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with the American Mathematical Society and the [rish Math-
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LM.T.A. reciprocity member IR£5.00

The subscription fees listed above should be paid in Irish
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paid in a currency other than Irish pounds using a cheque
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If paid in any other currency then the subscription fee is the
amount in that currency equivalent so US§18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society,

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is 1V§810.00.
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. Any application for metmbership must be presented to the
Committee of the LM.S. before it can be accepted. This
Committee meets twice each year.

- Please send the completed application form with one year’s
subscription fee to
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Minutes of the Meeting
of the Irish Mathematical Society

Ordinary Meeting
22nd December 1092

The Irish Mathematical Society held an ordinary meeting at 12,15
pm on Tuesday 22nd December at the DIAS, 10 Burlington Road.
Fifteen members were present. The president, R. Timoney, was
in the chair.

1,

2.

The minutes of the meeting of 16th April 1992 were ap-
proved and signed. '

Matters arising: R. Timoney remarked that the Euromath
project is progressing satisfactorily.

. Bulletin: The March 1992 issue has been sent to members,
“and the December 1992 issue is at the printers, R. Dark

and M. O Searcéid were congratulated on their good work.
Contributors to the Bulletin are encouraged to use the format
files produced by M. O Searcéid {details of which are given'
in the Bulletin).

European Mathematical Society: B, Goldsmith circu-
lated a report of the EMS Council meeting held in July 1992.
He has a more detailed version of the minutes which has not
been circulated. S. Dineen was also present at the Council
meeting. R. Timoney reported on the EMS Congress in Paris.
He noted that the IMS’s responses to various questionnaires.
appeared at the congress. The next EMS Congress is in Bud-
apest in 1996. The IMS made three late and unsuccessful
nominations for representatives to the Human Capital and
Mobility scheme. The IMS pays an annual membership fee
of ECU300 to the EMS. The membership fee for an in-
dividual is £11 and should be sent to B. Goldsmith
by 1st March 1993.
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5. Treasurer’s business: Next vear's Cork Operator Theory
Conference and the Galway/St. Andrews Group Theory Con-
ference will both receive £300 support from the IMS. The
possibility of further funding for these conferences will be
discussed at the March 1993 Committee meeting. Applica-
"tions for support for conferences in 1994 must be received by
1st December 1993. This will be announced in the Bulletin,
The treasurer will. present a detailed report in March.

6. Constitution: D. Tipple and M- O Searcdid explained the
need to change the constitution of the IMS, and circulated a
new draft constitution, A copy of a modified version of this
draft will be sent to all members of the Society at least one
month before the next ordinary meeting, and will be put to
the vate at that meeting,

7. Elections: The following were elected, unopposed, to the
Committee {* denotes re-election):
Committee member Proposer Seconder

B. Goldsmith* (President) R. Timoney C. Nash
D. Hurley* (Vice-President) M. O Searcdid §. Dineen
G. Lessells D. Hurley G. Eilis

B. McCann* B. Goldsmith P, Mellon

M. O Searcéid* B. Goldsmith  @. Elfis

J. Pulé D. Tipple M. O Searcéid
R. Timoney* N. Buttimore C. Nash

The followirg have one more year of office:
'G. Ellis (Secretary), BE. Gath, P. Mellon, C. Mash,
D. Tipple (Treasurer). ;
The following have left the Committee:
F. Gaines, F. Holland.

8. Leaving Certificate points: The president had received
a letter from the IMTA asking for discussions with the IMS
regarding Leaving Certificate points. He replied, suggesting
that the IMTA meet himself and D. Hurley. No meeting has
yet taken place. It was felt that the matter should be pursued.
More generally, it was felt that the Committee should try to
encourage closer liaisons with the IMTA.

: Minutes of IMS Meeting 3

9. AOB: 5. Dineen offered to organize the 1994 September
Meeting at UCD,

The meeting closed at 1.00 pm.

Graham Ellis
University College
Galway




Conference Announcement

IRISH MATHEMATICAL SOCIETY 1993 MEETING

The annual Irish Mathematicai Society Meeting will be held on
2-3 September 1993 at University College Cork. At this time, the
following invited speakers have agreed to attend and the titles of
their talks are appended:

J. W. Bruce, Department of Mathematics, University of Liverpool.
“Whatever happened to calculus?”

Rod Gow, Department of Mathematics, University Coilege Dub-
lin, “Integral lattices and their automorphism groups”

Frank Hodnett, Department of Mathematics and Statisties, Uni-
versity of Limerick. “The thermocline equations and aspects of
the dynamics of the North Atlantic Ocean”

Gerard J. Murphy, Department of Mathematics, University Col-
lege Cork. “Toeplitz operators”

J. Philip O’Kane, Department of Civil and Environmental Engin-
eering, University College Cork, “Mathernaticians - do we need
them?”

Philip J. Rippon, Department of Mathematics, Open University.
“A Mandlebrot set for piecewise linear mappings”

J. Brian Twomey, Department of Mathematics, University College
Cork. “The teaching and presentation of mathematics” (short
lecture followed by discussion) .

At a later stage we will advertise the full list of speakers
and their talk titles over the MATHDEPGIRLEARN electronic
bulletin board. As well as invited speakers, we also solicit a limited
number of submitted talks, each of 20 minutes duration. If you
are interested in presenting such a talk, please send a title and
abstract {100-200 words) to the organizers by 31 May. We will let

4
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you know by 15 June if we have been able to schedule your talk
at the Meeting.

We plan to open the Meeting at approximately 1100 on
Thursday 2 September and to close it at approximately 1600
on 3 September, so that participants travelling from other Irish
institutions may only need to spend one night away from home.

Information on local accomodation is available from the or-
ganizers.

If you plan to attend this Meeting, please inform the organ-
izers by 15 August, sending your name, affiliation and expected
dates of arrival and departure.

Please communicate with either of us preferably by email.
We can also be reached by post at Department of Mathematics,
University College Cork, Cork, Ireland,

Telephone; + 353 - 21 - 276871 extension 2540 (Department
secretary) Fax: + 333 - 21 - 272642 (include "Mathematics De-
partment” in address page).

Pat Fitzpatrick (fitzpat@bureau.ucc.ie)
Martin Stynes (stynes@bureau.ucc.ie)




A THEORETICAL BASIS FOR
PADE APPROXIMATION

Patrick Fitzpatrick

Abstract: The theory of Qrdbuer bases of polynomial ideals and mod-
ules has opened up new horizons in computational commutative algebra
and algebraic geometry. We review this theory briefly and show how it
leads to a new interpretation of the construction of (multivariable) Padé
approximants as minimal elements in Grébner bases. One of the more
interesting aspects of this interpretation is its application to {1-variable)
Padé approximation over a finite field, which is the key step in decod-
ing the well-known classes of BCH and Goppa codes, normally carried
out using the Berlekamp-Massey algorithm or the extended FEuclidean
algorithm. This leads to a new theoretical derivation for a deceding al-
gorithm, which is—in its practical implementation—equivalent to that
based on the extended Euclidean algorithm,

1. Introduction—Grdbner bases of ideals

The main difficulty in passing from the 1-variable polynomial ring
k[z] to'the multivariable ring k[, ..., Tn] is that there is no
longer a uniquely specified division algorithm. In fact, it is no
longer clear what is meant by a quotient and a remainder and
whether or not these are well defined. In klz], division is based
on successive comparison of the leading term of the divisor with
that of the dividend/remainder—it is clear what these leading
terms are and we implicitly use an ordering of monomials based
on degree. In k[z1, ..., 7,] many monomial orders (defined more

This article is the text of a lecture given by the author at the
September meeting of the Irish Mathematical Society held at the
Regional Technical College, Waterford, September 3-4, 1992.
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precisely below) are possible and each has its own division al-
gorithm.

For example, consider ordering the monomials nsing lex or-
der, that is, lexicographically, and let us take z > y > z. Then
dividing z* + 2%y? + yz by z +y (we work over Q unless otherwise
stated) gives

2 + 2%y +yz = (z -+ y)(2® + 2y’ ~zy —y° +y%)
+yt =1 e

On the other hand using gradlez—or graduated lezicographic—
order, that is, using total degree first and ordering lexicographic-
ally the monomials of the same total degree, we obtain

2y + ¥ty = (4 )@ - )+t + 2 e

In both cases the algorithm stops because the leading monomial of
the divisor does not divide the leading monomial of the remainder.

Remark. In the second case we could continue a little further by
moving the y* term to the remainder and carrying out a further
division based on comparison of the leading z of the divisor with
the z° term of the remainder to give

(z+9)(z® -y’ + 2> —zy + ) + ¢ = + 92

This difficulty is intimately related to the ideal membership
problem. In k[z] each ideal I is principal, that is, it can be gener-
ated by a single element g say, written I = (g). Thus the division
algorithm solves the ideal membership problem: by a simple ar--
gument f € [ if and only if the remainder on division of f by g is
0. In kf[z1, ..., 2,] ideals are not usually principal (although by
Hilbert’s Basis Theorem they all have finite generating sets which
we indicate by writing I = (g1, ..., ¢gr)), and the monomial or-
der plays a crucial role. For example, suppose to investigate the
membership or otherwise of a polynomial f in the ideal T we di-
vide successively by the generators g; of I, determining the order
of division by the leading monomial of g;. Then we can derive
seemingly contradictory equations as in the following example.
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Example 1. In Q[z,y, z] we have

$3+2$y2+$y+y=$(m2+yz)+y(sf;z+a:+1)
) 2$yz+wa+Ccy+yz2m(yz+a:2)+0(a:z+a:+l)
—$3+my+y

where the first equation—based on gradlex with z > Yy > oz
indicates that the polynomial on the left is in the ideal (2% + yz,
zz+x+1), while the second—based on gradlex with z > Yy > r—
seems to imply that it is not.

These difficulties were resclved by B. Buchberger [i] by the
i;itroduction of what he called Grébner bases of polynomial ideals
(in honour of his supervisor W. Grébner who had suggested to
him the problem of finding constructively a multiplication table
for the quotient ring k21, ..., 2,,)/ and indicated a possible avenue
of exploration). The existence of such bases—although not their
construction—had already been discovered independently a year
earlier by H. Hironaka {8] who called them standard bases. Since
the early *70s their theory and applications have received wide
attention and Grébner basis routines are now implemented in all
the major computer algebra packages.

Essentially, Buchberger focussed on the set of leading terms
- of the ideal 7 in question, where the leading term Li(p) of a
polynomial p is the greatest monomial of p under the chosen
monomial order. This monomial order < can be varied—and dif-
ferent Grobner bases of J will result—but it must have certain
" properties, namely, it must be compatible with the multiplica-
tion so that if @, §,+ are monomials and o < 3 then oy < F,
and also it must be a well-ordering (equivalently, 1 < o for every
monomial ). The set of leading terms of (non-zero) polynomials
in [ is denoted Lt(I) and it generates an ideal (Lt(I)). The exist-
ence of a finite basis for (Lit()) may be established using Dickson’s
Lemma (cf. [3]) so there exist py, ..., p, € T such that (Lt(I) =
(Lt(p1), ..., Lt(p,)). Now it is clear that if{g:, ..., ¢} is a basis
of I then (Lt(g1), ... , Lt{g,)) € (Lt{J)) but the reverse inclusion
. 18 not always true as the example above shows. There—using

o] : Padé approximation ' 9-

gradlex with & > y > z—we have | = (g1,92) = (0% + yz, 2z +
£+ 1) so (Lt(g), Lt{g2)) = (2% xz), whereas (Lt{[)) contains
Lt(zg1 — zg3) = Lt{yz® — 2% — 2) = yz* which is not in (22, z2).
The definition of a Grébner basis is precisely that this reverse in-
clusicen should hold, that is, {g1, ..., 9} i3 a Grébner basis of I
if (Lt(g1}, ..., Lt(g-)) = (Lt{I)). Morcover, it can be shown that
if {g1, ..., gr} I8 a subset of T such that (Li{g), ..., Lt{g)) =
(Lt{I)) then indeed {g1, ..., g-} is a basis—a fortiori a Grébner
basis—of I. (In this approach Hilbort’s Basis Theorem is derived
as a corollary of Dickson’s Lemma.)

