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BOUNDARY BEHAVIOUR OF HOLOMORPHIC
AND HARMONIC FUNCTIONS*

Stephen J. Gardiner

Abstract: We give below a survey of some recent results concerning
the boundary behaviour of holomorphic and harmonic functions. The
unifying theme is the role played by the integral condition

t
3 %,t)dt < oo, (1)

where ¢ is a non-negative Lipschitz function.

1. Thin sets

Let {2 be a domain (non-empty, connected open set) in the com-
plex plane C. Recall that a function v : 2 = (—c0,00], where
u % 00, is called superharmonic on @ if u is lower semicontinuous,
ie.,

u(zg) < hzrg}zlulf u{2) {z0 € Q}), {2)

and if

27
g
u(zg) > ] u{zo +re"}2—:_ when {z:]z—z|<r}C Q. (3)
0

*This article is based on a lecture delivered at the 44th British
Mathematical Colloquium held at the University of Strathclyde
in April 1992.
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As the definition suggests, such functions need not be continuous.

However (assuming that 0 € £2 for simplicity) we can combine (2),
{3) and Fatou’s lemma to obtain

2
L . df 2= .. df
8 : - ig
u{0) < ][, llrﬂéﬂf u(re )271' Shﬂié‘if o ulre )ﬁ

< limsu J[% u(re'®) do < u(0
- r—>0+p 0 2n < u(0),

50

2w " de
e ) —
jﬂ u(r )271_ -+ u(0) (7 = 04).
Thus superharmonic functions possess a certain weak, or “aver-
age”, continuity property. More specifically, it can be asserted
that

u(z) = u(0) (z=0,z¢ E),
where the exceptional set F is “thin” at 0. As an upper bound on

how much of £ exists near 0, we mention that E\{0} is contained

in-an open set whose circular projection, F, onto the interval (0,1)
satisfies

o

k
— < co.
é—logl{tEF:Z k-l <t < 27k}

(Here |A| denotes the one-dimensional Lebesgue measure of A.)
On the other hand, E can be highly dispersed: for example, E
can be dense in 2.

Formally, a set ¥ is called thin at 0 if one of the following
{equivalent) conditions holds:

(i) there is a superharmonic function u on a neighbourhood of 0

such that

zl_xbr&;r‘:}%u(z) > Iiyl}[rllf w(z) ; (4)
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(ii) there is a superharmonic function u on a neighbourhood of §
such that '
- u(z) e u(z)
— 1 f ——
A e s gt/

o u] B
(31) ch*({z EE:27% 1<zl <27%)) <00
k=1
(Wiener’s criterion),
where C*{A) denotes the outer capacity (see [20, Chapter 7]}
of a set A with respect to the unit disc.

With regard to condition (i) above, we remark that the right
hand side of (4) is equal to u(0). Thus sets ¥ which are thin at
0 are characterized by the property that knowledge of the values
of 1 on E\{0} is not sufficient to determine u(0). An account of
thin sets can be found in Helms [20, Chapter 10].

There is a corresponding notion of thinness at a boundary
point that can be defined by analogy to {ii) above. Let Dy =
{z 4+ iy :y > 0} and define '

P(z):}- {(z =z +1iy € D).

(This is the Poisson kernel for Do with pole at 0). A subzet ¥ of
Dy is called minimally thin at 0 with respect to Dy if there 1s a
positive superharmonic function u on Iy such that

fimint 42)
:00,2eE Pz}

NP C))
s z}igr,lzlg.gu P(Z) ’ (5)

Again minimally thin sets may be dense (in Dy), and can only
be described in terms of capacities. However, if we are dealing
solely with harmonic functions u, the sets E that can arise in (5)
are of a more specific nature due to Harnack’s inequalities. A
precise description of such sets is given below in a reformulation
of a result of Beurling [3].
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Theorem A. The following are equivalent conditions on a subset
E of Dg.‘
(1) there is 2 positive harmonic function h on Dy such that

... h(2) .. h(z)
1 i ;
R T BRI o S

(it} there is a positive number ¢ and a Lipschitz function ¢ :
[—1,1] — [0, oo} such that

(Y -
tTdt < oo and EN{|z| < e} C {z+iy: 0 <y < é(2)].
-1

In the following sections we discuss several applications of the
above integral condition.

