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Abstract: An overview is given of the nature of convection-diffusion
problems and of some methods commonly used Lo solve these problems.

1. Introduction

Think of a still pond. At a point in this pond you pour a small
amount of liquid dye. Approximately what shape will the dye
stain take on the surface of the water as time passes? I think that
we would all agree that the answer is a disc of slowly increasing
radius, as the dye diffuses outwards from the initial point.

Consider next a more complicated situation: suppose that I
replace the still pond above by a river which is flowing strongly
and smoothly. What now is the shape of the dye stain?

The answer is a long thin curved wedge. This shape is the
result of two physical processes: there is as before a tendency
for the dye to diffuse slowly through the water, but the domin-
ant mechanism present is the swift movement of the water, which
rapidly sweeps (this is convection) the dye downstream. Convec-
tion alone would carry the dye along a (one-dimensional) curve
on the surface; diffusion gradually spreads that curve, resulting in
a wedge shape.

Physical situations such as this, where convection and dif-
fusion are both present but convection dominates, are known
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as convection-diffusion problems. Convection-diffusion problems
arise when modelling airflow over cars, aircraft wings and through
jet engines, in weather forecasting, in the modelling of electrical
currents in semiconductor devices and in many other applications.
Consequently there is great interest in their analysis and numer-
ical solution.

In this article we shall begin by discussing the nature of solu-
tions to convection-diffusion problems. Then we move on to the
construction of accurate numerical methods for the solution of
these problems, Finally we outline the main tools which are used
to analyse such numerical methods.

2. Structure of convection-diffusion soclutions

The simplest mathematical model of a convection-diffusion prob-
lem is a two-point boundary value problem of the following form:

eu(z) + alz)u'(z) + blaju(z) = f(z)  for O<az<l, (1)

with «(0) and u(1) given, where ¢ is a small positive parameter
and @,b and f are some given functions. IHere the term »" cor-
responds to diffusion and its coefficient ¢ is small, The term '
represeits couvection, while o and f play the réles of a source
and driving term respectively. (For an explanation of why diffu-
sion and convection should be modelled by second and first order
derivatives respectively, see for example Spriet & Vansteenkiste
[10].) '

Problems of this type, where the highest order derivative has
a small coefficient, are singularly periurbed differential equations.
We begin by considering a single generic example in detail.

Example 1 Suppose that
—eu(z)+u'(z) =1 for O<z <1, (2)

with ©{0} = u{1) = 0 and 0 < ¢ << 1. Here we have taken —&
rather than £ as the coefficient of 4", since this turns out later to
be more convenient; one can clearly move from either formulation
to the other by multiplying the differential equation by -1.
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The solution to this boundary value problem is easily seen to

be
e—l/s - e*{l—x)/e

1—el/e

w(r) =1+
It is more revealing if we write this as
u(z) =z — e 072/ L O(c1/7), (3)

These three terms should be interpreted in the following way. The
first, z, is the solution of the instial value problem

u'(z) =1 on (6,1} subject to u{0) = 0. (4)

(This problem is obtained by formally setting e equal to zero in (2)
and taking onc of the original boundary conditions.) The second
term in (3) has a negligible influence on the solution when z is
not near 1 (recall that ¢ is positive and small}. It is essentially
a correction to the solution of {4) which is required in order that
the other boundary condition (1) = 0 of the original problem be
satisfied. The last term in (3} is of negligible size.

Thus from (3) we can see that a graph of u = u(z) will closely
approximate the straight line v = z on almost all of [0,1]. When z
approaches 1, the graph (while, of course, remaining continuous)
suddenly departs from this straight line and plunges downwards
to satisfy the condition u(1) = 0. We say that the graph has a
boundary layer at z = 1.

This behaviour may be summarized as follows. Except on
a narrow region near cne of the boundaries, the solution of the
original boundary value problem closely approximates the solution
of an associated initial value problem.

Several further examples of this type are given in O'Riordan

[8].

In two dimensions the situation is similar, as we now show.