Henceforth we write GB for Grébner hasis. The ideal mom-
bership problem is solved completely by GBs: f € I if and only
if f has remainder 0 under division by a GB of 7. By division
here we mean successive reduction of f by multiples of the gen-
erators based on comparison of the leading terms of the GB with
the leading terms of the dividend/remainder. The defining prop-
erty of the GB ensures that such a reduction is always possible
when the remainder is in 7. In the example above with gradlex
and z >y >z, (yz+z*,zz+ 2+ 1,27 — 22y — ) is a GB for
(yz +z* 2z +x + 1) and the division algorithm now gives

2ryz + 2® + oy +y = 2a(yz +22) + 0zz 4z + 1)
~1{z’ — 2y — y)

showing the polyncmial on the left hand side to be in the ideal as
required,

The construction of GBs-—more about this later—is (unfortu-
nately!) computationally complex in the general case and a groat
deal of research has gone into finding iinprovements to Buchber-
ger's original algorithm, for example by studying the effects of
changing the monomial order used. Examples are known however,
that, no matter what refinements are introduced, will always take
up large amounts of time and/or space because of expansion in the
degrees of the polynomials in the hasis or in the coefficients of the
polynomials invoived in the intermediate computasions, This has
not deterred the use of GBs in practice since it is believed that
the constructions are “on the average” {and particularly when
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only two or three variables are invelved) much less complex than
the worst case, '

A number of other fundamental problems in commutative
algeb;a and algebraic geometry may be solved algorithmically us-
ing GBs (cf. [2]). Among these are the determination of whether
or not a system of polynomial equations has finitely or infinitely
many solutions {or none at all) and the constructive evaluation of
these solutions in the finite case, the construction of the elimina-
tion ideals I Nkfzy, ..., 2,], 1< j < n, the implicitization prob-
lem (elimination of parameters), and the construction of bases of
syzygy modules. It is this latter application that interests us here.

2. Grébner bases of modules, syzygies
- and Padé approximants

We consider submodules M of the free module R™ where B =
k[z1, ..., zn]. Each such module has a finite basis and the theory
of GBs can be extended in a natural way. The set of terms of
length r (replacing the monomials) is

T = {(D: cooy 0,a4,0, ... ,0)-: oy is a monomial}.

If < is a monomial order then we define a term order < on T} by
0, .. 05 ...,0) < 0o yay, ... ,0) if o <ogorifa; = q
and j < I. In fact, we require something slightly more general,
namely, let w = (11, ..., %,) be any weight vector where the
%; are monomials and let < be a monomial order. Then the.
term order <, on T, induced from < and w is defined by the
}‘elation 0, ..,y ...,0) < (0, ... vy L 0) i hiay < oy or
if Yo, = Yoy and 7 < 1. The terms form a vector space basis
of R". Henceforth, for definiteness, we shall use gradlex with
%1 <... <2, as our chosen monomial order.

We are particularly interested in modules of syzygies: giveh
a set of polynomials G = {g,, ..., gr}, the module of syzygies of
G is defined as

syz(G) = < (hy, ... ,h.) CR": Zhjgj =0

=1

& _ Padé approximation i1

In fact the construction of a GB from a given basis

G={g,-.-, g}

of the ideal I C R proceeds by calculating certain “S(yzygy)-
polynomials” ag; + fg;, namely, those that eliminate the leading
terms of the pairs of polynomials g;, g;. These are then appended
to the given basis and it was Buchberger’s original contribution
to prove that this procedure eventually terminates with a basis G
in which all these S-polynomials may be expressed with certain
restrictions on the coefficients. This property is equivalent to the
defining property of a GB given above and thus it turns out that
the construction of the GB @' = {g1, ..., gr, Grp1, .. ygerfor 7 =
(g1, ... ,9») actually produces, in addition, a GB for syz(@) under

. the term order induced from the monomial order in R and the

weight vector (Lt(g1), ... ,Lt{g.)). For more details see Méller
and Mora [12].

We need one final piece of terminology: if ¢ is a monomial and
I'is an ideal then ¢ is said to be reduced modulo I if ¢ ¢ (Lt(I)).
Also, a polynomial p is reduced modulo I if each of its monomialy
is reduced modulo I. It is easy to see that if G is a GB for 7 then
each polynomial f € R can be reduced using G to a polynomial p
which is reduced modulo I. This is just the remainder on division
of f by & provided that the division algorithm is extended—as in
the remark at the beginning of section 1—to allow reduction as
far as possible by every element g of @, by comparing the leading
term of ¢ with every monomial in the remainder rather than just
the leading monomial.

Turning now to the problem of constructing Padé approxim-
ants we observe that this is a special case of solving for the pair

{a,b) the congruence
a = bh mod I (%)

where h is a given polynomial and I is a given ideal. For the
purposes of this exposition we restrict to the case that [ is a
monomial ideal (that is, generated by monomials). The polyno-
mial k is derived by various means (such as Taylor expansion) from
some more or less known function u and the classical 1-variable
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Padé approximation problem is to derive (a,b) such that the quo-
tient a/b agrees with the expansion k of u as far as terms of a
certain degree n — 1 say, where restrictions are placed on deg{a)
and deg(b) so that deg(a) + deg(b) < m. This may be interpreted
as the solution of (*) where J = (z™). In the classical theory a
great deal of attention is (Justifiably) paid to questions of conver-
gence, but here we ignore such considerations altogether and deal
only with the construction problem, One of the most interesting
aspects of (x) from our point of view is that in the l-variable case
it may be solved using the following theorem,

Theorem 1 (cf. McEliece [11], Theorem 8.5, p.177). Leta, b, h
be polynomials satisfying ,

a = bh mod z™

and suppose that deg{a) -+ deg(b) < m. Then in the extended
Euclidean algorithm applied to h and ™ giving a sequence of
remainders r;, two sequences of auxiliary polynomials %4, v5, and
a sequence of equations

Ush +v;z™ = fj
there is a unique index k and a polynomial ¢ such that
& =cry, b= ClUL.

Thus the construction of Padé approximants is completely
solved in this case by the extended Euclidean algorithm. Of
course, this does not make sense unless compuiations in the field
k are exact—so, for example, it makes no sense to consider using
this method for Padé approximation using a machine representa-
tion of the real numbers. (For example what is the degree of the
polynomial 10~1% 41, if the computer only has 8 decimal places
of precision?) However, in another case of interest, congruence (%)
arises in the context of decoding BCH, Reed-Solomon and.Goppa
error correcting codes: A is the syndrome polynomial, & is the
error locator polynomial and a is the error evaluator polynomial

B Padé approximation 13

(for Goppa codes z™ is replaced by the Goppa polynomial), and
there the computations—over a finite field—are exact,

An alternative to this method of solution in the I-variable
case is to use the Berlekamp-Massey algorithm (cf. [10]); for the re-
lationships between the extended Euclidean algorithm, the Berle-
kamp-Massey algorithm and linear recurring sequences see [4],
[6]). The Berlekamp-Massey algorithm was generalized to n vari-
ables by Sakata [13].

In [7], we gave a generalization of the Euclidean algorithm
method by interpreting the solution of (x)—for arbitrary J—as
a minimal element in a GB of a certain syzygy module. We
outline this method in the next section, noting that becaus~ of
the relative complexity of computing GBs this provides a theoret-
tcal “basis” for Padé approximation rather than a new practical
method. However, in the 1-variable case our method turns out
in practice to lead to an algorithm equivalent to that based on
the extended Euclidean algorithm—we shall return to this point
in Section 4. Moreover, in the context of multivariable codes and
Goppa geometric codes, there are grounds for believing that our
techniques may be valuable in the search for a general decoding
algorithm alternative to that based on Sakata’s extension of the
Berlekamp-Massey algorithm.

3. Changing the term order
Further details for this section may be found in [7).

Let {g1, ..., g} be a GB for I and consider the set
F='{“—1, h, Ty v 0ay g,-}

which is clearly a GB for R (since it contains a scalar multiple of
1). We may assume that 4 is reduced modulo 7. Each solution of
(*) corresponds to an equation

a{—1) + bh + Zc:jgj =0,

i=1

in other words to a syzygy on F. The algorithm for construct-
ing a GB (in this case verifying that the set is a GB) gives a
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basis for syz(F) C R™*2 relative to the term order on Triq in-
duced by the chosen monomial order < and the weight vector
(1, Lt(h), Lt(g1), ..., Lt(gr)). This basis consists of the elements
{(h,1,0,...,0), (g:,0,...,0,1,0, ... 0), 1 < j < r}, where the
second vector has a 1 in the 7 -+ 2 place. These are just the “ob-
vious” syzygies that one would write down immediately; what is
important is that they form a GB.

Now write M for the submodule of R? formed by the solutions
{a,b) of (¥). Then by projection on the first two places we find that
M has a GB {(h,1), (85,0), 1 < j < r} under the term order on
T3 induced by < and w = (1,Lt(h)). Moreover, it can be shown
that '(h, 1) is the unique element of least leading term (namely,
(0,1)) under this order. Again to simplify the exposition we now
concentrate on the case that I is generated by all the monomials of
total degree m. Thus I = (af*, &7~ lay, ... Tpo12T~1 27} and
we observe that the given basis is a GB of /. Let the total degree
7(p) of a polynomial p be defined as the maximum of the total

. degrees of its monomials. One example of the sort of restriction
that may be placed on a, b is the following total degree condition:

m(a) <k, T(h) <1,

where k, | are non-negative integers and k + ! < m. Then the
following theorem is a special case of (7], Theorem 2.4,

Theorem 2. Suppose that (*) with I generated by monomials
of total degree m has a reduced solution (a,b) with a,b relatively
prime and satisfying the total degree condition above and let w =
(zh, k). Then {(a, b) is the minimal reduced solution relative to
the term order induced by < and w (uniquely defined up fo a
scalar multiple). A scalar multiple of (a,b) appears in any GB of
M under this order.

(Here a reduced solution is one in which both a and b aze
reduced modulo I and a minimal solution is one of least leading
term. Thus to calculate the required solution (a,b) it is only ne-
cessary to convert the known GB {(k, 1), (9;,0)} to a GB relative
to the term order <,, and pick out the minimal element,)
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We end this section with two examples. The first is a 1-
variable calculation derived from Knuth [9], Exercise 4, p. 515,
while the second shows the method at work in Fy[z, y] where Fy
is the field of 2 elements,

Example 2. Let b = 72° 4+ 3z% + 2+ 1 in Q[z]. Then there are
essentially four Padé approximants (a,b) to & modulo I = (z*),

- namely,

(hy 1}, (-22*+42-3,72-3), (z-1,z*+22z-1),
(1, —22% — 2¢% —z +1).

According to the Theorem these may be determined by find-
ing minimal elements in GBs of the module A generated' by
{{h, 1), (z%,0)} relative to the term orders a,dagted to thfa weight
vectors (1,2%), (z,2%) (equivalently (1,)), (¢?,2) (equivalently
(z,1)) and (2?, 1), respectively.

Example 3. Let h = 23® + 2* + ¢ + 22 +’:r:3 + $2.+ y 4z in
Falz,y]. Suppose that (a,b) exists as the Pade‘appromman,t for h
relative to the ideal I generated by the monomials of total degree
5, where a and b are restricted to have total degree (a_t most)
2? Then we seek a GB for M under the term order' <_w }nduced
from < and w = (y%,9%) (equivalently (1, 1)). This is just the
well-known term-order—position order (note = < y)

(1,00 <y (0,1) <y (2,0} <y (0,2) <y

Converting the basis {(h, 1), (9;,0), 1 < j <1} to a basis relative
to this order we obtain
32
{(@%y + 'y + 2% 2 +2%), (0, %), (&' +3%y+2% 2 ),3
(zy +y+z, 92 +2+1), (zv° + 23, 2% + 2y +22), (0, 2%y),
(P 2y tay+yta, P 2ty tay+a+ 1))

in which it is clear that the fourth element is the desired minimum.
Hence
oy +y+zx

=o+at + it +ot+ P by +rmod I
yi+o+1




1]

[4]
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4. Solution of the key equation

We return now to the l-variable version of (%) taking I = (z2).
The congruence now takes the form of what Berlekamp called the
“key equation” for decoding a t-error correcting BCH (or Reed-
Solomon, or Goppa) code. By its construction the solution module
M contains an element (w, o) where ¢ (the error evaluator poly-
nomial) and w (the error locator polynomial) are relatively prime
and o(0) = 1,60 < t, 6w < So. Since we have a total degree
condition this element is just the minimal element {(unique up to
a scalar multiple) in a GB of M under the term order induced
by < (ordinary degree ordering among the monomials) and the
weight vector (2%, z%1) (equivalently, (#,1}). The calculations
to convert the known basis {(h, 1), {z%,0)} to a GB under this
term order are identical to those which would be carried out in
the Euclidean algorithm applied to h and z?%, which means that
we have derived a new theoretical foundation for this algorithm.