2. The angular derivative problem

In this section D denotes a simply connected domain in € such
that 0 € @53, Further, f denotes a bijective holomorphic mapping
from Dy to D which has angular limit 0 at 0. {We recall that a
function g on Dy is said to have angular limit ] at 0 if, for any
positive number k,

g{z) =1 (z=24+iy—=0, y>klzl))

If the derivative f' has an angular limit at 0, this is called the an-
gular derivetive of f at 0, and is denoted by f(0). The existence
of f(0) depends on D, but not on the choice of f: that is, if it
exists for one such function f then it exists for them all. For fur-
ther properties of the angular derivative we refer to Pommerenke
[21, Chapter 10]. The angular derivative problem is as follows:
give necessary and sufficient geometric conditions on D such that
F{0) exisis, and 0 < |f(0)] < oc.

This problem has a long history and remains unsolved.
However, significant progress was made recently by Burdey
[7], using deep probablistic methods. To state his tesult, we
define F, to be the family of functions ¢ : R — R which satisfy
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the Lipschitz condition |¢{z) — ¢(y)] < |z — y| and for which
{y > ¢(z)} N {|z| < €} € DN {|z| < €}. Further, let

¢e(t) = inf ¢(t), ¢F =max{g, 0}, ¢; =max{—¢0}.

T $EPR.

Burdzy’s theorem is stated below.

Theorem 1. Suppose that, for some ¢ > 0,

J[l ¢j(t)dt < 00.
-1

2

Then f'(0) exists and 0 < |f'(0)| < oco. Further, f'(0) # 0 if and

only if )
: ¢z (t)
'l;l Tdi < CO.

Rodin and Warschawski [22] attempted to prove Theorem 1
by classical means, but were only partly successful: the problem
was to find a classical proof of Theorem 2 below, originally proved
by Burdzy and Williams [8] using probabilistic methods. This was
first achieved by Carroll [11] using an ingenicus, but very difficult,
argument. Since then two short proofs of the resuli have been
found: ome by Sastry [23] based on extremal length arguments,
and one by the author [15], based on Beurling’s Theorem A. Let
¢ : R — R be Lipschitz, and let Dy = {z + iy : y > é{2)}.

Theorem 2. Let ¢ > 0 and let hy be a positive harmonic function
on Dy {|z] < €} which continuously vanishes on D4 N {|z| < €}.

If 14 14—
_/ gt(—t)dt<oo and [1¢ (t)dt=00; (6)

2 2
-1 1

then hy(iy)/y — oo as y — 0+.

The idea of the proof in [15] is to use Theorem A to compare
positive harmonic functions hg, hg+, by on the regions Dy, D+,
Dy (resp.) which vanish on the boundary, at least near 0. It is
easy to see that ho(iy)/y has a positive limit as y — 0+. The
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same can be established for hy+ (iy}/y using the convergent in-
tegral condition in (6). However, the “negative humps” in the
boundary of Dy cause hy(iy)/y to diverge to oo as y —> 0+ be-
cause of the divergent integral in (6). This is the tricky part of
the proof, as Theorem A does not immediately apply to these
“negative humps”. See [15] for further details.

3. X-domains

Let U be the unit disc, X be a certain class of holomorphic func-
tions on I/, and X (), 1) be the class of all holomorphic functions
f:U — D, where D is scme domain in €. In this section we are
interested in results of the form: f € X for oll f in H(U, D) if
and only if D saeiisfies ceriain geometric conditions. For example,

X could be the Nevanlinna class A" of holomorphic functions f on
U for which

2%
sup f logt |f(re)|d8 < o0 ;
d<rClJp

or the Smirnov class N1 of functions f in A for which

3T . b2 )
f log™ [f{re’*)de — j log" |£(e")ld0 (r—+1-).
0 0

{(Any function f in A has radial boundary values f(e'f) almost
everywhere.) The following two results are due to Frostman [14]
and Ahern and Cohn {1] respectively. A set is called thir af oo if
its inversion in the unit circle is thin at 0.