Example 2 Consider the second order elliptic convection-
diffusion problem

~eAu+u +u=f on{], (5)
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with w = 0 on 8§, the boundary of 1. Here to avoid any tech-
nical complications we assume that £2 is a bounded strictly convex
region in R? with smooth boundary 800, We also assume that
f € L%(§). As before, we take £ to be a small positive parameter.
These hypotheses imply that (5) has a unique solution u(z,y).
Write T for the unit vector in the direction of the positive
z-axis and 7 for the outward pointing unit normal to 8. Set

O N ={pedN:7@ <0atp}

and
G0 ={pedQ:7T7 >0 at p}.

Then, analogously to Example 1, the solution u on all of {3,
except close to 87, is equal (modulo a little diffusion) to the
solution v of the first order hyperbolic problem

v +v=Ff onf, (6)

with initia! data v = 0 on 8- Q. At {1 the function » will have
a boundary layer, i.e., close to 87 the solution u changes rapidly
in order to satisfy the boundary condition « =0 on 81§,

This example in two dimensions is related to our earlier “dye
in the river” problem. Think of the direction in which {6) propag-
ates (the positive z-axis) as the direction of flow of the river. Then
the first part of the previous paragraph states that the solution at
any point (i.e., the presence or absence of dye at any point) de-
pends only on what happens almost directly upstream of that poind,
which is what we observed when we stated that the dye spread as
a long thin wedge.

This identification of the direction of propagation of a first
order hyperbolic problem with the direction of flow of a fluid dy-
namics problem is often tacitly made in convection-diffugion ter-
minology.

For further examples in two dimensions (and some graphs) see
Johnson [1]. A feature which may occur in two dimensions is that
a discontinuity in the boundary data on 9~ will in general cause
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an internel layer in the solution; this is a narrow region, centred
on one of the characteristics of the first order hyperbolic preblem
(6} - i.e, following the direction of flow - in which the sclution
changes rapidly. For a pictorial example of this see Johnson [1].

3. Numerical solution

In this Section we discuss some numerical methods which are
commonly used to compute approximate solutions for convection-
diffusioni problems.

3.1 Why standard numerical methods fail

It is not immediately evident why convection-diffusion problems
merit special attention from numerical analysts. After all, a prob-
lem such as Example 1 of the previous Section is a linear two-point
boundary value problem. The average undergraduate numerical
analysis textbook will give several methods applicable to this class
of problems. (We shall refer to such standard textbook methods
as classical methods, in order to distinguish them from methods
which are designed specifically for convection-diffusion problems.)
However if you try any classical method on Example 1, you will
probably find that your computed solution displays wild osciila-
tions-and yields a very poor approximation of the true solution,
What has gone wrong?

The answer may be found by a careful inspection of the con-
vergence analysis of the classical method. This reveals that the
accuracy of the method depends in general on the size of the
greatest lower bound for the absolute value of the coefficient of
the highest order derivative in the differential equation. In many
problems this lower bound is not close to zero and then classical
methods are often satisfactory. In the case of Example 1 however,
this coefficient is —e. When ¢ is close to zero, classical methods
tend to be destabilized, resulting in the oscillations mentioned
above. :

We now investigate this phenomenon in more detail, in order
to see how to devise methods which will not mishehave so badly.

Consider again Example 1. We shall attempt to generate
an approximate numerical solution by means of a standard finite
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difference method. First partition [0,1] by a uniform mesh of N4+1
points, where IV is some positive integer. That is, we set z; = ¢/N
fori=0,...,N. Put h=1/N. 7

A typical classical finite difference approach would begin by
approximating '

T — 2u{z;) + ulz;—
w' (@) by uoi) ég ) (i)

and w(@ie1) = w(@iny).

w(e:) by S (™
(If these expressions are unfamiliar, use Taylor expansions to see
that each approximation is O(k?) accurate; as h is small in prac-
tice - perhaps 0.1 at most - this approximation is sufficiently ac-
curate for most purposes.)

For each i, we write u”(z;) for the solution which we will com-
pute at z;. Then based on the above difference approximations
and the differential equation (2), we compute the u"(z;) from the
following linear system of equations:

uh (i) = 2ub (@) + u{zio1) + ul (zi41) — uM{@i1)
¢ n? 2h
fori=1,...,N =1, where u"(zo) = u*(zx) = 0. This set of
equations comprises our difference scheme. :
Writing this system of equations in matrix-vector form, it is
easy to see that we obtain a tridiagonal square matrix whose 4 th

row is

£ 1 2e € 1
_E 1Y) = (L) 0.
0...0 ( h? 2]7.) h? ( h2+2h)

fori=1,...,N—1, lLis first ({ = 0) and last (i = V') rows, which
correspond to the boundary conditions, are 1 0...0 and 0.,.01
respectively.