It is in fact possible (cf. [5]) to develop the theory in this 1-
variable case, without using the full machinery of GBs and thus to
derive a justification for the algorithmic solution of the key equa-
tion which is (in our opinion) more intuitive and natural than
those based on the Berlekamp-Massey or extended Euclidean al-
gorithm.
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FORMAL METHODS OF
SOFTWARE DEVELOPMENT
ADVANCES AND RETREATS

D. C. Ince

Abstract: This paper is about the use of discrete mathemasics within
software development. It describes, in outline, how discrete mathem-
atics can be used to specify large computer systems, and how mathem-
atical proof can be used to validate a system. This area of computer
science is exceptionally Promising, but is prevented by major problems
from being adopted on industrial software rrojects, The paper ex-
amines one problem: that of data refinement and cutlines one possible
solution. It concludes by briefly examining the advances that have been
made in formai methods of software development and also looking at
where progress has been slow,

1. Introduction

Modern software development projects are normally organized on
a phase-by-phase basis. One popular model is shown in Figure 1,
Here the development process is split up into a number of separate
activities, with each activity delivering a document which then
forms the input into the next activity, The activities shown are:

Requirements analysis. This is the process of eliciting the re-
quirements of a system from a customer. The requirements
will be a mixture of functions: descriptions of what a sys-
tem is intended to do, and constraints: statements which

This article is the text of an invited lecture given by the author at
the September meeting of the Irish Mathematical Society held at
" the Regional Technical College, Waterford, September 3-4, 1992,
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Requirements
analysis

l

System
specification

|

System design

l

Programming +—— Testing
Integration <m——o Tasting

l

System testing

Figure 1: Conventional software development

constrain the system to be produced, or the process of dev'el-
oping the system. An example of the former is a constraint
that a certain response time is required; while an example
of the latter is the fact that the developer should use some
particular programming language.

System specification, This is the process whereby the proper-
ties of the system which were discovered during the process of
requirements analysis are written down. The documegt W}%ICh
is produced by this task is known as the system specification,

although sometimes it is referred to as the requirements spe- -

cification. Normally it is expressed in natural language. ‘
System design. This is the activity in which the system specific-
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ation is used to guide the process of deriving an overall sys-
tem architecture. The architecture being expressed in terms
of moduies (subroutines, procedures, programs),

Programming. This is the process of taking the individual maod-
ules defined during system design and expressing them in
some form of programming language.

Integration. The process of bringing together the programmed
modules to form a final system.

Accompanying these development tasks is a set of parallel tasks
which have the aim of validating the system: checking that user
requirements are encapsulated in the system, and that individual
software tasks such as integration have been carried out carefuily,
Examples of such tasks are: system testing, acceptance testing
and module testing. This is the model of development that has
been tsed for over twenty five years. However, the documents
that are used for software development and which are generated
by developers can be very flawed, leading to budget overruns, time
overruns and even the cancellation of projects, In order to look
at the problems which occur with these documents it is worth
looking at the system specification.

2. Problems with the system specification

Although I am using the system specification as an example it is
worth stressing at this juncture that similar problems occur with
all the document produced by a software project. Life would be
uncomplicated for the software developer if the systemn specifica-
tion consisted ol a series of sections marked

e Functional requirements;

e Non-functional requirements;
Goals;
Data requirements;
Implementation and design directives;

each of which were consistent, unambiguous, and complete and
where the text would be expressed in user terms. Unfortunately,

this very rarely happens. The purpose of this section is to outline
how reality deviates from the ideal.
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In general, a system specification will be.vague, contra,dict‘ory,
incomplete, and will contain functional requirements, c‘onstramts,
and goals randomly mixed at different levels of a.lngtractlpn. Often,
it will either have a very naive and over-ambitious view of the
capabilities of a software system or a view which was current a
few decades ago.

Vagueness

A system specification can be a very bulky qocument andl to
achieve a high level of precision consistently is an almost im-
possible task. At worst it leads to statements such as

The interface to the system used by radar operators
should be user {friendly.

The virtual interface shall be based on simple overall
concepts which are straightforward to understand and
use and which are few in number.

The former is at too high a level of abstraction and needs to‘be ex-
panded to define requirements for help facilities, shoFt versions of
commands, and the text of user prompts. The latter is a platitude
and should be removed from the specification.

Contradiction

A system specification will often contain functipnal and non-
functional requirements which are at variance w1tl} each other.
In effect they eliminate the solution space of pos.51b'1e sysilzems.
Typically, the sentences that make up the contradictions will be
scattered throughout the document. An extreme example of such
a contradiction is the statement

The water levels for the past three months should be
stored on magnetic tape.

(which may form part of the hardware requirements of a future
system) and the statement

The command PRINT-LEVEL prints out the average
water levels for a specified day during the past three
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months. The response of the system should be no longer
than three seconds.

Obviously, if a slow-storage medium such as magnetic tape is used
then the response time will hardly be in the range of a few seconds.
A more subtle error occurs with the statements

Data is deposited into the employee file by means of the
WRITE command, This command takes as parameters:

the name of the employee, the employee’s department,
and salary,

’I‘l}e ENTRY-CHECK command will print on the remote
printer the name of each employee together with the date

on which the employee’s details were entered in the em-
ployee file.

whirh are functional requirements together with the non-func-
tional requirement

The .hardware on which the system will be implemented
consists of: an IBM PC with 512k store, asynchronous
I/O ports, keyboard, monitor, and 20 Mb hard disc.

Here the assumption made is that the employee file will contain
an entry date for each employee. Unfortunately, the WRITE com-
mand does not take an entry date as a parameter, and the hard-
ware specified does not include a description of a calendar/clock.

A system cannot be developed which satisfies contradictory
requirements. If this were regarded as a pure example of a contra-
diction, then the ENTRY-CHECK command shouid be deleted.
However, the contradiction could have arisen from a set of incom-
plete requirements. In this case the WRITE command should be
amended to take the entry date as a parameter or the hardware
requirement expanded to include a calendar/clock.
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Incompleteness

One of the most common fanits in o system specification is in-
completeness. An example of this follows. It shows part of the
functional requirements of a system to monitor chemical reactor
temperatures.

The system should maintain the hourly temperatures
from sensors which are attached to functicning reactors.
These values should be stored for the past three months,

The function of the AVERAGE command is te display on
a VDU the daily tamperature of a reactor for a speeified
day.

These statements look correct, However, what happens if a user
types in the AVERAGE command with a valid reactor name but
for the current day? Should the system treat this as an error?
Should it calculate the average tomperature for the hours up to
the hour during which the command was entered. Alternatively,
should there be an hour threshold helow which the command is
treated as an error and, above which, the average temperature for
the current day is displayed?

Mized requirements

Very rarely will you find functional requirements partitioned neat-
ly into functional requirements, non-functional requirements, and
data requirements. Often statements about a system’s function
are intermixed with statements about data that is to be processed.

Naiveté

Another common failing of a system specification is that it will
contain naive views of what a computer system can achieve, This
will be manifested in two ways. First, the statement of require-
ments will contain directives and statements which underestimate
the power of the computer, The most frequent Lransgressors seem
to be electronic engineers with little cxperience of software who
insist on hardware requirements which could be casily satisfied by
software at a much lower cost.
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Another example of customer naivetd occurs in system spe-
cifications for systems which can never be built within budget.
Such systems are normally specified because of the low technical
expertise of the customer. The most common example of require-
ments for an impossible system is the specification of a particular
hardware configuration and a set of functions which will never
meet its performance requirements.

Another example of naiveté occurs when a customer suffers
from a grossly ambitious view of what a system is capable of.
One consequence of the recent rise in artificial intelligence has
been a rash of system specifications which make the predictions

of the wilder members of the artificial inteiligence community seem
almost sage-like. :

Ambiguity

Specifications written in natural language will almost always con-
tain ambiguities. Natural language is an ideal medium for novels
and poetry; indeed, its success depends on the large number of
meanings that can be ascribed to a phrase or a sentence. However,
it is a very poor medium for specifying a computer system with
precision. Some examples of imprecision are

The operator identity consists of the operator name and
password; the password consists of six digits. Tt should
be displayed on the security VDU and deposited in the
login file when an operator logs into the system.

When an error on a reactor overload is detected the er-
ror! screen should be displayed on the master. console
and the error? seroen should he displayed on the link
console with the header line continuously blinking.

In the first statement does the word ‘it’ refer to the password or the
operator identity? In the secoud statement should botl consoles

display a blinking header line or should it only be displayed on
the link console? :
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Miztures of levels of abstraction
A system specification will contain statements which are at differ-
ent levels of detail. For example, the requirement

The system should produce reports to management on
the movement. of all goods to and from all warehouses.

and the requirement

The system should enable a manager to display, on a
VDU, the cash value of all goods delivered from a specific
warehouse on a particular day. The goods should be
summarized into the categories described in section 2.6
of this document.,

are at different levels of abstraction. The second requirement
forms part of the first requirement. In a well-writ’?en state'ment of
requirements the document should be organized into a hierarchy
of paragraphs, subparagraphs, subsubpa:agraph§, etc. Each level
of paragraph represents a refinement of the requirements emlbod-
ied in the next higher level of paragraph. In a poorly written
statement of requircments connected requirements will be spread
randomly throughout the document,

3. Mathematics and the software project

The problems outlined above have prompted the software engin-
eering community to look for better notations and methods for the
main phases of the software project. The research that has.‘: been
carried out has had two flavours., The first has involved the inven-
tion of graphical notations and scftware tools for such notations
— tools known as analyst or designer workbenches. The second
thrust has been in the area of developing mathematical notations.
Good introductions to these notations can be found in (2] and [9].

The development of formal methods can be essentially seen
as a reaction to the vagaries of natural language, and many of t.he
proponents of such methods will cite the fact that the sema,nt}cs
of mathematics is exact. However, there is much more. My claim
that formal methods has a part to play within software deve}op~
ment is based on its modelling properties. System specificat’ons
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Figure 2: Formal software development

are notoriously cluttered documents, and mathematics enables all
the clutter associated with the task of system specification to be
removed. The way in which we use formal methods in a software
project is shown in Figure 2. It closely mirrors the model put
forward in Section 1 of this paper. Requirements analysis is an
informal process so it is still carried out in the same way. The
difference comes with system specification and design, where a
mathematical notation is used to describe a system. Program-
ming remains the same as before. Where the biggest difference is
seen is in validation, where mathematical proof is used to check
that the system design is a correct reflection of the system spe-
cification, and that the program code is a correct reflection of
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the system design. Also, mathematical proof is used to explore
the consistency of the system specification; for example, in the
gpecification of an editor the anaiyst would demonstrate math-
ematically that when an insert command is followed by a delete
command which removes the text added by the insert command,
the document that is being edited returns to its original state,

It is worth pointing out that system and acceptance test-
ing are still carried out within projects that use formal methods,
however our limited experience with formal methods seems to sug-
gest that the amount of reworking that occurs because of a failure
of a system or acceptance test is drastically reduced, and the num-
ber of system and acceptance tests that fail is also reduced.

Before looking in a little detail at an example of a formal
method it is worth stating some of the current problems:

¢ The size of the proofs that have to be carried out are very
large. The mathematics that is produced is quite shallow,
but there is quite a lot of it, For an example of the volume
of mathematics that is generated see [1]. :

e There are few tools in existence that effectively support the
formal development process. This is a serious problem given
the amount of mathematics that has to be carried out.

e The customer has major problems understanding a formal
specification.

o The mathematical abilities of many software development
staff is not sufficiently sophisticated to use formal methods.
To use discrete mathematics as a specification medium re-
quires a high degree of facility in proof, and also the posses-
sion of modelling skills which marny analysts, designers and
programmers do not possess. I would regard this problem
as the most serious, and the reason why, I suspect, formal
methods will have limited use on the software projects of the
future.

4. An introduction to mathematics on the

software project
This section has a two aims First, it is a tutorial introduction
to the use of mathematics on the software project. Second, it
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provides a glimpse of some of the research that is being carried
out into reducing the amount of proof that is required with formal
methods. It describes a way of validating a design against a system
specification which seems to be an improvement over previous
methods — although it is still a research question as to how much
an improvement can be achieved.

Before describing the mathematics it is worth stressing that
I am describing one flavour of formal method known as a model-
based method. There are other formal methods which are avail-
able, many of these are described in [2], however, model-based
techniques have had the most industrial penetration.

4.1 The example

The example that I shall use is small, however it is rich enough to
illustrate many of the principles of formal software development
and some of the problems. It also represents a realistic piece of
software which is used in a variety of systems. _

The example is a symboi table handler. A symbol table is a
collection of items which are stored and maintained in a computer
system. Normally a symbol table will contain no duplicates and
will have items added and removed from it during the operation
of a system. Symbol tables are used everywhere in computing, for
example, they are used in communications systems to keep track
of calls, they are used in personnel systems to hold the names
of staff employed by a company and they are used in computer
operating systems to keep track of the users of the system.

I shall make a number of assumptions in writing down a spe-
cification of the symbol table:

e That four operations are required: an operation that adds
an item to the symbol table, an operation that removes an
item from a symbol table, an operation that returns with the
number of items in the table, and an operation which checks
that an identifier is stored in the symbol table. .