Theorem B. Let D be a domain in C. Then f € N for all f in
#(U, D) if and only if 3D has positive logarithmic capacity.

Theorem C. Let D be a domain in C. Then f € N'* for all f
in (U, D) if and only if C\D is not thin af co.

We will present two further results of this type. Let h' denote
the class of harmonic functions on ¥ which can be written as the
difference of two positive harmonic functions on I,
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Theorem 3. Let 77 be a simply connected domain which contains
{z+iy:z > 0}. Then Rf € ' for all f in H{U, D) if and only if

° dist (iy, 8D
. (—1-1-1—(_1_3’;—;9—)4:13; < oo, (7).

We observe that, if D C {¢ > 0} and f € (U, D), then
Rf > 0, so {trivially) Rf € A'. Theorem 3 shows precisely how
much larger than {z > 0} we can allow D to be while still ensuring
that Rf € h'. The condition (7) is of the same type as (1), after
an inversion in the unit circle.

It is easily seen that R € A! if and only if e/ € N. Referring
back to Theorems B and C we are led to consider when ef € AT,
A subset of {z > 0} is called minimally thin at oo if its inversion
in the unit circle is minimally thin at 0.

Theorem 4. Let D be as in Theorem 3, suppose (7) holds, and
let Dy be a domain contained in D. Then ¢/ € N'* for all f in
H(U, Dy) if and only if {z > 0}\D, is not minimally thin at oo
with respect to {x > 0}.

Here D, is not required to be simply connected. The larger
is the set D\D;, the smaller is H(U, D1). Theorem 4 describes
precisely how large D\D; must be to ensure that we have the
stronger property e/ € Nt for all f in #(U, D). It turns out
that only {z > 0}\D; is significant. We remark in passing that
{z > 0}\D; is not minimally thin at co with respect to {z > 0}
if and only if the set

{120 €R*: (2 4 23+ 2] +iza ¢ D1}

is not thin at infinity in R*. Theorems 3 and 4 are proved in [16).
Theorem 3 is related to the angular derivative problem.
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4. Bets of determination for harmonic functions
Let P(C, z) denote the Poisson kernel for U with pole ¢; that is,

T
P25 = -

"27r'|z_——(t,:j"5 (ze U, edl).

If { is a fixed point of 8U, then P((, -} is a positive harmonic fune-
tion on U which vanishes on 8U\{(}. However, in what follows,
we will sometimes fix z and regard P(., z) as a positive continu-
ous function on JU. Let H*' denote the collection of positive
harmonic functions on U. There is a one-to-one correspondence
between members h of #* and finite Borel measures s on U,
given by

we) = [ PG Gen)

We consider here two seemingly different types of problem:

(i) given a class A of harmonic functions on I, characterize those
_ subsets E of U/ such that supy H = sup, H for all H in A;
(ii) given a class B of functions on 8U, characterize those subsets

E of U such that any f in B has the form § = i,\kP(i,zk),
1
where the points z;, belong to E.

Surprisingly there is a close relationship between these two
types of problern. The key idea in both is that there must be
“enough of E” near “appropriate points” of U . We define = set

Biyp= 1] {z: s —wl < (1-u))/2)
wel
and a function
ET (6 :L lz =¢| 2 dady (¢ € BU),
1/2

which takes values in [0, co]. By “enough of £” near ¢ we mean
E I/z(o = o0.

i
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Theorem 5. Let E C U. The following are equivaient:

" (i) supg H = supy H for every H in h';

{ii) E"l‘/2((:) = oo for every { in OU; .

(i) for every positive continuous function f on U there exist
a sequence (A} of positive numbers and a sequence (z) of
points in E such that

FO =S MPCm) (D). ®
k=1

This elegant result is due to Hayman and Lyons [19]. The
convergence in (8) is uniform, by Dini’s theorem. Alternative
proofs and a variety of extensions can be found in [5], [13], [17],
[12] and [2]. In particular, [17] contains a short proof based on
Beurling’s Theorem A (cf. the definition of E7 /2(C )} together with
a result which includes the following,

Theorem 6. Let EC U and h € Ht. The following are equival-
ent:
() infg H/h = infy H/h for all H in H*;
(ii) E},5(C) = oo for almost every (#n) ¢ In 0U.
Further, each of the above conditions implies:
(i) for every f in L'(up) there exist (Ax) in £1(C) and a sequence
(zx) of points in E such that

£ =3 MP(,2)/h() o)
k=1

(convergence in the sense of L'(u4)), and
(1 £llz2(un) = inf {Z1X&] : (9) holds for some (z) in E}.

