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INTERNAL FORCING AXIOMS:
A MARTIN’S AXIOM AND
THE PROPER FORCING AXIOM

Dedicated to the memory of Alan H. Mekler.
Eoin Coleman

In the course of the last twenty-five years research in the combinat-
orics of partially ordered sets has resulted in the discovery of new
set-theoretic hypotheses — sometimes dubbed internal forcing ax-
ioms. This elementary article presents in section 1 the simplest of
these (Martin’s Axiom). In section 2 we look at some applications
(the completeness of the category ideal, Lusin sets, (J-sets, prob-
lems of Moore, Alexandroff, Suslin, Whitehead and Kaplansky).
Tinally in section 3 we deal briefly with the Proper Forcing Ax-
iom, a powerful generalization of Martin’s Axiom. We’ve collected
the relevant references in an annotated bibliography in section 4,
rather than in the body of the text.

‘We try to show concretely how internal forcing axioms work
{giving complete proofs whenever feasible), stressing the resemb-
lance to the classical diagonal arguments of Baire and Cantor.
In our choice of applications we seek to underline the fact that
mathematical conjectures having no apparent set-theoretic refer-
ence may depend for their resolution on axioms beyond those of
ordinary set theory. To put it another way, there are at least
three truth values in mathematics: true, false, and independent
of ordinary set theory.

Section 1: Forcing

Internal forcing axioms are about forcings. Let us recall that a
forcing is simply a partial order, i.e. a pair P = (P, <) such that
P is a non-empty set, < is a reflexive antisymmetric transitive
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binary relation on P (so, for all p,gq,r € P, (i) p < p, (i) if
p<gand ¢ <p, then p=gq, and (i) if p < ¢ and ¢ < 7, then
p < r).. Elements of P are called conditions. Conditions p and
g are compaizble iff they have a common upper bound in P, i.e.
(3r € P)(p £ r and ¢ < 7); otherwise p and g are incompatible. A
subset [J C P is dense in P iff (Vp € P)(Ir € D)(p < r). A non-
empty subset GG of Pis a filter in P iff (Vp,¢ e GYIre G)(p < r
and ¢ < r)and (Yp € P)(Vqg € G)(if p < g, then p &€ G). Finally
i D is a family of dense sets in P, we say that a filter G in P is
D-generic iff for every D e D, GND £ §.

"o sort out these definitions, consider the following situation.

Example 1.1: Adding a Cohen real. Let P be theset {f: fisa
function from a finite subset of N to {0,1}} and define a partial
ordering on P by f < g iff g extends f, i.e. dom f C domg and
g [ domf = f. Certainly P = (P, <) is a forcing. Conditions f
and g are compatible iff they agree on dom fNdom g, in which case
the union fUg is a condition extending f and g. So if & is a filter
in P, then | JG =J{f : f € G} is a function from a subset of N to
{0, 1}, since the union of compatible functions is itself a function.
Note also that if f € G and » € dom f, then ((JG)(n) = f(n).
Examples of dense sets are the sets C;, = {g € P : m € domg}
for each m € N: given any f € P, either f € Cy,, or m ¢ dom
and then g = f U {m,0) belongs to Cy, and f < g. Observe that
the dense sets which (G intersects determine to some extent the
function | JG: for example, if GNCpp, # B, then m € dom|JG. So
if G is C-generic where C = {C,,, : mm € N}, then | ]G is a function
from (all of) N to {0,1}. If D 2 € and G is P-generic, then [JG
is called a Cohen real. Note that a Cohen real does not belong to
P, since its domain is the infinite set .

Internal forcing axioms are putatively consistent answers to
the natural question: for which forcings P and families D of dense
sets in P does there exist a D-generic filter GG in P? The first and
weakest internal forcing axiom is a very easy Cantorian diagonal
argument.

Proposition 1.2. If P is a forcing and D is a countable family
of dense sets in P, then there is a D-generic filter G in P.
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Proof: Enumerate D as {D, : n € N} and by induction on n

‘choose p, such that pp € P and form > 1, p, € Dy—1 and

Pn—1 < pn (possible since Dp_q isdense in P). Now let G = {g €
P:(@AneN)(g <pn)}

We'll apply this to prove a very well-known theorem.