# That the items in a symbol table will be callé’d identifiers..

e That no more than Maxlds identifiers are allowed in a sym-
bol table. '
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o That no duplicates are allowed in the symbol table.

4.2 The specification

In writing down a model-based formal specification of the syml?ol
table three pieces of mathematics are needed: the state a dgscrlp-
tion of the stored data of the symbol table, a date invariant a
predicate which describes the invariant properties of the state,

and the four operations on the state.
The state is very simple. Since the only property of the sym-
bol table is that no duplicates are allowed then a set can model

the symbol table

SymTable : P identi fiers

" where P is the power set operator. All this states is that Sym-

Table will be a set which contains identifiers. The data invaria.rllt
is also quite simple. The only property that can be retjerred 1o in
the data invariant is that the symbol table will contain no more
than Mazlds identifiers,

#SymTable < Mazlds

where # is the set cardinality operator. The fo‘m" operations
are described by a pre-condition and a post-condition. A pre-
condition is a predicate which must be true for an opclara,tlon to
be defined. A post-condition is a predicate which describes what
happens when an operation is completed, An ‘.axa,m'ple of the use
of these predicates is shown below in the specification of the op-
eration Addldent which adds an identifier to the symbol table.

AddIdent(s : identifiers)
pre s & SymTable A #SymTable < Mazlds

post SymTable' = SymTableU {s}

The pre-condition states that the identifier s which is to be added
to the symbol table must not already be in the table, and .tl.lat
there is Toom for the identifier in the table. The post-condition
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shows the addition of s to the table, SymTable’ stands for the
val}le of the symbol table after the operation has been completed
This, then, is the formal specification of the Add] dent operator in.
terms of mathematical structures which can be reasoned about
The specifications for the remaining operations are shown be:
low, Removeldent removes an identifier from the symbol table
Numldent returns with the number of items in the symhol l"Lbl(:
and InTable returns true if an identifier is in the synibol tal:;ie. ‘

Removeldent(s : identifiers)
pre s € SymTable
post SymTable’ = SymTable\ {s}

Numldent(s : identi fiers)n : N
pre true

post n = #SymTable A SymTable' = SymTable

InTable(s : identi fiers)b : Boolean
pre true

post b = s € SymTable A SymTable' = SymTable

\ stands for set subtraction and N is the set of natural numbers
The pre-condition for Numldent is true since the operation ié
defined for all values of the state. The post-condition specifies
that the symbol table is unaffected by the operation. The pre-
condition for I'nTable is similarly true. ?

4.3 The development

The.speciﬁcation in the previous subsection represents an exact
specification of a symbol table uncluttered with the noise that is
so often found in industrial specifications. The next step is to
tr.ansfor{n the specification into program code. The tech’niqﬁe I
will use is known as program calculation. This method of develop-
ment takes a specification and then uses a series of programming
laws to transform that specification into program code [7]. The
proponents of the method claim that it mirrors the process of
algebraic manipulation used by mathematicians.
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The first step in the development process is to select some
computer data structure to model the symbol table. I shall use
a single-dimension array with a fixed number of MazIds -+ 1 loc-
ations. This will contain the identifiers with the last location
holding a special value known as a sentinel. The reason for the
sentinel will become clearer in the next section. This will formally
be modelled by a total function SymTableD which has a domain
of consecutive integers from 1 to Mazlds + 1 and which always
contains Maxlds + 1 elements in its range; a natural number
NumlIds will be used to hold the number of identifiers currently
represented in the state. Sym7'ableD models a single-dimensional
array with bounds 1 . . MaxzIds+1 that contains positive integers.
The convention that I have used here is that the state which forms
the design of the system is postfixed by a capital d. The data
invariant for the state which is made up of both the array and

Numlds is

Numlds < MaxIds A
dom SymTableD = 1.. MaxIds +1A
# dom SymTableD = Maxlds + 1

All the invariant states is the fact that the array will contain no
more than MazIds elements, will range from 1 to Mazlds, and
will have a fixed number of MazZds locations for identifiers.

Given this new design state how do you relate the specifica-
tions in the previous subsection to equivalent specifications in the
design state? The answer is a predicate known as the coupling
invariant. This is a predicate which characterizes the relation-
ship between the state used in a specification and a design state.
Whatever happens to the values in the specification state and
the design state the coupling invariant will always hold. In the
example used in this paper the coupling invariant is

SymTable = ran{SymTableD < (1 .. Numlds}))

where < is the domain restriction operator which forms a function
by taking its first argument and restricting it to those elements
which have their first element contained in the second operator.
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Once the coupling invariant has been specified the next step
is to use it to transform the specifications detailed in the previ-
ous subsection so that they refer to the design state. The only
operation specification I shall consider is

InTable(s : identi fiers)
pre true
post b = s € SymTable A SymTable’ = SymTable

The maunipulations on the other operations are roughly similar.
We can use the coupling invariant to transform the post-condition
to form & new operation InTableD which operates on the design
state, '

InTableD(s : identifiers)

pre true '
post b = s € ran(SymTebleD < (1 .. Numlds)) A
ran(SymTableD' < (1 .. Numlds))

= ran{SymTableDa (1 .. Numlds))

We can now start making some more design decisions about the
operation. I shall assume that the customer for the software has
stated that for 98% of the time only a relatively few identifiers are
examined when the InTable operation is invoked. I shall assume
that the program code which will eventually be produced will
involve a linear search of the array SymTableD: the first element
of the array will be examined, then the next, and so on, until
either the end of the array has been reached or the identifier that
is to be searched for has been found. Given this linear search
strategy an efficient manipulation that can be made is that when
an identifier has been found, it is moved to the first element of
the array and all the remaining elements are shifted down by one,
With this form of organization the most popular elements in the
array for retrieval will usually be found near to the start of the
array; in this way, the linear search will usually only involve a
small number of elements.

In order to reflect the algorithm that wiil be used a number
of transformations need to be applied to the post-condition of the

s Software development 33

InTableD operation, each transformation will preserve correct-
ness. The first just uses-a simple law of predicate calculus which
reorganizes the equivalence.

b= s € ran(SymTableD < (1 .. Numlds)) A
(s € ran(SymTableD a (1 .. Numlds)) A
ran(SymTableD' a (1 .. Numlds))
= ran{SymTableD a {1 .. Numlds)))

v .
(s ¢ ran(SymTableD a (1 .. Numlds)) A
ran{SymTableD' 4 (1 .. Numlds))
= ran(SymTableD < (1 .. Numlids)))

The second disjunct in the predicate can be transformed into

s ¢ ran{SymTableD <« (1 .. Numlds)) A
SymTableD' = SymTableD

Then using a variable [ which ranges in value from 1 to Numlds
the first disjunct can be transformed into

s € ran{SymTableD a(1 . . Numlds)} A
SymTableD(l) = s A SymTableD'(1) = s A
Yi:1..l—1e SymTableD (1 + 1) = SymTableD(i)

gince the predicate does not alter the range of SymT ableD.
The post-condition of InTableD has hence been transformed

to

= s € ran(SymTableD < (1 .. Numlds)) A
(s € ran(SymTableD < (1 .. Numlds)) A
SymTableD(l) = s A SymTableD'(1) = s A
Vi:l..l—1s SymTableD'(i + 1) = SymTableD(i))
v
s & ran{SymTableD a (1. . Numlds)) A
SymTableD' = SymTableD

The structure of the eventual software can now be discerned. It
will consist of code which checks whether ¢ is in the array. If s
is in the array then it is moved to the front and the remainder of
the array shifted back one; however if s is not in the array then
the array remains unchanged.
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4.4 Programming

The next stage is to transform the design specification for In-
TableD into program code. I shall use a simple programming
language due to Dijkstra to express the code [3]. The structure of
the program to carry out the search and possible adjustment of
the array will reflect the structure of the post-condition:

Carry out search for s,

if sisin the array — adjust array

[ sisnotin array — SymT'ableD := SymTableD
fi

This can be simplified to

Carry out search for s.
if sisin the array — adjust array
fi

By a process of refinement we can gradually aim towards the tar-
get of an implementation. The first part of the code: that of
discovering s in the array requires a loop. It can be dealt with
first. The technique that is used for this is to identify a loop
invariant: a predicate which is true during the execution of the
loop and which, when the loop terminates, will imply the post-
condition which is required. The post-condition that we wish to
satisfy is that connected with the search for s

b=s ¢ ran(SymTableD a (1 .. Numlds))

In order to satisfy this post-condition the first thing we do is to
insert the identifier that is to be locked for in

SymTableD{(Numlds + 1).

This identifier acts as a sentinel which cuts a search short. We
“can then develop code which establishes the post-condition

SymTableD(-l) =sAl1<I< Numlds+1A
¥i:l..l—1eSymTableD(l) # s ‘
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The code which established this post-condition will find the first
occurrence of s inside the array SymTableD. A loop can be used

for this with a loop invariant
1<1< Numlds+1AVitl.. | —1e SymTableD(l) # s

The condition that has to be conjoined to the loop invariant to
imply the post-condition is

SymTableD(l) =

If we have a while loop which terminates when the conditivon in
the while loop is false, then the joop condition is the negation of

the above
SymTableD(l) # s

The structure of the program code now looks like

SymTableD{(Numlds + 1) = 5

initialization for the loop

do SymTableD(l) # s -

loop hody

od;

if ¢isin the array — adjust array

fi
Before the loop starts executing the loop invariant must be true.
This can be achieved by initializing ! to one. The loop must be
driven to termination and this is achieved by having a statement

.= [ + 1 inside the loop. This code does not violate the loop

invariant. Finally the predicate b = SymTableD{l) = s can be
established by observing that since

| < Numlds=s € ran(SymTableD a(1 .. Numlds))

and
b=s e ran(SymTebleD a(l .. Numlds))

then
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= < Numlds

which can be established by the statement b := | < NumlIds. The
program can now be expressed as:

- SymTableD{Numlds+ 1) i=s;
=1
do SymTableD(l) # s —
Ii=i+1

od;

b= 1 < Numlds;

if sisin the array — adjust array

fi
The incrementation of the loop does not violate the loop invariant
30 no more statements are required in the loop. The final part of
the program code can now be derived. Since the loop invariant is
true when the loop finishes we can say that the element s is in the
array if b holds, This becomes the condition in the if statement.

The adjustment of the array requires that the post-condition

SymTableD(l) = s A SymT'ableD'(1) = s A
Vi:1l..l—1eSymTableD'(i + 1) = SymTeble) ()

is established. Since the first conjunct has already been estab-
lished ali that is required is to satisfy the remaining two conjuncts.
A loop is used for the third conjunct. A possible loop invariant
involving a loop counter 7 is

1<i<iA
Vi:1..4—1eSymTableD'(l ~i+1) = SymTableD(l — 1)

The condition which must be true in order to imply the post-
condition is that 7 = I. Thus, if the loop is a while loop, the
condition on the loop will be the negation j # I. The invariant is
established by setting the variable j to be 1. The loop is driven
to termination by incrementing j by 1. This means that

15 <IN
Yi:l..je SymTableD'(l —i+ 1) = SymTableD(l — i)
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SymTableD(Numlds + 1) = &,
l:=1;
do SymTableD(l) # s =
=41
od;
h:=1< Numlds;
if b
j=1
doj#1—
SymTableD(l—j+ 1) = SymTableD(l - 7);
Ji=g+1
ad;
SymTable(l) = s
fi

Figure 3: The final program

must be true for the invariant to liold alter the incrementing cf J.
Thus, in order to re-establish the loop invariant what is required
is that the statement SymTableD{l — j -+ 1) 1= SymTableD(l —
j) is executed. The second conjunction in the post-condition
SymTableD'(1) = s can be established by means of the state-
ment SymTable(1) ;= s. Hence the code for the whole program
will be that shown in Figure 3. The most obvious observation one
can make about the mathematics displayed in the previous section
concerns the volume. A large number of lines of set theory and
predicate calculus were generated in order to derive a correct pro-
gram, The nearest analogue in mathematics that I can think of
is the calculation of the derivative of complicated functions from
first principles. In defence 2 number of things can be said. First,
that many of the steps that 1 described could be telescoped, some
of the length of the development came about for didactic reas-
ons. Second, a large number of the steps are quite simple, where
it is obvious to the developer when a mistake is made. Third
software tools are becoming available which enable the developer
to check each step and partially automate the offort. Fourth, ve-
search on development using discrete mathematics is still in its
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early stages, and the use of program calculation as a technique
is still in its comparative infancy. Fifth, some very challenging
algorithms have been developed using the technique described
above. For example, Gries [4] has described an efficient binary
fraction to decimal conversion routine, Morris has described the
derivation of & pattern matching algorithm [8], and van Gasteren
has described the development of a space efficient cyclic permuta-
tion algorithm [10]. Kaldewaij has collected together a number of
program calculations in an advanced undergraduate textbook (5].
A comparison of the technique described in this paper and other
mathematical development methods can be found in [6].

