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EXPLICIT RELATIONSHIPS BETWEEN
ROUTH-HURWITZ AND SCHUR-COHN
TYPES OF STABILITY

Ziad Zahreddine

Abgtract: Given two linear systems of differential equations with real
or complex coefficients, and of the same arbitrary dimension. Suppose
both systems are stable, one in the Routh-Hurwitz sense and the other

* in the Schur-Cohn sense. We directly express the coefficients of each

system in terms of those of the other. These relationships, being ex-
plicit, make it possible to convey any stahility criterion of either of the
two types to the other.

1. Imtroduction

The concept of stability in differential equations has been defined
in many different ways. Among these various definitions are
the well-known Routh-Hurwitz and Schur-Cohn types of stahil-
ity. Given a linear system of differential equations, the classical
Routh-Hurwitz problem is that of obtaining necessary and sufli-
cient conditions for all eigenvalues of the system to lie in the left
half of the complex plane. The Schur-Cohn problem is that of
establishing necessary and sufficient conditions for all eigenvalues
to lie within the unit circle. Solutions to these problems have
been the subject of intensive research over the last few years [2,
[3), [9], [12] and [14].

1t is often noticed in the literature that some interesting res-
ults about stability, in the Hurwitz sense for example, triggers an
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interest in the corresponding problem in the Schur sense or vice
versa. See for example the introduction in [11] and example 4.2
in [8].

Recently some notable attempts have been made to give a
common interpretation to the algorithms for testing the stabil-
ity of contiruous-time (Routh-Hurwitz) and discrete-time {Schur-
Cohn) systems of differential equations [6], [10] and [13]. An ex-
cellent survey is given in [1] for continnous-time and in (5] for
discrete-time systems.

The search for a unified approach to the study of root distri-
bution of complex polynomials with respect to the half plane for
continuous systems, and with respect to the unit disc for discrete
systems, has been advocated by many eminent researchers in the
field, see for example [4]. An interesting way of looking at the two
problems of stability is to relate them to each other through the
bilinear transformation z = (1 + w)/(1 — w), which is equivalent

to w = (2 —1}/(z+1). This is a one-to-one mapping between the

left half of the complex z-plane, i.e. the region R(z) < 0, and the
unit, disc [w| < 1 in the complex w-plane. For a general discussion
of bilinear transformations in this context, see [7]. Such connec-
tions prove useful in gaining new insights into the nature of the
different algorithimns.

This paper is a further thrust towards a firm unified approach
to the relevant testing procedures for both continuous-time and
discrete-time systems. In section 2 we give some notations, and
the main results of the paper are given in section 3.

2. Notations

If Ais an n x n real or complex matrix, and X (t) is an n-
dimensional column vector function of £, let X/ = AX be a
systemn of differential equations, with eigenvalues z;, 2z, . .. ) Zn-
Then the characteristic polynomial of this system inay be writ-
ten in both factored and expanded forms as follows: f(z) =
[Ti=1(2—2) = 3°7_; a;z"~7 where ag = 1 by definition. Sirnilarly
it X' = BX is a system with cigenvalues wi, wa, ... , Wy (where
wj is related to z; of the previous system by w; = (2;—1)/(z;+1))
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then its characteristic polynomial is g{w) = [T (v — w;) =
E?:o bjwd, with by = 1. . '
The intimate relationship between Routh-Hurwitz and Schur-

Cohn types of stability could best be expressed by the following:

Theorem 2.1. The system X' = AX is Schur-Cohn stabie if and
only if X!'= BX is Routh-Hurwitz stable.

14w . z—1
Proof: Suppose z = T or equivalently w = PN where

z and w are complex numbers. The following relationships can
easily be established

- 2 —
= _2(zz ;) and zzz—1= (w+)
|z + 1

W+ W - ll__wi2!

from either of which it follows that |z < 1 if and only if Rw < 0.

3. Main Results
If X' = AX and X' = BX are the two systems defined 1n section
2 with their corresponding characteristic polynomials, then

Theorem 3.1.

B0

=0 g=max(t—p,0)

bP = ™
2 (=1)a
t=0
forallp=1,..., 5.
Proof: Cousider f(z) = Y7 g@:z" " with zeros 21, ... ,2, and
2= (14w;)/(1—w;) for j =1,...,n Hence wy,...,wp are

the zeros of

P = (i)

t=0
1

= oo (- W+ u)
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Therefore wy, ..., Wy, are the zeros of the polynomial
h(w) =" ar(l — wy (1 + w)"~*
t=0
n t t n—t n_t
= atZ(—l)T( )wTZ( )w”
t=0 r=0 T ==0 8
n t n-t
L —1
=22 Z(—l)r< ) (n )atw”"”.
t=0 r=0 5=0 AN
We make the following trans- G
formation from the (r,s) plane to I

the {p, g} plane:

p=R—~7—35 ¢=7 £
Then the rectangle in the {», s} plane \ p
with sides # = 0, r = ¢, s = 0, EANEOAN
s = n—t is transforied into the par-

alielogram in the (p, ¢) plane with sides ¢ = 0, ¢ = ¢, ¢ = n —p,
g =t — p. Hence

p min(nept) . .
5 T ) e

t=0 p=0 g=max(t-p,0 ¢

Write h(iv) = Y 0_o Npw" P, where
n min{n—p,t) 4 n—i
v TE (-
=0 g=max(t—p,0) 4 R—rp—a
In the polynomial k(w), the leading coeflicient is

¥o= 31 () (1) = v

t=0 t=0

3]
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Now the two polynomials

ZN "=? and g(w prw

p=0 p=0
being both monic and having the same set of zeros are identical,
leading antomatically to the desired conclusion.
The converse of Theorem 3.1 states the following

Theorem 3.2.

n min(n—p,t)

>3 (L)

t=0 g=max(t—p,0)
n
P
t=0

ap =

forallp=1, ...

The proof of this theorem is omitted as it is smnlar to that
of Theorem 3.1.

The author wishes to thank the referee for many valuable
suggestions which have led to significant improvements of the pa-
per.
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UNDERGRADUATE PROJECTS

S. K. Houston and N. H. Smith

Abstract: The rationale for, operation of and assessment of ur_xder—
graduate projects at the University of Ulster are discussed. Specimen
project titles are provided.

Introduction

A debate on undergraduate mathematics teaching in Ireland has
recently been started through this Bulletin [1}, {2]. It has been
continued at a conference organized by the Sub-Commission for
Mathematical Instruction of the Royal Irish Academy and held in
Dublin in September 1991 (RIA-91), [3]. _

O’'Reilly [1] questioned how we teach mathematics at ter-
tiary level, leaving readers with many “focusing questions” and
“questions for exploration”. Dickenson et al. [2] described innov-
ative methods of teaching, learning and assessment used at the
University of Ulster, and went some way to answering O’Reilly’s
questions. Ted Hurley (UCG) continued the debate in his plenary
lecture “Mathematics at Third Level” at RIA-91. In his lecture
he pointed out that

(i) the number of honours graduates in mathematics from Irish
Universities per capita is 3.5 times smaller than the number
per capita from British Universities;

(i) 45% of these Irish graduates entered further study compared
to 14.5% of British graduates.

He concluded that this was an unsatisfactory state of affairs and
made some suggestions for remedying the situation such as putting
greater emphasis on the links between mathematics and comput-
ng.
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