Corollary 1.3 {The Baire category theorem). If X is a compact
Hausdorff space (or a complete metric space) and Ap, Is a (topo-
logically) dense open subset of X for n € N, then [J{A4, : n € N}
Is non-empty.

Proof: Let P betheset {p C X : p is a non-empty open set} and
define p< giff g Cp. For n € N theset D, = {pe P: Cl(p) C
A} is dense in P: given ¢ in P, we know A4, Ng # ¥, so since X
is regular there is p € P such that Cl{p) € A, Ng; nowp € D,
and ¢ < p. Proposition 1.2 yields a filter ¢ which intersects
each D, non-trivially. Let A be {Cl(p) : p € G}. Clearly
A CHAn : n € N} since GN D, # §. Note also that for each
finite F C G, [H{Clp): p € F} is non-empty: G is a filter, so
thereisr € G{(¥pe F)(p<r)andso @ # r CN{Cllp): p€ F}.
Now since X is compact, it follows that A is non-empty.

As it stands, Proposition 1.2 is the best one can do. If D is
uncountable, the conclusion does not necessarily hold.

Proposition 1.4. There is a forcing ) and an uncountable family
R of dense sets for which there is no generic R-filter.

Proof: Let I be an uncountable set, let @ be {f : f is a function
from a finite subset of N to I}, and define f < g iff ¢ extends
f. Foric I, theset R; = {f € ¢ : 7 € range f} is dense in Q.
Taking B = {R; : ¢ € I'}, we note that if G were an R-generic
filter, then | J G would be a function from a (countable) subset of
N onto the uncountable set I — an impossibility.

We can make precise an important difference between situ-
ations 1.1 and 1.4 by considering the sizes of the sets of pairwise
incompatible conditions in the respective forcings.
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Definition 1.5. Suppose P is a forcing.

(1) An antichain in P is a set A C P of pairwise incompatible
conditions.

(2) We say that P has the countable chain condition (P is c.c.c.)
iff every antichain in P is countable.

(3) A subset C of Pisa chainin Piff (Vp,g e C)(p<qgorg<
p).

Some authors refer to (2) as the countable antichain condition.

Thus the Cohen forcing P of 1.1 is c.c.c. trivially, since P
is itself a countable set, whereas in 1.4 @ is not c.c.c., since
A = {fi 1 i € I} is an uncountable antichain, where f;(0) = i
for i € 1. By restricting attention to c.c.c. forcings, we avoid the
counterexample of 1.4 at least, and it makes sense to reformu-
late Proposition 1.2 for c.c.c. forcings and uncountable families of
dense sets.

Definition 1.6. We let MA, abbreviate the hypothesis: f Pis a
c.c.c. forcing, D is a family of dense sets in P and D has cardinality
at most &, then there is a D-generic filler G in P.

Just to clear up some notation: we use &, A, ... to denote
infinite cardinals; the first infinite cardinal is Ry; the first un-
countable cardinal is ;. For a set X, |X| is the cardinality of X,
P(X) is the power set of X. The cardinal 21X| is [{f : f is a func-
tion from X to {0,1}}|; At is the least cardinal greater than \.
For example, R1 = RF, Bg = |NJ, 2% = |R|, and 21X| = |P(X)|
(identifying subsets of X with their characteristic functions).

For each infinite cardinal & we obtain a version of 1.2 for
c.c.c. forcings and families of dense subsets of cardinality at most
k. Some are obviously true; some are false.

Proposition 1.7. (1) MAy, is true. (2) MA, implies & < 2Xo,
(3) MA, is false for every A > 2o,

Proof:  Proposition 1.2 clearly implies 1.7 (1). Part (3) follows
from (2). For (2), we show that there is no mapping F from «
onto the set N2 = {f : f is a function from N to {0,1}}. Suppose
that ¥ maps & to ¥2. Let H = range F'. For each h € H, let
Ry = {f € P:(In €dom f)(f(n) =1~ h(n))}, where P is the
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. Cohen forcing of Example 1.1. Note that R is dense in P. Asin
1Llet Co, = {f € P . mcdomf}. NowD = {C,,, Bp : m €

M, h € H}Hs a family of dense sets in P and D has cardinality
at most & (recall £ + No = & since & is infinite). By MA, there
is a D-generic filter G in P. The Cohen real | JG belongs to N2
(since GNCrp, # 8 Ym € N), but does not belong to H (since
foreach h € H, GN Ry # B, s0 (In € N)(UG(n) =1 - h{n)),
giving [ JG # R). Thus F is not onto.