At this point we introduce the reader to M-matrices. This
class of matrices is frequently encountered in numerical analysis.
We say that a matrix A = (Ay;) is an M-matrix iff

Ay <0Vi#g, A7 evistsand (A7 )y; > 0 Vi, g

=1,
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The significance of M-matrices in finite difference methods is that,
loosely speaking, methods which give rise to A -matrices are stable
and well-behaved.

Using some well-known results for M-matrices {sce, e.g., Or-
tega & Rheinboldt [9]), one can quickly see that our difference
scheme matrix above is an M-matrix if the nonzero off-diagonal

entrics are negative. This is cquivalent Lo requiring that
€ 1
-+ — <0,
h2 " 2h
i.e., that
h < 2e, (®)

When (8) is satisfied, one expects the finite difference method
to be stable and to yield an accurate approximation to the true
solution of Example 1. In practice this is what happens. Also,
if in practice A >> 2e, then one’s computed solution oscillates
wildly and is useless.

Note here that if e =1 (i.e., if we no longer have a convection-
diffusion problem), then (8) obviously holds, so one ohtains au
M-matrix and hence a stable numerical method. This is why
classical methods are satisfactory for problems which are not of
convection-diffusion type.

One might consider the above analysis as merely indicating
that classical methods may be satisfactorily employed to solve
convection-diffusion problems, provided only that the mesh is
chosen so that some inequality such as (8) holds. Theoretically
this is so, but from a practical viewpoint (8) asks too much. For
in reality one wishes to solve two- or three-dimensional problems
with, say, £ = 0.0001 (in [act € is smaller in many applications).
With this value of ¢, a problem in two dimensions for whicl {8)
is satisfied will in its finite difference formulation (which uses a
square grid with (¥ +1)* mesh points) have about 25,000,000 un-
knowns! By usual computing standards, this is an absurdly large
number. In three dimensions the situation is substantially worse
(exercise: about 1.25 x 10*! unknowns).
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The message here is that to get a classical method to work sat-
isfactorily, one has to provide it with an unacceptably large num-
her of mesh points. This restriction can be avoided by construct-
ing methods which are specially suited to convection-diffusion
problems, We now show how this may be done.

3.2 Upwinding

Our troubles above with large numbers of mesh points stemmed
from the fact that our mairix became an M-matrix only when
h was roughly the same size as e, i.e., only when h was small,
Looking at how the entries in our matrix are related to our chosen
difference approximations to 4" and «', we are led to make the
following modification to cur method: instead of approximating

w(Tity) — w(Ti-1)

w'(z:) by 7 ,

approximate it by
wl{z;) — uls;—) (9)
h.
The motivation for this alteration is that it leads to a tridiagonal
difference scheme matrix whose ¢ th row is

€ 1 2e 1 £
0...0 (~h2 - h) <h2 + h) ~33 0.0

fort=1,...,/¥ —1. As the nonzero off-diagonal terms are negat-
ive, it can be shown that this is an M-matrix, irrespective of the
relative sizes of h and e, Thus when a reasonable number of mesh
points is used, this difference scheme will be stable. Consequently
its computed approximation will be much closer than that of our
original difference scheme to the true solution.

However in stabilizing the scheme we have paid a certain price
in accuracy. As we mentioned previously, (7) is an O(h?) approx-
imation, A similar Taylor expansion reveals that {9) is cnly an
O({h) approximation. Consequently our computed solution is not
expected to be extremely accurate. It turns out to be moder-
ately accurate outside the boundary layer but inaccurate ingide
this fayer.
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In fact to obtain accuracy inside boundary layers requires the
construction of more complicated diference schemes. We refer the
reader to O'Riordan (8] for an introduction to this topic.

The technique we described above, which consisted of repla-
cing a centred difference approximation to a first derivative by
a one-sided difference approximation, is known in the research
literature as upwinding. This name comes from the fact that sta-
bility is achieved by taking this one-sided approximation in the
upstream direction (recall the discussion after Example 2 earlier).
If for example one tries instead a one-sided difference approxima-
tion in the downstream direction, this does not yield stability.