5. Advances and Retreats

It is clear that there are still many years to go before mathem-
atical methods of software development will be used on even a
relatively small proportion of our projects. However, they offer
the hope of software with a very low level of faults and also offer
tantalizing research problems to both the computer scientist and
the mathematician. There have been many advances:

® There are now well-designed notations such as VDM [1] which
are able to describe industrial software systems.

» Formal methods of software development have a secure place
in the syllabus of the vast majority of British university com-
puting degree courses.

» Some software development areas such as the safety-critical
area are now beginning to realize the potential of formal
methods of software development,. -

e The last three years has seen some excellent teaching books
produced, for example [9].

However, to balance these advances there are a number of
failures or areas where advance has been painfully slow:

¢ The penetration of formal methods of software development
in the computing industry is minimal. I would estimate it as
less than 1%.
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¢ There is a lack of tools for software developers who use PC
level computers. Those tools that have been developed are
mainly confined to very powerful workstations.

» The tools that are available are experimental, and tend not
to scale up to industrial size systems. Many such tools tend
to be not very powerful thecrem provers.

* Formal design is still a void. One sclution has been described
in this paper. However, although it seems to offer quite an
improvement over current formal design techniques, it still
requires quite a large amount of rather shallow mathematics
to be generated. '

e There is still a fack of integration of formal methods with
other activities on the software project. For example, we
know very little about the development of system tests from
formal specifications.
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NUMERICAL SOLUTION OF
CONVECTION-DIFFUSION PROBLEMS

Martin Stynes

Abstract: An overview is given of the nature of convection-diffusion
problems and of some methods commonly used Lo solve these problems.

1. Introduction

Think of a still pond. At a point in this pond you pour a small
amount of liquid dye. Approximately what shape will the dye
stain take on the surface of the water as time passes? I think that
we would all agree that the answer is a disc of slowly increasing
radius, as the dye diffuses outwards from the initial point.

Consider next a more complicated situation: suppose that I
replace the still pond above by a river which is flowing strongly
and smoothly. What now is the shape of the dye stain?

The answer is a long thin curved wedge. This shape is the
result of two physical processes: there is as before a tendency
for the dye to diffuse slowly through the water, but the domin-
ant mechanism present is the swift movement of the water, which
rapidly sweeps (this is convection) the dye downstream. Convec-
tion alone would carry the dye along a (one-dimensional) curve
on the surface; diffusion gradually spreads that curve, resulting in
a wedge shape.

Physical situations such as this, where convection and dif-
fusion are both present but convection dominates, are known

This article is the text of an invited lecture given by the author at
the September meeting of the Irish Matlematical Society held at
the Regional Technical College, Waterford, September 3—4, 1992.
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as convection-diffusion problems. Convection-diffusion problems
arise when modelling airflow over cars, aircraft wings and through
jet engines, in weather forecasting, in the modelling of electrical
currents in semiconductor devices and in many other applications.
Consequently there is great interest in their analysis and numer-
ical solution.

In this article we shall begin by discussing the nature of solu-
tions to convection-diffusion problems. Then we move on to the
construction of accurate numerical methods for the solution of
these problems, Finally we outline the main tools which are used
to analyse such numerical methods.

2. Structure of convection-diffusion soclutions

The simplest mathematical model of a convection-diffusion prob-
lem is a two-point boundary value problem of the following form:

eu(z) + alz)u'(z) + blaju(z) = f(z)  for O<az<l, (1)

with «(0) and u(1) given, where ¢ is a small positive parameter
and @,b and f are some given functions. IHere the term »" cor-
responds to diffusion and its coefficient ¢ is small, The term '
represeits couvection, while o and f play the réles of a source
and driving term respectively. (For an explanation of why diffu-
sion and convection should be modelled by second and first order
derivatives respectively, see for example Spriet & Vansteenkiste
[10].) '

Problems of this type, where the highest order derivative has
a small coefficient, are singularly periurbed differential equations.
We begin by considering a single generic example in detail.

Example 1 Suppose that
—eu(z)+u'(z) =1 for O<z <1, (2)

with ©{0} = u{1) = 0 and 0 < ¢ << 1. Here we have taken —&
rather than £ as the coefficient of 4", since this turns out later to
be more convenient; one can clearly move from either formulation
to the other by multiplying the differential equation by -1.
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The solution to this boundary value problem is easily seen to

be
e—l/s - e*{l—x)/e

1—el/e

w(r) =1+
It is more revealing if we write this as
u(z) =z — e 072/ L O(c1/7), (3)

These three terms should be interpreted in the following way. The
first, z, is the solution of the instial value problem

u'(z) =1 on (6,1} subject to u{0) = 0. (4)

(This problem is obtained by formally setting e equal to zero in (2)
and taking onc of the original boundary conditions.) The second
term in (3) has a negligible influence on the solution when z is
not near 1 (recall that ¢ is positive and small}. It is essentially
a correction to the solution of {4) which is required in order that
the other boundary condition (1) = 0 of the original problem be
satisfied. The last term in (3} is of negligible size.

Thus from (3) we can see that a graph of u = u(z) will closely
approximate the straight line v = z on almost all of [0,1]. When z
approaches 1, the graph (while, of course, remaining continuous)
suddenly departs from this straight line and plunges downwards
to satisfy the condition u(1) = 0. We say that the graph has a
boundary layer at z = 1.

This behaviour may be summarized as follows. Except on
a narrow region near cne of the boundaries, the solution of the
original boundary value problem closely approximates the solution
of an associated initial value problem.

Several further examples of this type are given in O'Riordan

[8].

In two dimensions the situation is similar, as we now show.

Example 2 Consider the second order elliptic convection-
diffusion problem

~eAu+u +u=f on{], (5)
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with w = 0 on 8§, the boundary of 1. Here to avoid any tech-
nical complications we assume that £2 is a bounded strictly convex
region in R? with smooth boundary 800, We also assume that
f € L%(§). As before, we take £ to be a small positive parameter.
These hypotheses imply that (5) has a unique solution u(z,y).
Write T for the unit vector in the direction of the positive
z-axis and 7 for the outward pointing unit normal to 8. Set

O N ={pedN:7@ <0atp}

and
G0 ={pedQ:7T7 >0 at p}.

Then, analogously to Example 1, the solution u on all of {3,
except close to 87, is equal (modulo a little diffusion) to the
solution v of the first order hyperbolic problem

v +v=Ff onf, (6)

with initia! data v = 0 on 8- Q. At {1 the function » will have
a boundary layer, i.e., close to 87 the solution u changes rapidly
in order to satisfy the boundary condition « =0 on 81§,

This example in two dimensions is related to our earlier “dye
in the river” problem. Think of the direction in which {6) propag-
ates (the positive z-axis) as the direction of flow of the river. Then
the first part of the previous paragraph states that the solution at
any point (i.e., the presence or absence of dye at any point) de-
pends only on what happens almost directly upstream of that poind,
which is what we observed when we stated that the dye spread as
a long thin wedge.

This identification of the direction of propagation of a first
order hyperbolic problem with the direction of flow of a fluid dy-
namics problem is often tacitly made in convection-diffugion ter-
minology.

For further examples in two dimensions (and some graphs) see
Johnson [1]. A feature which may occur in two dimensions is that
a discontinuity in the boundary data on 9~ will in general cause
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an internel layer in the solution; this is a narrow region, centred
on one of the characteristics of the first order hyperbolic preblem
(6} - i.e, following the direction of flow - in which the sclution
changes rapidly. For a pictorial example of this see Johnson [1].

3. Numerical solution

In this Section we discuss some numerical methods which are
commonly used to compute approximate solutions for convection-
diffusioni problems.

3.1 Why standard numerical methods fail

It is not immediately evident why convection-diffusion problems
merit special attention from numerical analysts. After all, a prob-
lem such as Example 1 of the previous Section is a linear two-point
boundary value problem. The average undergraduate numerical
analysis textbook will give several methods applicable to this class
of problems. (We shall refer to such standard textbook methods
as classical methods, in order to distinguish them from methods
which are designed specifically for convection-diffusion problems.)
However if you try any classical method on Example 1, you will
probably find that your computed solution displays wild osciila-
tions-and yields a very poor approximation of the true solution,
What has gone wrong?

The answer may be found by a careful inspection of the con-
vergence analysis of the classical method. This reveals that the
accuracy of the method depends in general on the size of the
greatest lower bound for the absolute value of the coefficient of
the highest order derivative in the differential equation. In many
problems this lower bound is not close to zero and then classical
methods are often satisfactory. In the case of Example 1 however,
this coefficient is —e. When ¢ is close to zero, classical methods
tend to be destabilized, resulting in the oscillations mentioned
above. :

We now investigate this phenomenon in more detail, in order
to see how to devise methods which will not mishehave so badly.

Consider again Example 1. We shall attempt to generate
an approximate numerical solution by means of a standard finite
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difference method. First partition [0,1] by a uniform mesh of N4+1
points, where IV is some positive integer. That is, we set z; = ¢/N
fori=0,...,N. Put h=1/N. 7

A typical classical finite difference approach would begin by
approximating '

T — 2u{z;) + ulz;—
w' (@) by uoi) ég ) (i)

and w(@ie1) = w(@iny).

w(e:) by S (™
(If these expressions are unfamiliar, use Taylor expansions to see
that each approximation is O(k?) accurate; as h is small in prac-
tice - perhaps 0.1 at most - this approximation is sufficiently ac-
curate for most purposes.)

For each i, we write u”(z;) for the solution which we will com-
pute at z;. Then based on the above difference approximations
and the differential equation (2), we compute the u"(z;) from the
following linear system of equations:

uh (i) = 2ub (@) + u{zio1) + ul (zi41) — uM{@i1)
¢ n? 2h
fori=1,...,N =1, where u"(zo) = u*(zx) = 0. This set of
equations comprises our difference scheme. :
Writing this system of equations in matrix-vector form, it is
easy to see that we obtain a tridiagonal square matrix whose 4 th

row is

£ 1 2e € 1
_E 1Y) = (L) 0.
0...0 ( h? 2]7.) h? ( h2+2h)

fori=1,...,N—1, lLis first ({ = 0) and last (i = V') rows, which
correspond to the boundary conditions, are 1 0...0 and 0.,.01
respectively.

At this point we introduce the reader to M-matrices. This
class of matrices is frequently encountered in numerical analysis.
We say that a matrix A = (Ay;) is an M-matrix iff

Ay <0Vi#g, A7 evistsand (A7 )y; > 0 Vi, g

=1,
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The significance of M-matrices in finite difference methods is that,
loosely speaking, methods which give rise to A -matrices are stable
and well-behaved.

Using some well-known results for M-matrices {sce, e.g., Or-
tega & Rheinboldt [9]), one can quickly see that our difference
scheme matrix above is an M-matrix if the nonzero off-diagonal

entrics are negative. This is cquivalent Lo requiring that
€ 1
-+ — <0,
h2 " 2h
i.e., that
h < 2e, (®)

When (8) is satisfied, one expects the finite difference method
to be stable and to yield an accurate approximation to the true
solution of Example 1. In practice this is what happens. Also,
if in practice A >> 2e, then one’s computed solution oscillates
wildly and is useless.

Note here that if e =1 (i.e., if we no longer have a convection-
diffusion problem), then (8) obviously holds, so one ohtains au
M-matrix and hence a stable numerical method. This is why
classical methods are satisfactory for problems which are not of
convection-diffusion type.

One might consider the above analysis as merely indicating
that classical methods may be satisfactorily employed to solve
convection-diffusion problems, provided only that the mesh is
chosen so that some inequality such as (8) holds. Theoretically
this is so, but from a practical viewpoint (8) asks too much. For
in reality one wishes to solve two- or three-dimensional problems
with, say, £ = 0.0001 (in [act € is smaller in many applications).
With this value of ¢, a problem in two dimensions for whicl {8)
is satisfied will in its finite difference formulation (which uses a
square grid with (¥ +1)* mesh points) have about 25,000,000 un-
knowns! By usual computing standards, this is an absurdly large
number. In three dimensions the situation is substantially worse
(exercise: about 1.25 x 10*! unknowns).
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The message here is that to get a classical method to work sat-
isfactorily, one has to provide it with an unacceptably large num-
her of mesh points. This restriction can be avoided by construct-
ing methods which are specially suited to convection-diffusion
problems, We now show how this may be done.