Remark that letting x = ¥ in (2) and using (1), one obtains
Cantor’s theorem: 2% > Ry. The original diagonal argument runs
as follows: if {h, : »n € N} C M2, then the function g defined by
g(n) =1~ ha(n) for n € N belongs to N2 but differs in the nth
place from each h,. In the argument from 1.7 (1) (2), one finds
the required function g by considering the c.c.c. forcing consisting
of the finite approximations to g and defining appropriate dense
sets.

Guided by the information in Proposition 1.7 we write down
Martin’s Axiom.

Definition 1.8. Martin’s Aziom MA is the hypothesis (Vx <
2M0)(MA,, holds).

From the definition and Proposition 1.7 we obtain immedi-
ately:

Corollary 1.9. (1) The Continuum Hypothesis CH (2% = R, )
implies MA. (2) CH implies that MAy, s false.

Of course if CH holds, then MA is just MAy, and of little
interest since we can prove the stronger result 1.2. For this reason
MA is often taken to mean MA and ~CH (2% > N;). In this
connection, Solovay and Tennenbaum established the following
relative consistency result, which we shall discuss in section 3.

Theorem 1.10. CON(ZFC + MA + —CH), i.e. the system of
axioms of ordinary set theory and MA and —CH is consistent.

In other words, if no contradiction can be deduced from ZFC
(the axioms of ordinary set theory), then none can be deduced
from ZFC + MA + -~CH. We’ll often use the equivalent semantic
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formulation: there is a set-theoretic universe (a model of ZFC) in
which 2% > ¥y and MA holds. It follows immediately from 1.9
(2) and 1.10 that MAy, is independent of ordinary set theory, i.e.
MAy, can neither be proved nor refuted from ZFC.

We finish the proofs for this section by showing that MA, 1s
equivalent to the seemingly weaker axiom MA: if P is a c.c.c.
forcing of cardinality at most &, D is a family of dense sets in P
and T has cardinality at most «, then there is a D-generic filter
GinP.

Proposition 1.11. MA_ implies MA,.

Proof: Given a family T of dense sets in an arbitrary forcing
P we find a suitable subforcing Q of cardinality at most s as
follows. Let c be a {partial) function from P x P to P defined
thus: if p and g are compatible, ¢(p, q) is 2 common upper bound
{otherwise ¢(p, ¢) is not defined). Foreach D€ D, letep : P — D
be defined by ¢p(p) € D, p < ¢p(p). Now let @ be a non-empty
subset of P of cardinality at most « closed under the functions ¢
and cp for 2 € D. Easily Q = (@, <} Q) is a c.c.c. forcing of
cardinality at most «, and for D € D, ¢ N D is dense in Q. So by
MA_, there is a filter H in () intersecting every § N D. The filter
G={pec P:(3qc H)(p < ¢)} is now D-generic in P.

And to make explicié the connection between the internal
forcing axioms of this section and the Baire category theorem, we
should point out that 1.3 implies 1.2 and MA, is equivalent to the
topological hypothesis: if X is a c.c.c. compact Hausdorf space,
then the intersection of at most « dense open subsets of X is non-
empty. (Remember that X is c.c.c. means that every collection of
pairwise disjoint non-empty sets is countable.)

Section 2: Applications of MA

In this section we prove some easy independence results {Lusin
sets, ¢J-sets) and mention some further applications of MA. Qur
first aim is to study the effect of MA on the real numbers: what
kinds of subsets does B have?

i Internal Forcing Axioms 37

Recall some Baire catéegory terminology: a subset N of a

" space X is nowhere dense Hf X \ Cl(N) is a dense open set (equi-

valently, Int(CI{(N)) = §); a subset F of X is of first category iff
F is a countable union of nowhere dense sets in X.

Theorem 2.1. Assume MA. Suppose X is a second countable
space. I F is a family of nowhere dense sets and F has cardin-
ality & < 2%9, then [ JF is of first category. For example, MA
implies that every set of reals of cardinality less than 2% is of
first category, and the category ideal on R is complete: the union
of fewer than 2% first category subsets of R is of first category.