Upwinding has certain drawbacks, one of which is its me-
diocre degree of accuracy, as we described above. Another is the
difficulty of generalizing it in a satisfactory way to problems in
two or three dimensions. For this reason we now consider an al-
ternative way of stabilizing our original difference scheme.

3.3 Artificial diffusion
‘We return once more to the differential equation

—eu(z) + u'(z) = 1

of Example 1. Suppose that we have a uniform mesh with the
same notation as before. We generate a difference scheme by the
following two-step procedure:

(1) change € to e + 3

(1) apply our original method (i.e., centred difference

approzrimation} to this modified differential equation.

That is, we first modify the differential equation then apply a clas-
sical difference method. Due to step {¢), this approach is known
as the. artificial diffusion method.

On working through the details of this procedure, one finds
that it yields precisely the same difference scheme matrix as up-
winding! We thus have two superficiaily different approaches
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which turn out to have identical outcomes for our one-dimensional

problem. However, unlike upwinding, (a variant of) the artificial

diffusion methed can readily be generalized in a satisfactory man-

ner to two or more dimensions, as we shall sec in subsection 3.4.
Now recall the differential equation of Example 2:

—&(Uge + Uyy) + Uz +u = [ 7 (10)

Working with a square mesh of diameter A in two dimensions, the
obvious generalization of our one-dimensional artificial diffusion
method would be to replace € in (10) by ¢ + £/2 then to apply a
classical method to the modified differential equation. This will
give a stable method, but as we describe below, it does not cope
successfully with internal layers if these are present.

Recall that internal layers are narrow regions in the interior
of the domain where the solution changes rapidly. If we visualize
the surface u = n{x,¥), then an internal layer is a steep, almnost
sheer cliff forming part of this surface and running in the direction
of the flow across the domain {1 from 8 to 8+ Q2.

When the artificial diffusion method is applied to a problem
with an internal layer, the computed solution will not include
an almost sheer cliff. Instead, a moderately steep slope will be
generated (this is often described by saying that the layer has
been “smeared out”). The basic reason is that the method adds
diffusion in all directions, including the direction perpendicular to
the internal layer, so the cliff is diffused in this direction.

3.4 Streamline diffusion

The artificial diffusion method is considerably improved if the ad-
ded diffusion is. confined to act only in the direction of flow and
not perpendicular to this direction. This idea is the basis for
the streamline diffusion method, which is fully described in John-
son [1]. When this method is applied to {10), the diffusion term
—&(uzs+Uyy) is essentially modified to —huge —€tyy. The method
computes reasonably sharp internal layers.

The streamline diffusion method has a further advantage over
the artificial diffusion method. As we indicated in subsection 3.3,
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the artificial diffusion method is somehow closely related to up-
winding, while upwinding is based on an O(h) approximation to
the true solution. Consequently both upwinding and artificial dif-
fusion can at best be O(h) accurate, even in parts of the solution
which are distant from layers. Now, using a finite element ap-
proach, the streamline diffusion method ¢an be generated in a
manner which yields better than O{h) accuracy away from layers.
The analysis of this higher order accuracy is discussed later.

3.5 Cell vertex finite volume method

We close our list by briefly describing one class of finite volume
methods, Finite volume methods are a standard tool in the
aerospace industry, where extremely complex numerical prob-
lems (such as modelling the airflow over an entire aircraft) are
commonplace.

Our concern here is with the cell verter finite volume method.
To apply this method, one first divides the domain of the differ-
ential equation into many small pieces or “cells” (intervals in one
dimension, rectangles in two dimensions). Here let's consider the
two-dimensional formulation. One seeks a computed solution, u”
say, which is a continuous piecewise bilinear function (i.e., bilin-
ear on each cell). The unknowns in the problem are the values
of u" at the cell corners. One generates a system of equations in
these unknowns in the foliowing way. Let C be a typical cell. In
the differential equation replace u at each occurrence by u*, then
integrate the resulting equation over € using Gauss’ divergence
theorem. This entails computations such as