3.2 Upwinding

Our troubles above with large numbers of mesh points stemmed
from the fact that our mairix became an M-matrix only when
h was roughly the same size as e, i.e., only when h was small,
Looking at how the entries in our matrix are related to our chosen
difference approximations to 4" and «', we are led to make the
following modification to cur method: instead of approximating

w(Tity) — w(Ti-1)

w'(z:) by 7 ,

approximate it by
wl{z;) — uls;—) (9)
h.
The motivation for this alteration is that it leads to a tridiagonal
difference scheme matrix whose ¢ th row is

€ 1 2e 1 £
0...0 (~h2 - h) <h2 + h) ~33 0.0

fort=1,...,/¥ —1. As the nonzero off-diagonal terms are negat-
ive, it can be shown that this is an M-matrix, irrespective of the
relative sizes of h and e, Thus when a reasonable number of mesh
points is used, this difference scheme will be stable. Consequently
its computed approximation will be much closer than that of our
original difference scheme to the true solution.

However in stabilizing the scheme we have paid a certain price
in accuracy. As we mentioned previously, (7) is an O(h?) approx-
imation, A similar Taylor expansion reveals that {9) is cnly an
O({h) approximation. Consequently our computed solution is not
expected to be extremely accurate. It turns out to be moder-
ately accurate outside the boundary layer but inaccurate ingide
this fayer.
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In fact to obtain accuracy inside boundary layers requires the
construction of more complicated diference schemes. We refer the
reader to O'Riordan (8] for an introduction to this topic.

The technique we described above, which consisted of repla-
cing a centred difference approximation to a first derivative by
a one-sided difference approximation, is known in the research
literature as upwinding. This name comes from the fact that sta-
bility is achieved by taking this one-sided approximation in the
upstream direction (recall the discussion after Example 2 earlier).
If for example one tries instead a one-sided difference approxima-
tion in the downstream direction, this does not yield stability.

Upwinding has certain drawbacks, one of which is its me-
diocre degree of accuracy, as we described above. Another is the
difficulty of generalizing it in a satisfactory way to problems in
two or three dimensions. For this reason we now consider an al-
ternative way of stabilizing our original difference scheme.

3.3 Artificial diffusion
‘We return once more to the differential equation

—eu(z) + u'(z) = 1

of Example 1. Suppose that we have a uniform mesh with the
same notation as before. We generate a difference scheme by the
following two-step procedure:

(1) change € to e + 3

(1) apply our original method (i.e., centred difference

approzrimation} to this modified differential equation.

That is, we first modify the differential equation then apply a clas-
sical difference method. Due to step {¢), this approach is known
as the. artificial diffusion method.

On working through the details of this procedure, one finds
that it yields precisely the same difference scheme matrix as up-
winding! We thus have two superficiaily different approaches
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which turn out to have identical outcomes for our one-dimensional

problem. However, unlike upwinding, (a variant of) the artificial

diffusion methed can readily be generalized in a satisfactory man-

ner to two or more dimensions, as we shall sec in subsection 3.4.
Now recall the differential equation of Example 2:

—&(Uge + Uyy) + Uz +u = [ 7 (10)

Working with a square mesh of diameter A in two dimensions, the
obvious generalization of our one-dimensional artificial diffusion
method would be to replace € in (10) by ¢ + £/2 then to apply a
classical method to the modified differential equation. This will
give a stable method, but as we describe below, it does not cope
successfully with internal layers if these are present.

Recall that internal layers are narrow regions in the interior
of the domain where the solution changes rapidly. If we visualize
the surface u = n{x,¥), then an internal layer is a steep, almnost
sheer cliff forming part of this surface and running in the direction
of the flow across the domain {1 from 8 to 8+ Q2.

When the artificial diffusion method is applied to a problem
with an internal layer, the computed solution will not include
an almost sheer cliff. Instead, a moderately steep slope will be
generated (this is often described by saying that the layer has
been “smeared out”). The basic reason is that the method adds
diffusion in all directions, including the direction perpendicular to
the internal layer, so the cliff is diffused in this direction.

3.4 Streamline diffusion

The artificial diffusion method is considerably improved if the ad-
ded diffusion is. confined to act only in the direction of flow and
not perpendicular to this direction. This idea is the basis for
the streamline diffusion method, which is fully described in John-
son [1]. When this method is applied to {10), the diffusion term
—&(uzs+Uyy) is essentially modified to —huge —€tyy. The method
computes reasonably sharp internal layers.

The streamline diffusion method has a further advantage over
the artificial diffusion method. As we indicated in subsection 3.3,
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the artificial diffusion method is somehow closely related to up-
winding, while upwinding is based on an O(h) approximation to
the true solution. Consequently both upwinding and artificial dif-
fusion can at best be O(h) accurate, even in parts of the solution
which are distant from layers. Now, using a finite element ap-
proach, the streamline diffusion method ¢an be generated in a
manner which yields better than O{h) accuracy away from layers.
The analysis of this higher order accuracy is discussed later.

3.5 Cell vertex finite volume method

We close our list by briefly describing one class of finite volume
methods, Finite volume methods are a standard tool in the
aerospace industry, where extremely complex numerical prob-
lems (such as modelling the airflow over an entire aircraft) are
commonplace.

Our concern here is with the cell verter finite volume method.
To apply this method, one first divides the domain of the differ-
ential equation into many small pieces or “cells” (intervals in one
dimension, rectangles in two dimensions). Here let's consider the
two-dimensional formulation. One seeks a computed solution, u”
say, which is a continuous piecewise bilinear function (i.e., bilin-
ear on each cell). The unknowns in the problem are the values
of u" at the cell corners. One generates a system of equations in
these unknowns in the foliowing way. Let C be a typical cell. In
the differential equation replace u at each occurrence by u*, then
integrate the resulting equation over € using Gauss’ divergence
theorem. This entails computations such as

fugdzdyzfv-{uh,o)dmy=f u"dy,
Jo c ac
/u';yda:dyzf V-(O,uﬁ)dmdy:—/ ugdz.
C C oc

The resulting integrals over §C' can be expressed in terms of the
values of u at the cell corners: this is clear for the first such in-
tegral above, while for the second some form of differencing yields
a reasonable interpretation of [, u”dz. See Mackenzie & Morton
(3] for detais.
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The above integration over C yields one equation. You might
expect o priori that one performs this computation over each cell,
but it is a curious feature of the method that this does not in
general yield the correct number of equations (i.e., the number of
equations may then not match the number of unknowns). One can
obtain the correct number of equations by discarding or dividing
cells as needed, as described in Morton [5].

3.6 Summary

In the above subsections we have given short descriptions of some
numerical methods which are suited to convection-diffusion prob-
lems. Our list is by no means exhaustive (for other approaches
see, e.g., Miller {4]). No panacea currently exists; for each method,
one can exhibit examples to which an application of the method
yvields disappointingly inaccurate results.

Any proposed method for convection-diffusion problems, if it
is to have any chance of success, must somehow mimic the beha-
viour of the true solution discussed in Section 2. That is, away
from layers its computed solution at each point should depend
only on what happens in a narrow region directly upstream of
that point, Each of our methods has this property to a greater or
lesser extent.

4. Numerical analysis

In Section 3 we described some standard numerical methods which
are suited to convection-diffusion problems. - We now indicate
briefly the techniques which are used to prove that such methods
do indeed yield accurate numerical approximations to the true
solutions of these problems. '

For finite difference methods, the basic ideas are those of in-
verse monotonicity and barrier functions. These can be described
quite simply. Suppose that the discrete linear system of equations

is
hoh — gh
L™= f"

where L is the matrix arising from the difference scheme and
u* will be our computed solution. The right hand vector f* is
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known. Suppase (this is inverse monotonicity) that
(LM 20,

where the inequality holds for each entry in the matrix. It’s of
course reasonable to assume that (L"}~! exists {otherwise we
could not compute a solution 4?); the essential feature here is
that all its entries are non-negative.

Let 4 denote the restriction of the true solution u to the
mesh points. The consistency error L*(u* — i) can be estimated
by Taylor expansions. Warning: this calculation is tedious and
involves a lot of careful estimation of terms!

Using this consistency error estimate, one next tries to con-
struct a discrete function w” which satisfies the vector inequalities
w" > 0 and Liwh > |L*(uh — 4)|. This is often not as difficult
as it looks: one chooses w" to mimic certain properties that one
expects in the true solution u. The function w* is known as a
harrier function.

Finally, combining the last inequality with the inverse mono-
tonicity property, we deduce that

[uh — @) < wh,

which is a satisfactory result provided that w" is small.

A rather famous example of the use of this techniqﬁe is
provided by Kellogg & Tsan [2].

The main drawback to this method of analysis is the assump-
tion of inverse monotonicity. In the context of convection-diffusion
problems, this property often holds for the matrices arising from
ordinary differential equations but is less frequently true for prob-
lems in two and three dimensions. Thus other analytical tech-
niques are needed. :

For the streamline diffusion method in two dimensions, vari-
ous global error estimates have been proven. However these are
not satisfactory since they are expressed in terms of Sobolev norms
of the true solution u, which become excessively large when ¢ is
small. The best local estimates available have been obtained by
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Niijima [7). He shows that, away from all layers, O(h'*/® In(1/h))
accuracy is achieved when ¢ is small. (Here h denotes the mesh
diameter, just as in our one-dimensional investigations.) His ap-
proach uses finite element techniques to obtain local bounds on a
discrete Green’s function (this function is basically the inverse of
the difference scheme matrix). Hence one can readily deduce con-
vergence of the streamline diffusion method in regions that are not
close to any layers. This analysis is very technical but it works.

Analysis of convergence of the cell vertex finite volume
method has lagged far behind the application of the method. Up
to now, no fully satisfactory analysis of this method has been
published, The best estimates available are in Morton & Stynes
(6], where a sharp convergence result for the one-dimensional case
is obtained in a weighted discrete Sobolev A norm. This bound
is obtained by using techniques from finite element analysis. At
present we are working on an extension of this result to the
two-dimensional case.
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GROUP PROJECT WORK
AT SUB-DEGREE LEVEL

Neville T. Neill

Introduction

At a recent conference on “The Teaching of Mathematics at Third
Level in Ireland” the notion of student projects was briefly dis-
cussed, The Department of Mathematics at the University of Ul-
ster has been involved with both individual and group-based pro-
jects for a number of years and this paper attempts to summarize
cur experiences with students on the Higher National Diploma
in Mathematics, Statistics and Computing where the regunlating
body, the Business and Techniciar Education Council (BTEC),
insists on the completion of a group-based project as an integral
part of the course.

Philesophy

Diplomates i.e. technicians will, at least during the initial years
of employment, work as a member of a team often undertaking
well defined individual tasks under a fairly rigid time-scale. The
success of the team clearly depends on the motivation and effort
of each individual and hence HND students must be well prepared
in all aspects of group work. Since the project is the main vehicle
for refinement of the various skills they have hopefully acquired
during the course, it i3 necessary to put it into context within the
overall course structure.

56
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Structure of the Higher National Diploma

A course at Higher National level under the auspices of BTEC en-
tails 2 minimum of two years full-time study. A sandwich element
is encouraged and indeed the HND in Computer Studies at the
Jordanstown campus incorporates a year long placement making
the course of three years duration. The HND in Mathematics,
Statistics and Computing with which this paper is dealing has no
placement aspect and hence this conrse must attempt o simulate
the workplace experience as closely as possible.

Al BTEC courses place great emphasis on the acquisition and
development of “Commaon Skills” [1,2] and at present the seven
defined Common Skills break down into eighteen competences as
given in Appendix 1.

Clearly, therefore, any discussion of the project in isolation
would be inappropriate and the following sections attempt to show
how it becomes the natural culmination of both the academic and
inter-personal skilis developed during the course,

Year 1

During the first year of the HND all students take a unit entitled
‘Workshop’. This unit serves several purposes:

(1) It introduces the cohort to the hardware and associated op-
erating systems they will use throughout the course. Included
are terminal clusters linked to the Vax mainframe, networked 386
based DEC workstations, networked 286 based PS/2’s, a NIM-
BUS network and various stand-nlone PC's. Many students have
done litlle or no computing prior to loining the course and il is
essential that their initial auxictics at being laced with guch a

" daunting array of new technologies are quickly allayed. During

this acclimatization phase students are encouraged to learn from
each other and the initial atmosphere of individual uncertainty is
soon replaced by group confidence and coliesion.