To prove 2.1 we need a useful combinatorial lemma about

P(IN).

Lemma 2.2. Assume MA,. Suppose that A and B are famil-
ies of subsets of M, A and B have cardinality at most «, and if
Ay, ..., Apn € A, BEDB, then B\ (4, U ... A,) is infinite. Then
there exists C C ™ such that C N A Is finite and C N B Is infinite
forallAc A, BeB.

Proof: Write A = {4; : i € I}, B={B; :i € I} where I
has cardinality « (allowing repetitions if necessary). Define P
to be the following set: {(h,a) : h is a finite subset of I and
a is a finite subset of MN}; say (h,a) < (B,0)if A Ck, a Cb
and (b\ a) N (U;cp 4i) = 0. Tt is straightforward to check that
P = (P, <) is aforcing. 'To see that P is c.c.c., note that (h, @) and
(k,a) are compatible for any h and k, so if W C P is an antichain
in P, then W is countable (since there are only countably many
possibilities for the second components of elements of W), It’s
easy to check that the sets D; = {{h,e) : i € A} and E;, =
{(h,a) : la N B;| > n} are dense in P.

Now apply MA, to get a filter (7 intersecting each member
of the family £ = {D;, E;, : i € I, n € N} (£ has cardinality
at most k). We’'ll complete the proof by showing that C' = | J{a :
(3R)[(h, ) € G]} is as required. Fix i € I. Since GN E;p, # 0,
it follows that |C'N B;| > n for each n € N and so CN B; 1s
infinite. Also G D; # 8, so take (h,a) € G N D; and note that
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CNA; Ca (if (kb)) € G, then (b\ a) N A; # @ since (h,a) and
(k, b) are compatible); so C'N A; is finite.

Lemna 2.2 for countable collections 4 and B is a simple ex-
ercise (in ZFC) which does not require any diagonalization. Let’s
go back now to the proof of Theorem 2.1.

Well, X is second countable, so one can choose a listing {U,, :
n € N} of a countable basis for the topology on X in which each
non-empty basic open set is listed infinitely many times. Let B, =
{meN: U, CUsfor FEF, let Ap = {me N :U,NF # @8}
take 4 = {Ap: F € F}, B= {B, : n € N}. To see that 4 and
B satisfy the hypotheses in 2.2 for « = max{|F[, Ry}, remember
that a finite union of nowhere dense sets is nowhere dense and
that every basic open set is listed infinitely many times. Apply
MA, to find C as in Lemma 2.2. Let R, = (H{U,, : m € C
and m > n}. R, is a dense open subset of X: given Uy, choose
m &€ CNBy, m > n solU, CU; and U, C R,. Finally
let M, be the closed nowhere dense set X \ R,,. It'll suffice to
show that | JF C {J,ep Mn. For F € F, C N Ap is finite; pick
n € C\ Ap, n > max(C N Ap), then for every m € C, m > n
gives Un NF =B, 50 FCHX\Um :meC,m>n}=M,.

in passing, we note that a similar result holds replacing sets
of first category by sets of Lebesgue measure zero.

From 1.3 and 2.1 we obtain an independence result. Let
C(¥,) abbreviate the assertion: if A C R has cardinality ¥,
then A is of first category. We conclude that C(¥;) is independ-
ent of ordinary set theory: if CH holds, then C(R,) is false (R is
a counterexample (by 1.3)}; if MA + —CH holds, then C(X;) is
true (by 2.1).

Befcore going on to Lusin sets, we need to count the subsets
of R.

Proposition 2.3. The following collections have cardinality ex-
actly 2%: (1) the open sets of reals; (2) the closed sets;
(3) the closed nowhere dense sets.

Proof: Ad (1): Every open set can be expressed as a countable
union of open intervals with rational endpoints. There are count-

iy
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ably many such intervals, so there are at most Ng" = 2%0 possible
choices for open sets of reals. Easily there are at least 2%¢ open
sets. ' o .

Part (2) follows from (1), closed sets of reals being exactly
the complements of open sets; part (3) is immediate from (2).

Lusin sets are a little more obscure than uncountable sets of
first category:

Definition 2.4. A subset K of R is called a Lusin set iff
(i) X is uncountable and
(it) whenever F' C R is of first category, then X N F is countable.

