w = (1,Lt(h)). Moreover, it can be shown
that '(h, 1) is the unique element of least leading term (namely,
(0,1)) under this order. Again to simplify the exposition we now
concentrate on the case that I is generated by all the monomials of
total degree m. Thus I = (af*, &7~ lay, ... Tpo12T~1 27} and
we observe that the given basis is a GB of /. Let the total degree
7(p) of a polynomial p be defined as the maximum of the total

. degrees of its monomials. One example of the sort of restriction
that may be placed on a, b is the following total degree condition:

m(a) <k, T(h) <1,

where k, | are non-negative integers and k + ! < m. Then the
following theorem is a special case of (7], Theorem 2.4,

Theorem 2. Suppose that (*) with I generated by monomials
of total degree m has a reduced solution (a,b) with a,b relatively
prime and satisfying the total degree condition above and let w =
(zh, k). Then {(a, b) is the minimal reduced solution relative to
the term order induced by < and w (uniquely defined up fo a
scalar multiple). A scalar multiple of (a,b) appears in any GB of
M under this order.

(Here a reduced solution is one in which both a and b aze
reduced modulo I and a minimal solution is one of least leading
term. Thus to calculate the required solution (a,b) it is only ne-
cessary to convert the known GB {(k, 1), (9;,0)} to a GB relative
to the term order <,, and pick out the minimal element,)
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We end this section with two examples. The first is a 1-
variable calculation derived from Knuth [9], Exercise 4, p. 515,
while the second shows the method at work in Fy[z, y] where Fy
is the field of 2 elements,

Example 2. Let b = 72° 4+ 3z% + 2+ 1 in Q[z]. Then there are
essentially four Padé approximants (a,b) to & modulo I = (z*),

- namely,

(hy 1}, (-22*+42-3,72-3), (z-1,z*+22z-1),
(1, —22% — 2¢% —z +1).

According to the Theorem these may be determined by find-
ing minimal elements in GBs of the module A generated' by
{{h, 1), (z%,0)} relative to the term orders a,dagted to thfa weight
vectors (1,2%), (z,2%) (equivalently (1,)), (¢?,2) (equivalently
(z,1)) and (2?, 1), respectively.

Example 3. Let h = 23® + 2* + ¢ + 22 +’:r:3 + $2.+ y 4z in
Falz,y]. Suppose that (a,b) exists as the Pade‘appromman,t for h
relative to the ideal I generated by the monomials of total degree
5, where a and b are restricted to have total degree (a_t most)
2? Then we seek a GB for M under the term order' <_w }nduced
from < and w = (y%,9%) (equivalently (1, 1)). This is just the
well-known term-order—position order (note = < y)

(1,00 <y (0,1) <y (2,0} <y (0,2) <y

Converting the basis {(h, 1), (9;,0), 1 < j <1} to a basis relative
to this order we obtain
32
{(@%y + 'y + 2% 2 +2%), (0, %), (&' +3%y+2% 2 ),3
(zy +y+z, 92 +2+1), (zv° + 23, 2% + 2y +22), (0, 2%y),
(P 2y tay+yta, P 2ty tay+a+ 1))

in which it is clear that the fourth element is the desired minimum.
Hence
oy +y+zx

=o+at + it +ot+ P by +rmod I
yi+o+1
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4. Solution of the key equation

We return now to the l-variable version of (%) taking I = (z2).
The congruence now takes the form of what Berlekamp called the
“key equation” for decoding a t-error correcting BCH (or Reed-
Solomon, or Goppa) code. By its construction the solution module
M contains an element (w, o) where ¢ (the error evaluator poly-
nomial) and w (the error locator polynomial) are relatively prime
and o(0) = 1,60 < t, 6w < So. Since we have a total degree
condition this element is just the minimal element {(unique up to
a scalar multiple) in a GB of M under the term order induced
by < (ordinary degree ordering among the monomials) and the
weight vector (2%, z%1) (equivalently, (#,1}). The calculations
to convert the known basis {(h, 1), {z%,0)} to a GB under this
term order are identical to those which would be carried out in
the Euclidean algorithm applied to h and z?%, which means that
we have derived a new theoretical foundation for this algorithm.

It is in fact possible (cf. [5]) to develop the theory in this 1-
variable case, without using the full machinery of GBs and thus to
derive a justification for the algorithmic solution of the key equa-
tion which is (in our opinion) more intuitive and natural than
those based on the Berlekamp-Massey or extended Euclidean al-
gorithm.
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