(ii) It challenges the students' concepts of learning by making
them vesponsible for Lthe pace and depth at which they acquire
knowiedge. From the outset is is explained that the theme of
student-centred learning is central to the whole course and that,
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for approxiviately 28% of the entire prograimne, they themselves
will deterniine their rate of progress. This is a new concept for
students recently arrived from the formalized teacher/pupil rela-
tionship which exists in secondary education but, almost without
exception, they relish the freedom and responsibitity it brings.
Computer-based tutorials with associated self-assessment tests on
such topics as MS-DOS, word processing, spreadsheets and data-
bases are worked through systematically and, while these topics
are not examined explicitly, it is made clear that their usage will
e assumed throughout the course,

(iil) It provides students with instruction and practice in the areas
of oral communication, presentation skills and group work. The
last of these is clearly crucial to the whole structure of the course
and is introduced in the following manner;

(a} Each individual completes a problem-solving/decision-
making exercise. This involves deciding the order of priority to
be given to various actions in a difficult situation, This year the
EARTHQUAKE simulation exercise [3] was used and participants
must decide on their immediate and long-term actions when trap-
ped in a building damaged in an earthquake. Groups of 4 to 6
persons are then formed and often after heated debate, a group
ranking is achieved. The solutions, as provided by the experts
who produced EARTHQUAKE, are then given out and individual
scores are compared against the group decisions. Almost inevit-

ably the group produces better results than the individuals who

comprise it indeed this year only one student out of 26 produced
a score lower than that of their group. (Note that a final score is
formed as the sum of the absolute differences of the true results
and the stated results. Thus the lower the score the better the cor-
relation between the views of the experts and those of the person
simulating the earthquake scenario.) This illustrates graphically
the advantages of group effort, and also provides a valuable insight
into the difficulties which can arise when attempting to reach a
consensus decision.

{b) The students are then split into those groups with which
they will work for the remainder of the term, As a preamble to
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the main investigation each group was asked to produce a solution
to a real-life problem. This year the problem was how to organize
the Clu:istnms party for & mediuni-sized shirt manufacturing com-
pany, given some personal and financial constraints. As no single
solution to such a problem exists, the debate to convince other
groups of the validity of a particular solution is often lively and
stimulating. The point of this exercise is however not so muck the
solution itself but the means by which it was obtained. After the
orals each group is asked to write down all situations which can
prevent a group from functioning properly, with up to 10 points
often being noted. Larger groups are then formed which comprise
one member of each of the smaller groups. These large groups
pool their comments on how groups can be disrupted thus ensur-
ing that all possibilities are discussed. The ariginal groups now
reassemble and have, in addition to their previously agreed points,
those points which they may have overlooked and have been iden-
tified by their counterparts. All groups now have a-similar lst of
potential pitfalls.

{c) Finally each group is asked to draw up a set of rules which
they themselves would adopt to ensure that any problem under-
taken is tackled in a fair and structured manner. They then write
down these agreed rules and sign their names to the document.
This form of “learning contract” provides the framework for both
the operation and ultimate assessment of the group.

At periodic intervals the gronp is asked to refer to its agroeed
rules and check whether in fact they are being followed.

(iv) The Programme of Integrative Assignments (P, I, Al) This
takes up most of the time allocated to the Warkshop in the second
term. As the name implies the P, I. A, offers the students the op-
portunity to undertake one or more group-based investigations,
each of which requires them to use their recently acquired know-
ledge from at least two of the fields of Mathematics, Statistics
and Computing. Each report is word processed, bound and ac-
companied by an oral presentation at which all Year I students
and staff of the Department are present.

In previous years two Integrative Assignments have Leen wun-




60 IMS Bulletin 30, 1993 o

dertaken with the groups being rearranged for the second invest-
igation. Experience has shown however that approximately five
weeks is insufficient time for the task briefing, the analysis and
solution of the problem and the production of a structured report
and visual aids for the oral, This year, for the first time, only one
Integrative Assignment was given. The groups were given approx-
imately eight weeks to submit their report, one week to prepare
for the orals and one week for their actual delivery, This less fren-
zied approach has proven to be much more successful with each
team now having the time to produce a more substantial sclution.

The topics undertaken this year were

(a) A user guide for Statistical applications of Lotus 1-2-3,

(b) Numerical Methods via Lotus 1-2-3 and DERIVE.

(c) Production of a software package to assist with central heat-
ing installation. :

(d) An investigation of random numbers,

{e) A user guide to SECMATHS and CALMAT for non-main-
stream mathematics students.

(f) Student attitudes to ‘The Learning Process’.

Year 11

The notion of investigation is again central to the practical aspects
of many of the Year II units. The unit “Mathematical Modelling
via Mechanics” relies almost entirely on this form of assessment
while the Numerical Methods and Statistics units also include at
least one group-based piece of course work.

The Project

At the beginning of the academic year the students are informed of
their groupings together with their project title and its associated
supervisor. The Department has tried to effect this linkage in two
quite different ways:

(i) By giving each student a list of proposed projects and asking
them tc be ranked in descending order of preference. As far
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as possible students are then assigned to their first choice
project.

(ii) By forming groups on the basis of their Yoar I resuits, Each
group thus contains a range of abilities and is assigned a
project by the Senior Course Tutor.

The pros and cons of these approaches are self-evident namely:-

Method (i)

pro - student motivation is maximized due to their invelve-
ment in the selection of the project to be undertaken.

con— a group can counsist entirely of academically quite
weak students and will thus require close supervision
throughout the year. The standard of such a project
may well be significantly lower than that anticipated at
the cuiset.

Method (ii)
pro - the mixture of abilities within the group means that the
weaker students can learn from their more gifted peers.
con — students may be forced to undertake a project in an area

in which they have little interest and hence total com-
mitient may be somewhal lacking.

An amalgam of these two approaches seems best namely:

{a) an element of choice being given to individual students
(b) groups being organized in such a way that a balance between
preferred project and academic ability is achieved.

Group size

Experience has shown that the optimum group size is four. Pro-
jects have run with as many as five students and as few as three
in a group (often due to one of the original members leaving
the course) but neither of these formulations is particularly suit-
able. Many projects have sub-tasks inherent within them and sub-
groups of two students tackling such tasks and reporting back to
the group as a whole seems the most efficient way of addressing a
given problem.
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Our initially intuitive and then experiential thoughts on op-
timum group size have since been confirmed at conferences at
which group teaching methods are discussed.

Project organization

Before commencing the project the group agree on the rules under
which they will operate and sign this “learning contract”. The
expericnce gained rom the Programme of Integrative Assigninents
in Year 1 is clearly invaluable in drawing up these rules and the
students themselves now realize the importance of adhering to
them throughout the year.

In an attempt to simulate how a similar task would be under-
taken in the workplace and indeed to emphasize the importance
of the project within the course some supervisors have organized
their group meetings on a formal basis with each of the students in
turn assuming the role of secretary or chairperson. They produce
an agenda, take and then produce minutes etc. and hence monitor
the progress or otherwise of the project as a whole. Meetings are
normally arranged on a fortnightly basis for the first term then
on a three weekly cycle as the project gets fully underway. The
minutes of the meetings form an appendix of the final document.

Project titles

These have fallen mainly into four categories:

(i} Statistics — Simulation
(ii) Statistics — Data Analysis
(iil) Numerical Analysis
(iv) Package Investigation

Sample titles for each of the above are;

(i) Factors affecting the accuracy of a golf putt. Sampling fre-
quencies to minimize economic loss. Simulation of acceptance
sampling for BS6001.

(i) Causes of muscular dystrophy using multiple linear regression
analysis. The Black-Scholes method applied to traded option
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forecasting. The application of AR techniques in the ana-

lysis of the relationship between stock market performance

and company turnover. An analysis of customer complaints
received by a software house.

(iil) Multivariate optimization with constraints using the NAG
library. Development of a software package for the solution
of linear simultaneous equations. Methods for unconstrained
optimization. Euclid’s Algorithm.

{iv) The FAMULUS package. Applications of LOGO. Computer-

Assisted learning via SYMBOLATOR. LATEX user guide

and applications.

Project assessment

In the early years of the project most supervisors had no experi-
ence in the assessment of group work and it was this aspect which
caused most of the initial misgivings. It soon became obvious,
however, that the assigning of individual marks was not a partic-
ularly difficult task due to the fact that, at the end of a twenty
five week period, the supervisor was well acquainted with both
the group members and their commitment to the overall project.

The formal assessment hreakdown for the project is given in
Appendix II,

As well as the final seminar mentioned in Appendix IT, an
interim presentation is given at the end of the first term. This
not only informs the members of the supervisory panel of the
progress made to date but also gives the students the epportunity
10 practice for the seminar in a real-life situation.

Self and peer assessment have not been introduced and indeed
are unlikely to be included in the foreseeable future. This form of
assessment is less relevant to a situation in which a member of staff
has worked closely with a group and can confidently determine the
respective weightings for each member of the group.

The completed project is read by both the supervisor and a
second marker from within the Department. The Moderator for
the HND will also examine each document to ensure comparability
in standards.
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Recent innovations

Many of the projects, especially those in the field of Package In-
vestigation, are essentially practical in nature and their assessment
must reflect this fact. If the objective has been to produce a user-
friendly guide to a particular package then the best way to verify
the success of the projeet is to test the guide on non-specialists
and obtain their reaction. The fact that their end-product will be
used in this way acts as a tremendous motivating influence on the
group members who normally act as facilitators during the test
session.

Examples

{i} The group working with LOGO used a subset of their final
document to provide Key Stage 2 pupils from a local secondary
school with a basic introduction to turtle geometry. The pupils
spent a day at the University under the supervision of the group
members and the event proved stimulating and rewarding for both
partics. The veplacemont of the formal seminar presentation by
such a practical session allowed the students to demonstrate both
their academic and interpersonal skills in a realistic environment
and give real meaning to the project as a whole,

{ii) As noted above the ultimate test of a user-guide is wheth-
er or not it enables its reader to access a particular package quickly
and painlessly. These were the criteria against which the user-
guide to the computer algebra package SYMBOLATOR was to be
assessed and hence the formal oral presentation was replaced by a
laboratory session in which enginecring students were required to
check their solutions to a given tutorial via SYMBOLATOR. The
mathematics students acted as demonstrators and the engineer-
ing students submitted their written comments the following day.
Once again the need for concise, accurate and understandable in-
structions, both in written and oral form, was brought home to
the group all of whom found the experience very useful.

(iif} The ideas outlined above were also applied to the
LATEX user-guide produced by one of this year’s groups. The
standard computer services documentation was somewhat less
than helpful and the group was set the task of providing not
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coly a detailed investigation inio LATEX and its applications
but also a short checklist which would enahle non-specialists to
edit, compile, preview and print a simple LATEX program. Once
again a number of “guinea-pigs” were asked to use the checklist
and see whether it achieved these objectives, The students soon
realized that no detail could be excluded from such a listing and
it iliustrated vividly the pitfalls which exist should an author
be so familiar with the subject matter that the same degree of
familiarity is assumed in the reader.

Summary

Group based projects have now heen running at sub-degree level
within the Department of Mathematics for seven years. Initial
misgivings have been dispelled and they now form an integral,
timetabled part of the work of the Department,

Student motivation has been, in general, excellent with most
groups taking a genuine interest in their work.

The agsessment process has become well established and in-
novative methods of assessment are being introduced whenever
possible.

Appendix I
Common Skiil Competence
Managing and 1. Manage own réles and responsibilities
Developing 2, Manage own time in achieving cbjectives
" Self 3. Undertake personal and career develop-
ment
4. Transfer skills gained to new and chan-
ging situations and contexts
Working with 5. Treat others’ values, beliefs and opinions
and Relating with respect
to Others 6. Relate to and interact elfectively with

individuals and groups
7. Work effectively as a member of a team
Communicating 8. Receive and respond to a variety of in-
formation
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9. Present information ir a variety of visual
forms
10. Communicate in writing
11. Participate in oral and non-verbal com-

munication
Managing Tasks 12, Use information sources
and Solving 13. Deal with a combination of routine and
Problems non-routine tasks

14, Identify and solve routine and non-rou-
tine problems

Applying 15, Apply numerical skills and techniques
Numeracy

Applying 16, Use a range of téchnological equipment
Technology and systems

Applying 17. Apply a range of skills and techniques
Design and to develop a variety of ideas in the cre-
Creativity ation of new/modified products, services

or situations
18, Use a range of thought processes

Appendix ITf: Project assessment

(a) The project must normally be submitted by the first week of
the third term.

(k) The project will be assessed by
(i) the supervisor
(ii} another suitably qualified member of staff.
In addition each project group will be expected to give a
short seminar upon the conclusion of their project and the
performance of each member will be assessed by the project
supervisory panel.

(e} The project will normally be assessed in accordance with the
following marks allocation;

A. Presentation and organization 30%
(1) written presentation, including 10%
layout, aim, and purpose outlined,
bibliography, and index.

Group Project Work 67

(ii) clarity of written project including 10%
use of English, style, spelling and
punctuation etc.
(iii) oral presentation, i.e. the ability 10%
to inform non-specialists in the
project area on its content.
B. Contents and Results 25%
(i) evidence that the subject has been 10%
investigated in some depth.
(it) results, inciuding how far the aims 10%
have been realized,
(iii) conclusions, including suggestions as 5%
to possible extensions to the project.
C. Student Understanding and Motivation 45%
(i) student initiative in obtaining and 15%
analysing relevant material,
(il} contribution to the project as a whole. 20%
(ili) understanding of the techniques and 10%
concepts encountered in the project.