fugdzdyzfv-{uh,o)dmy=f u"dy,
Jo c ac
/u';yda:dyzf V-(O,uﬁ)dmdy:—/ ugdz.
C C oc

The resulting integrals over §C' can be expressed in terms of the
values of u at the cell corners: this is clear for the first such in-
tegral above, while for the second some form of differencing yields
a reasonable interpretation of [, u”dz. See Mackenzie & Morton
(3] for detais.
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The above integration over C yields one equation. You might
expect o priori that one performs this computation over each cell,
but it is a curious feature of the method that this does not in
general yield the correct number of equations (i.e., the number of
equations may then not match the number of unknowns). One can
obtain the correct number of equations by discarding or dividing
cells as needed, as described in Morton [5].

3.6 Summary

In the above subsections we have given short descriptions of some
numerical methods which are suited to convection-diffusion prob-
lems. Our list is by no means exhaustive (for other approaches
see, e.g., Miller {4]). No panacea currently exists; for each method,
one can exhibit examples to which an application of the method
yvields disappointingly inaccurate results.

Any proposed method for convection-diffusion problems, if it
is to have any chance of success, must somehow mimic the beha-
viour of the true solution discussed in Section 2. That is, away
from layers its computed solution at each point should depend
only on what happens in a narrow region directly upstream of
that point, Each of our methods has this property to a greater or
lesser extent.

4. Numerical analysis

In Section 3 we described some standard numerical methods which
are suited to convection-diffusion problems. - We now indicate
briefly the techniques which are used to prove that such methods
do indeed yield accurate numerical approximations to the true
solutions of these problems. '

For finite difference methods, the basic ideas are those of in-
verse monotonicity and barrier functions. These can be described
quite simply. Suppose that the discrete linear system of equations

is
hoh — gh
L™= f"

where L is the matrix arising from the difference scheme and
u* will be our computed solution. The right hand vector f* is
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known. Suppase (this is inverse monotonicity) that
(LM 20,

where the inequality holds for each entry in the matrix. It’s of
course reasonable to assume that (L"}~! exists {otherwise we
could not compute a solution 4?); the essential feature here is
that all its entries are non-negative.

Let 4 denote the restriction of the true solution u to the
mesh points. The consistency error L*(u* — i) can be estimated
by Taylor expansions. Warning: this calculation is tedious and
involves a lot of careful estimation of terms!

Using this consistency error estimate, one next tries to con-
struct a discrete function w” which satisfies the vector inequalities
w" > 0 and Liwh > |L*(uh — 4)|. This is often not as difficult
as it looks: one chooses w" to mimic certain properties that one
expects in the true solution u. The function w* is known as a
harrier function.

Finally, combining the last inequality with the inverse mono-
tonicity property, we deduce that

[uh — @) < wh,

which is a satisfactory result provided that w" is small.

A rather famous example of the use of this techniqﬁe is
provided by Kellogg & Tsan [2].

The main drawback to this method of analysis is the assump-
tion of inverse monotonicity. In the context of convection-diffusion
problems, this property often holds for the matrices arising from
ordinary differential equations but is less frequently true for prob-
lems in two and three dimensions. Thus other analytical tech-
niques are needed. :

For the streamline diffusion method in two dimensions, vari-
ous global error estimates have been proven. However these are
not satisfactory since they are expressed in terms of Sobolev norms
of the true solution u, which become excessively large when ¢ is
small. The best local estimates available have been obtained by
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Niijima [7). He shows that, away from all layers, O(h'*/® In(1/h))
accuracy is achieved when ¢ is small. (Here h denotes the mesh
diameter, just as in our one-dimensional investigations.) His ap-
proach uses finite element techniques to obtain local bounds on a
discrete Green’s function (this function is basically the inverse of
the difference scheme matrix). Hence one can readily deduce con-
vergence of the streamline diffusion method in regions that are not
close to any layers. This analysis is very technical but it works.

Analysis of convergence of the cell vertex finite volume
method has lagged far behind the application of the method. Up
to now, no fully satisfactory analysis of this method has been
published, The best estimates available are in Morton & Stynes
(6], where a sharp convergence result for the one-dimensional case
is obtained in a weighted discrete Sobolev A norm. This bound
is obtained by using techniques from finite element analysis. At
present we are working on an extension of this result to the
two-dimensional case.
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