Lusin sets {discovered of course by Mahlo) are rather unusual:
with regard to category, they are not small (no uncountable subset

. of K is of first category}; with regard to Lebesgue measure, they

are very small indeed (recall that for every positive ¢ there is a
closed nowhere dense set N such that R\ NV has measure less than
€). But are there any Lusin sets? Well, it depends.

Theorem 2.5. (1) CH implies that there Is a Lusin set.
(2) MA + —CH implies that there are no Lusin sets.

Proof:  Ad (1): By 2.3 and CH we can list all the closed nowhere
dense sets in a list {Ny : o < ¥}, Define K = {ro:a < N} by
transfinite induction on @ < ®;. Given {rg : 8 < o} note that
My =\ {Ns : B <a}U{rs: 3 < a} is of first category (since o
is a countable ordinal), so by 1.3 one can find r, € R\ M,. By
construction, K is a Lusin set: if I is of first category, then for
some e < ¥y, FC Myandso KNF C{rg: 8 <a}.

Ad (2): Supposing contrariwise that K is Lusin let F C K
be a subset of cardinality R;. By 2.1, F is of first category, being
the union of its singleton sets — in contradiction to 2.4 (ii). So
K doesn’t exist.

The (-sets which we define next occur naturally in the study
of Moore spaces. We'll explain why after the definition and some
basic facts.

Definition 2.6. A set A C R is a @-sef iff every subset of A is
a relative F,; (i.e. a countable union of closed sets in the subspace




40 IMS Bulletin 29, 1992 k]|

topology on A). For example, every countable set is a (-set. Are
there any uncountable (-sets?

Proposition 2.7. (1) If 2% < 2% then there are no @-sets of
cardinality «.

(2) If A is a Q-set, then A has cardinality less than 2%°. In par-
ticular, CH implies that every ()-set is countable.

Proof: Part (2) is a consequence of (1), noting that A < 2* and
taking A = 2%, As regards (1), suppose that B has cardinality
#. By 2.3 there are at most 2% relatively closed subsets of B,
80 there are at most (2N°)N° = 2%0 relative F,’s of B. However,

|P(B)} = 218l = 2% > 9% 50 some subset of B is not a relative
Fy, ie. Bis not a Q-set.

Theorem 2.8. Assume MA. (1) Every set of reals of cardinality
less than 2% js a Q-set.
(2) For R < k < 2%, 2% = 2% (3) 9% jg a regular cardinal.

Proof:  Part (1) is similar to 2.1 and we give just a sketch. Sup-
pose X C A C R and A has cardinality s < 2%. We show
X 1z a relative F;. WLOG X is a non-empty proper subset of
A. Choose a countable open basis {V, : n € N} for R such
that no two different reals belong to the intersection of infin-
itely many V. Let O = {n € N : =z € V,} and note that
A={0;:2€ X} and B= {0, : z € A\ X} satisfy the hypo-
theses of 2.2. Using C from 2.2, the open sets G, = | |{Vi : k€ C
and k& > n}, the closed sets F, = R \ G,, one verifies that
XCU{Fa:neN}), ANX C{H{Gs :n € N} and so X is
a relative Fj,.

Ad (2): Let B C R have infinite cardinality k£ < 2%, By
part (1), B is a Q-set, hence by 2.7 (1), 2% = 2*. Ad (3): Since
R has cardinality 2%, we work with R. If R = [ J{4; : i < A}
where |A;] < 2%, then by 2.1 each A; is of first category and so
by 2.1 again A > 2% (The reader familiar with Koenig’s Lemma,
will deduce part (3) immediately from part (2).)

Thus MA + —CH implies that there are uncountable ()-sets.
Taken in conjunction with 2.7 (2) this means that the existence
of an uncountable {J-set is independent of ZFC,
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From 2.8 (3) it also follows that ~CI does not imply MA,
since there are set-theoretic universes in which 2"° is not a regular
cardinal.

Uncountable @-sets are related to the Normal Moore Space
Conjecture (NMSC) which states that all normal Moore spaces
are metrizable. A space is normal iff for all digjoint closed sets A
and B there are disjoint open sets U and V, ACU, BC V. A
Moore space is a regular space X with a sequence of open covers
{Gn : n € N} such that for each z € X and open I/ with ¢ € U,
there is » € N such that | }[{G € G, : z € G} C U. Examples
of normal non-metrizable Moore spaces can be obtained in the
following way.