If h = 1, then (cf. Bonsall [4]) (iii) above is actually equivalent
to (1), (ii) and:

(ii") for almost every (Lebesgue) ( in OU, there is a sequence of
points in E which converges to ¢ within some angle.
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5. Better-than-angular limits

Sections 2 and 3 illustrated the relevance of (1) to boundary dis-
tortion. In section 4, divergence of the integral in (1) was related
to having “enough” of E to determine suprema/infima of har-
monic functions on U, or to achieve representation of functions
on 8U in terms of Poisson kernels. Finally, in this section, we dis-
cuss the role of (1) in describing approach regions for boundary
behaviour of holomorphic and harmonic functions.

Many results in function theory state that functions (in Dy,
say) have angular limits almost everywhere on 8Dy, or on a subset
of 8Dy of positive Lebesgue measure. We will now point out that
rather more can be asserted. Let & denote the class of Lipschitz
functions ¢ : R — [0, 00) such that (1) holds. A function g on D)y
is said to have @-limit! at ¢ € R if there exists ¢ in & such that

glz) =1 (z =1, y> d(z —1)).

It is easy to see that the existence of a ®-limit at ¢ implies that g
has an angular limit at £, but not conversely.

Theorem 7. Let u be a harmonic function on Dy such that, for
every t in E (where E C R), there is an angle with vertex at t in
which u is bounded below. Then u has (finite) ®-limits at almost
every (Lebesgue) t in E.

'The existence of angular limits under the above hypothesis is
due to Calderén {9] and Carleson [10]. Brelot and Doob [6] showed
that u must have minimal fine limits at almost every point ¢ in
E. However, the latter result does not immediately combine with
Theorem A to yield Theorem 7, since u need not be positive on
Dg. The proof of Theorem 7 can be found in [15]. An example
of its application occurs in [18]. The conclusion of the theorem
clearly remains true if u is a holomorphic function on Dy which,
for each ¢ in F, is bounded in an angle with vertex at ¢.

NOTE. The results in this paper which concern harmonic funec-
tions have natural analogues in R"(n > 3). Details can be found
in the appropriate references.

6]
[7

[11]

[15]
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INTERNAL FORCING AXIOMS:
A MARTIN’S AXIOM AND
THE PROPER FORCING AXIOM

Dedicated to the memory of Alan H. Mekler.
Eoin Coleman

In the course of the last twenty-five years research in the combinat-
orics of partially ordered sets has resulted in the discovery of new
set-theoretic hypotheses — sometimes dubbed internal forcing ax-
ioms. This elementary article presents in section 1 the simplest of
these (Martin’s Axiom). In section 2 we look at some applications
(the completeness of the category ideal, Lusin sets, (J-sets, prob-
lems of Moore, Alexandroff, Suslin, Whitehead and Kaplansky).
Tinally in section 3 we deal briefly with the Proper Forcing Ax-
iom, a powerful generalization of Martin’s Axiom. We’ve collected
the relevant references in an annotated bibliography in section 4,
rather than in the body of the text.

‘We try to show concretely how internal forcing axioms work
{giving complete proofs whenever feasible), stressing the resemb-
lance to the classical diagonal arguments of Baire and Cantor.
In our choice of applications we seek to underline the fact that
mathematical conjectures having no apparent set-theoretic refer-
ence may depend for their resolution on axioms beyond those of
ordinary set theory. To put it another way, there are at least
three truth values in mathematics: true, false, and independent
of ordinary set theory.

Section 1: Forcing

Internal forcing axioms are about forcings. Let us recall that a
forcing is simply a partial order, i.e. a pair P = (P, <) such that
P is a non-empty set, < is a reflexive antisymmetric transitive
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