TOTAL 100%
(d) The seminar will normally provide the mark for (iii) in part
A above,
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- Research Announcement

THE T, TOPOLOGY
ON SPACES
OF HOLOMORPHIC FUNCTIONS

Sedn Dineen

I U i3 a domain in a locally convex space over C then a seminorm
pon H(U), the space of complex valued holomorphic functions on
U, is sald to be ry-continuous if there exists a compact subset K of
U such that for each V open, X c V < U, there exists C{V) > 0

such that
p(f) £ CV)Ifllv

for f € H(U).

The 1, topology is the topology generated by all =, con-
tinuous seminorms. The 7, topology was originally motivated by
properties of analytic functions which can be represented by Borel
measures supported by every neighbourhood of compact set but
not by the compact set itself and at the linear level is related to
the inductive dual of a locally convex space.

The 7, topology is thus defined by a set of mequahtles and
in many cases it is of interest to find an explicit set of semi-norms
which generated this topology. Explicit sets are known for bal-
anced domains in Banach spaces and in Fréchet-Montel spaces
" where it is known that 7, coincides with the compact open topo-
logy. Here we give an explicit set of semi-norms for a collection
of Fréchet spaces which includes all Banach spaces, all Fréchet
gpaces with unconditional basis of type (T} and the Kéthe ech-
elon spaces.

Definition 1. An unconditional Schauder decomposition, {E,}x
of a Fréchet space E is a T-Schauder decomposition if there exists
a fundamental system of semi-norms for E, (|| - |x)een such that

(1) ”PJ(m)”k <z allJCN, k€éNandze FE
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(ii) for every sequence a = {aps, 0 < ap < 1, there exists
a partition J, = (J'a;c);c of N such that if P, = P; , then
[Pk (@)],_, < 0tk ||Paye(@)|, for all z € E and all k > 2.

(iii) (|| - {l¢) defines the topology induced by E on Py {E) for all
o and all k.

Fréchet spaces with a T-Schauder decomposition are a slight
modification of the spaces introduced in {1} and the spaces in []
appeared as a result of developments arising form positive solu-
tions to Grothendieck’s “Probleme des topologies”.

Theorem 2. Ifthe Fréchel spaces E has a T-Schauder decompos-
ition then the 7, topology on H{E) is generated by all semi-norms

of the form ol s
" p(f)=3 70

|
oy T

n

where (Bp), is a sequence of compact subsets of E which con-
verges to a compact subset of E.
JU
d*f(0
We have written Z % as the Taylor series expansion of

n=0

f at the brigin.
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Book Review

Patterns and Waves

The Theory and Applications of Reaction-Diffusion Equations

Peter Grindrod
Clarendon Press, Oxford, 1991
ISBN 019 959692 8
Paperback, St£17.50

Reviewed by Martin Stynes

In Don Delillo’s entertaining novel White Noise [1], a central
event occurs when the narrator's small U.S. town is threatened
by a toxic chemical cloud. Many inhabitants of the town flee. We
read {1] “We joined ... the traffic fiow into the main route out of
town .., the traffic moved in fits and starts”.

The traffic moved in fits and starts. We all recognize this
phenomenon. As in DeLillo’s novel, it occurs even in the absence
of traffic lights and stop signs. Apparently all that is needed to
trigger the effect is a sufficient density of traffic. Why does it
happen? Why does heavy traffic never seem to flow smoothly at
constant {albeit low) speed, but instead is subject to speeding up,
slowing down and intermittent halting?

We can acswer this question after a little analysis. Suppose
that the cars are travelling in the direction of the positive z-axis
on an infinitely long one-dimensional road. Let u(z,t) denote the
car dersity, which depends both on position x and time ¢. Here
u = 0 corresponds to an empty road and w = 1 corresponds to
maximum congestion.

Let I be any closed arnd bounded interval on the z-axis. Then
the car population of I is [, wdz. The rate at which this popula-

tion increases in time is given by % fru dz). We assume that u
is smooth, so this expression equals [, u; dz.
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Assume that our road has neither entrances nor exits. Then
changes in the car population of I can result only from cars en-
tering and leaving [ along the road. Denoting the car velocity by
v(z,t), the net number entering I = [a,d] is given by —(wv)(b) +
{(uv)(a). Assuming that v is smooth, this equals — [r(ww); da.

Equating that with our earlier formula,

fut dr = — /(uv)m dm.
I T

Since I was arbitrary, we conclude that
wg +{uv)g = 0.

It’s clear that the velocity v must depend on u. We now make a
plausible simplifying assumption, viz., that v = 1 — 4, Then our
differential equation above becomes

ug + (u(l = u)), =0,
l.e,
e+ (1 = 2u)u, = 0.
The characteristics of this hyperbolic equation satisfy

a1
dr ~ 1-2u’

The solution u is constant on each characteristic. We see that, as
time passes, regions of high car density (1/2 < u < 1) will move
in the direction of the negative z-axis. Furthermore, this rate of
movement is least for u near 1/2 and greatest for » near 1. Thus,
as regions of higher density move backwards towards regions of
lower density, the traffic tends to bunch together and a stop-go
regime develops, instead of all cars proceeding at some uniform
speed.

The above discussion is a partial answer to Fxercise 1.5 on
page 63 of the book under review. It illustrates several features
of this book: its concern with the understanding and solution
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of evolutionary nonlinear partial differential equations, their use
in modelling phenomena from the real world, and in particular
the revelation that smooth initial data can in finite time generate
nonsmooth solutions in such models. ‘

In fact, unlike our example, the book (as can be inferred from
its title) deals predominately with parabolic partial differential
equations, These have the form

u = Au + flu, Vu, 2, t).

Here ¢ is time, ¥ is position in R", Au denotes the Laplacian of u
with respect to the variables ¥ and f is some nonlinear function.

The author provides a sustained gradual development of con-
cepts and analytical solution techniques. These are introduced
fairly painlessly by means of a detailed examination of examples.
He succeeds in finding the middle ground between excessive detail
and inadequate explanations. Nevertheless, the reader is clearly
expected to use pen and paper to verify various claims. I did not
check many calculations in detail, but, for example, the analysis
on p. 216 contains several typographical errors. This seems to
have been a inomentary atypical lapse.

The presentation is nicely structured. Technical difficulties
are hived off to clearly marked subsections, so the overall flow of
the book is not impeded. Internal cross-referencing, both forwards
and backwards, is of an exceptionally high standard. Chapter
1, which occupies about one-quarter of the book, introduces the
basic ideas and techniques. The other four Chapters deal (in
order of increasing complexity) with observable phenomena in the
solutions of nonlinear evolutionary partial differential equations.
Their titles are: 2 — Pattern formation, 3 ~ Plane waves, 4 - A
geometrical theory for waves, 5 — Nonlinear dispersal mechanisms.
Applications, mostly {from physiology, biology and chemistry, are
scattered throughout these pages. For example, the Belousov-
Zhabotinsky cyclic chemical reaction with its spectacular spiral
wave patterns is the main example discussed in Chapter 4.

The author resists thc temptation to give excessive atten-
tion to side issues. Instead, adequate references are given for fur-
ther study of specific toples. A significant omission is the almost

[1]
(2]
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complete absence of discussion and references for the numerical
solution of the problems examined in the book. This is surprising
since several Figures in the bock have been produced by numerical
computation of approximate solutions; if the author believes {by
implication) that such computed sclutions are instructive, then
he should make some attempt to provide guidelines to the reader
who wishes to perform numerical experiments, As the differential
equations under consideration are nonlinear and consequently can
be difficult to analyse, a computational approach may in practice
often be an attractive option.

The book is suitable for beginning postgraduate students in
applied mathematics, but pays more than lip service to basic the-
oretical issues such as local existence criteria. It is more accessible
than Smoller’s “purer” text {2]. I would welcome the opportunity
to teach a course with Grindrod’s book as the main text, supple-
mented by a little material from numerical analysis.
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Book Review

A FIRST COURSE IN NONCOMMUTATIVE RINGS
(Graduate Texts in Mathermatics)

T.Y.Lam

Springer-Verlag, 1991, xv+397 pp.
ISBN 0-387-97523-3

Reviewed by Mark Leeney

Lam’s book is a welcome addition to the literature on noncommut-
ative rings. The first book of an intended two-volume introduction
to ring theory, it is a fleshed-out version of the material covered in
a one-semester graduate course designed and delivered to second
vear graduate students at Berkeley. In the Preface, Lam convin-
cingly pleads the case for ring theory as ‘an indispensable part
of the education for any fledgling algebraist’, citing the connec-
tions between it and group theory, functional analysis, algebraic
geometry, to name but a few. Given the ubiquitous nature of
noncomimutative rings it is unfortunate that the number of books
written at this introductory level is so few,

As per the origins of the subject, the book opens with the
Wedderburn-Artin theory of semi-simple rings and in short or-
der presents an impressive collection of examples. These include
the quaternions, free rings, rings with generators and relations,
group rings, Laurent series rings, twisted polynomial rings, dif-
ferential polynomial rings, the tensor algebra of a finite dimen-
sional vector space and triangular rings. These examples form
the bedrock for motivation and serve to provide the author with
a presumed knowledge on the part of the student which other-
wise might not ba the case. This is a lot of information to be
assimilated by a student and [ must admit to questioning the
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efficacy of introducing the newcomer to so many new ‘faces’ at
once. Chapter 2 continues with the Jacobson radical and group
rings and the J-semisimplicity problem. Modules over finite di-
mensional algebras, representations of groups and linear groups
are considered in Chapter 3. Chapter 4 introduces the prime rad-
ical and prime/semiprime rings. The structure of primitive rings,
the Density theorem, subdirect products and the commutativity
theorems are also presented there. Chapter 5 embarks on divi-
sion rings; along the way proving Wedderburn’s, Frobenius’s and
Cartan-Brauer-Hud's theorems. Explicit constructions of division
rings further increases the stock of examples. Tensor products,
maximal subfields and poiynomials over division rings are also
treated. Chapter 6 follows the generalization of the Artin-Schrier
criterion for the existence of orderings on fields to rings without
zero-divisors, As a special case, ordering structures on division
rings are considered. Chapter 7 focuses on local/semilocal rings
and idempotents. Standard results on lifting idempotents modulo
an ideal are developed and used to study the Krull-Schmidt de-
compaosition of modules. The final chapter deals with perfect and
semiperfect rings and homological characterizations thereof. The

notion of the basic ring of a semi-perfect ring is considered and is
brought to bear on right artinian rings, culminating with examples

of principal indecomposable modules and Cartan matrices.

As is customary with the series, the text is well bound, un- .
cluttered in appearance and conventional in notation; typos are

conspicuous only by their absence. The style is fairly informal
without being chatty. Each chapter begins with a useful intro-
duction to the material about to be presented; how the material
developed historically, its power and limitations, and the goals of
the chapter, '

Sets of exercises appear at the end of each section of each
chapter, thereby reinforcing the material on a regular basis. Exer-
cises are, generally speaking, straightforward tests of understand-
ing of the concepts introduced in the text. Trickier ones are sup-
plied with hints and serve as a useful complement to the theory
and examples in the text. An especially endearing aspect of the
book is Lam's occasional excursions into ‘open problem’ territ-
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ory. At such locations, time is spent in discussing the current
state of affairs relating to a problem, partial answers and pos-
sible approaches : a stimulating insight into the process of doing
research-level mathematics is given.

The book, generally, has a good balance of theory and ex-
amples. However, the initial stockpile of twenty-six exanmples in
the first twenty-three pages may prove a bit intimidating. For
reference purposes (and revisits are quite likely) the convenience
of having these examples en bloc will be welcome - if one gets past
page twenty-three with the desire to continue still intact. The no-
nonsense, go-ahead style of the book is in keeping with the rest of
the series and its setting of material in historical context together
with the tantalizing references and discussion of open questions
should have the desired effect of exciting and encouraging the stu-
dent. However, I do wonder how plausible it would be to try to
cover all this material in one semester. Of the many sins a teacher
can commit, two spring to mind. Of these two, the worse is to
underestimate the ability of one's students - this smacks of con-
descension and pride. The lesser evil is to overstretck a class - this
can be construed as overindulgence, nay even one-upmanship. If
Lam is guilty of such a transgression, at least he has chosen the
lesser evil. o

Any serious mathematical library should have this book in
its collection, It could be used to good purpose as the basis for
a one-year excursion into the realms of noncommutative rings or,
as a text for self study by mathematically mature students. Like
a good meal, this first course should serve as a satisfying entrée,
leaving one wanting more. It does.

Mark Leeney,

Department of Computing,
RTC Letterkenny,
Donegal.
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