Example 2.9. For this we take an uncountable set B C R.. Let
M(B) be the set BU {(z,y) € R? : y > 0}; the neighbourhoods
of b € B are the bubbles at b, i.e. {8} UInt(D) where D runs over
the discs in the upper half-plane tangent to the z-axis at (b, 0);
the neighbourhoods of (z,y) are the usual Euclidean ones. M (B)
is called the Moore space derived from B and is a separable non-
metrizable Mocre space. It turns out that M(B) is normal iff B
is a (J-set. It is also known that the existence of an uncountable
(J-set is equivalent to the exisience of a separable normal non-
metrizable Moore space. So MA + -CH implies that NMSC is
false, even in the separable case. Of course this leaves open the
question whether the falsity of NMSC follows just from ordinary
set theory. The resolution of this issue is a little different from the
independence results we've considered so far. It involves so-called
large cardinal axioms, axioms which roughly speaking assert the
existence of cardinals so large that they cannot be shown to exist
on the basis of ordinary set theory. We state the result, omitting
the technical definitions and details:

Theorem 2.10. (1) IFNMSC holds, then there is an inner model
of ZFC with a measurable cardinal. (2) The Product Measure
Extension Axiom (PMEA) implies NMSC. (3) IfZFC + “there
is a strongly compact cardinal” is consistent, then ZFC + PMEA
is consistent, and so ZFC + NMSC is consistent.

Before leaving metrizability questions, let us mention an ap-
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plication of MA in the study of manifolds. Taking a manifold to
be a connected regular Hausdorfl space M for which there is a
positive integer n such that each point of 3 has a neighbourhood
homeomorphic to R", one can prove:

Theorem 2.11. (1) Assume MA + ~CH. Then every perfectly
normal manifold is metrizable.

(2) There is a set-theoretic universe L in which there exists a
perfectly normal non-metrizable manifold.

Thus again the answer to a query of Alexandroff is independ-
ent of ZFC.

Our next application concerns the uniqueness of the real line
(R, <). Suslin’s Hypothesis claims that there are no Suslin trees.
Recall that a Suslin tree is an uncountable c.c.c. partial order
T = (T, <) satisfying: (a) (Vi € T)Pred(t) = {s € T : 5 < 1}
is a chain which is well-ordered, i.e. every non-empty subset of
Pred(t) has a <-least element; (b) T has no uncountable chains;
(¢) (vt € T)Suc(t) = {s € T : t < s} is uncountable. The study
of Suslin’s Hypothesis led to the discovery of Martin’s Axiom.

Theorem 2.12. MAy, implies SH: there are no Suslin trees.

Proof: Suppose for a contradiction that T is a Suslin tree. By
(a) and (b), Pred(?) is order-isomorphic to a countable ordinal
h(t), the height of £ in T, so (¢) implies that the set D, = {t €
T : h(t) > o} is dense in T for each ordinal @ < R;. Apply MAy,
to find a filter G in T intersecting each 2, non-trivially. Now &
is an uncountable chain in T', contradicting (b).

It is consistent with ordinary set theory to assume that SH
is false. For example, in L (the smallest transitive set-theoretic
universe containing all the ordinals) there is a Suslin tree.

Most mathematics stndents learn (in a possibly different ter-
minology) that if (S, <) is a separable, uncountable, unbounded,
Dedekind-complete, dense linear order, then (S, <) is order iso-
morphic to the real line (R, <) (just recall the well-known back-
and-forth argument of Cantor characterizing the rational line (Q,
<}}. Suslin’s Hypothesis is equivalent to the assertion that sepaz-
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ability can be replaced by the condition that every collection of

pairwise disjoint open intervals in the linear order is countable.
Finally we turn to two famous applications of MA in al-

gebra and analysis. We say that an infinite abelian group A is

 a free group iff A has a linearly independent set of generators; we

say that A is a W-group iff for every surjective homomorphism
m: B — A with kernel Z there is a homomorphism ¢ : A ~+ B such
that w(¢(a)) = a for all & € A (in other words Ext(4,Z}) = 0).
For example, every free group is a W-group. Whitehead asked: is
every W-group free? Shelah showed that MAy, implies the exist-
ence of a non-free W-group. He was also able to prove that in L
every W-group is free. So the Whitehead problem is independent
of ZFC. Tt is remarkable that the concepts invelved in his research
vield, via trees, considerable information on NMSC.

Let’s conclude this section with an automatic continuity prob-
lem in analysis. Recall that C[0,1] is the commutative Banach
algebra of continuous functions on the closed unit interval. Ka-
plansky’s question asks: is every homomorphism from C[0, 1] into
a commutative Banach algebra continuous? Assuming MAy, one
can build a set-theoretic universe in which the answer is positive.
On the other hand, in L the answer is no, so again Kaplansky’s
question is independent of ZFC.

Section 3: Proper forcing and the Proper Forcing Axiom

In section 1 we introduced the countable chain condition in a
rather ad hoc manner, essentially to obviate the counterexamples
arising in 1.4, That end might be achieved by other means. For
example, regarding M Ay, , the first independent instance of MA, it
is natural to inquire whether there is a weak property of forcings,
implied by the c.c.c., for which there is a consistent internal forcing
axiom of the form: if P has the property, D is a family of dense
sets and D has cardinality at most &y, then there is a D-generic
filter G in P. How should one look for such a property? Weli,
in this context, the important point about MA and MAy, is the
relative consistency theorem 1.10. One could start by analysing
the proof of 1.10. This is one of the tasks in Shelah’s monograph
{18, p.200]. We review briefly the ideas to motivate the concept
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of proper forcing and the Proper Forcing Axiom PFA.

The basic strategy in the relative consistency proof of MA
+ —CH is to start from a set-theoretic universe V, (in which CH
holds) and to build a bigger set-theoretic universe V, in which
MA + --CH holds. We build V; in stages and each stage is called

~ an iteration. The construction of a stage goes roughly as follows.
Given a set-theoretic universe V, a forcing P € V and a filter G in
P which is generic over V (i.e. G is D-generic where D is the set
{D €V : Disdense in P}), then there is a smallest set-theoretic
universe V[G] such that V C V[G] and G € VI[G]. Except in
trivial cases, G ¢ V, so V[G] is a bigger universe than V. For
example, if P is the Cohen forcing of 1.1 and G is generic over V,
then the Cohen real | | G is a real belonging to V[G] but not to V.
Now extending V to V[G] is not without potential danger. For
example, suppose that R} is the fitst uncountable cardinal in Vv
if V[G] should chance to contain a function from N onto R}, then
RY is a conntable set in V[(], so that NY[G], the first uncountable
cardinal in V[G], is greater than RY . In this situation, we say
that P collapses ;. If on the other hand RY is NY[G], then we
say that P preserves By. The proofs that MAyx, and MA + —-CH
are consistent rely on three principal facts: (1) If P is c.c.c., then
P preserves Ny; (2) there is an iterative operation under which the
class of c.c.c. forcings is closed; (3) MA, is equivalent to MA.
(We actually verified (3) in 1.11.)

From this very brief sketch we learn that each property of
forcings for which analogues of facts (1), (2) and (3) obtain, will
give rise to a consistent internal forcing axiom. One of the most
interesting and powerful among these properties is properness.
There are several equivalent definitions of properness. We give
one which allows an easy proof that proper forcings preserve ;.

Definition 3.1. (1) Let A be an uncountable set. We use [A4] o
to denote the collection of countable subsets of A. A subset ¢
of [A]®* is a club (closed unbounded set) iff (i) every element of
[A]% is contained in an element of C' and (ii) for every increas-
ing sequence 29 C #; € ... Cz, C ..., &, € C, the union

UnEN Ty € C
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(2) A subset S of [A]M° is stationary in [A® ifESNC # 0

- for every club C.

(8) For a set-theoretic universe M and a set A € M, we write

({A]#e)M for the set {z € M :in M, z is a countable subset of

Definition 3.2. A forcing P € V is proper iff for every uncount-
able set A € V, if § € V is stationary in {[A]**)Y, then S is
stationary in ([A]®)VI€] for every filter G in P generic over V.
Loosely put, proper forcings preserve stationarity.

To exercise these definitions a little, let’s prove proper for-
cings preserve ij.

Theorem 3.3. Suppose that P € V is proper and G is a generic
filter over V. If in V[(] the set a is a countable set of ordinals,
then in V there is a countable set b of ordinals such that a C &.
Thus RY = R} ]

Proof: Since in V[G] a is countable, there is an uncountable car-
dinal A with a € (A[*)VI€L. In V[G],

C= {:c € ([/\]N")V[G] ta C x}

is a club. But § = ([A]*)V is stationary in ({A]**)", hence S is
stationary in ([A]M*)¥1%] since P is proper. Therefore SN C £ 0.
Choose be SN C.

Definition 3.4. The Proper Forcing Aziom PFA is the hypo-
thesis: if P is a proper forcing, D is a family of dense sets in P

and D has cardinality at most ¥, then there is a D-generic filter
Gin P.
The Proper Forcing Axiom is the analogue of MAy, for proper

forcings. We finish by noting some basic theorems.

Theorem 3.5. (1) If P is a c.c.c. forcing, then P is proper. So
PFA implies MAy,. (2) PFA implies MAy, is false.
(3) PFA implies 2% = Ry. So PFA implies MA.
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Theorem 3.8. If ZFC+ “there is a supercompact cardinal” is
consistent, then ZFC + PFA is consistent.

The large cardinal axiom in 3.6 is used to establish the ap-
propriate version of 1.11 for proper forcings. There are variants
of PFA which do not require any large cardinal axioms for their
consistency proofs. There are also even stronger axioms {Martin’s
Maximum MM) which are studied in the literature.

Section 4: Biblographical notes

Martin's Axiom is the eponymous subject of the monograph [8,
p.200]. Good brief introductions to MA are [19, p.200], [17, p.200],
chapter 2 in [11, p.200] and perhaps [22, p.200].

On Q-sets, see [14, p.200]. NMSC is covered in [20, p.200]
and [5, p.200}. The articles [7, p.200] and [16, p.200] provide good
accounts of the impact of logic and recent set theory. The book
(4, p.200} 1s an excellent text on set-theoretic methods in algebra,
with many applications of MA and PFA. The lecture notes in [3,
p.200] deal with MA in analysis (Kaplansky’s conjecture); [15,
p-200] presents the solution to the Alexandroff problem and is an
introduction to non-metrizable manifolds.

Proper forcings and variants appear in [18, p.200]. Applica-
tions are in [1, p.200], [2, p.200], [9, p.200] and [4, p.200]. A very
interesting variant of PFA which does not require a large cardinal
axiom in its consistency proof can be found in [13, p.200].

An extensive account of large cardinal axioms is provided in
{10, p.200] or in [8, p.200]. [8, p-200] and [11, p.200] cover all the
axiomatic set theory which we didn’t. Iterations are treated in [1,
p.200], [11, p.200] and [9, p.200]. [21, p.200] has the proof of 3.5
(3).
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EXPLICIT RELATIONSHIPS BETWEEN
ROUTH-HURWITZ AND SCHUR-COHN
TYPES OF STABILITY

Ziad Zahreddine

Abgtract: Given two linear systems of differential equations with real
or complex coefficients, and of the same arbitrary dimension. Suppose
both systems are stable, one in the Routh-Hurwitz sense and the other

* in the Schur-Cohn sense. We directly express the coefficients of each

system in terms of those of the other. These relationships, being ex-
plicit, make it possible to convey any stahility criterion of either of the
two types to the other.

1. Imtroduction

The concept of stability in differential equations has been defined
in many different ways. Among these various definitions are
the well-known Routh-Hurwitz and Schur-Cohn types of stahil-
ity. Given a linear system of differential equations, the classical
Routh-Hurwitz problem is that of obtaining necessary and sufli-
cient conditions for all eigenvalues of the system to lie in the left
half of the complex plane. The Schur-Cohn problem is that of
establishing necessary and sufficient conditions for all eigenvalues
to lie within the unit circle. Solutions to these problems have
been the subject of intensive research over the last few years [2,
[3), [9], [12] and [14].

1t is often noticed in the literature that some interesting res-
ults about stability, in the Hurwitz sense for example, triggers an

AMS subject classification: primary 34 D, secondary 93 D.
Key words and phrases: Routh-Hurwitz stability, Schur-Cohn sta-
bility, continuous-time systems, discrete-time systems.
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