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Minutes of Meetings
of the Irish Mathematical Society

Ordinary Mesting

16 April 1992

An ordinary meeting of the Irish Mathematical Society was held
at 12.15 pm on April 16th 1992 at DIAS.

The President (R. Timoney) took the chair and there were 7
other members present.

1. Minutes

The Minutes of the meeting of 20th December 1991 were approved
and signed.

2. Matters Arising

No matters arising.

3. Bulletin

M. O Searcéid reported on a really wonderful improvement in the
production of the Bulletin, achieved with the help of Rex Dark of
UCG (acting editor). The March ’91 issue was with the printers,
the December '21 issue was nearly done and would be ready by the
time the March ’91 issue came back from the printers. MOS had
also designed a new format file (in plain TEX) which had many
useful features and incorporated an automatic system for keeping
track of cross-references. MOS would make his format file publicly
available and encourage authors to use it.

The meeting warmly thanked Michesl O Searcéid for his ex-
cellent work and also expressed its thanks to Rex Dark.
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4, European Mathematical Scociety

Fees from individual members of the IMS wanting to join the EMS
had been collected and forwarded to the EMS.

Several reports were required for the European Congress of
Mathematicians in July {nearly every “Table Ronde’ had requested
some sort of information). This was being collected or had been
collected.

A request to nominate Irish mathematicians willing to serve
as referees for the evaluation of network applications to the Human
Capital and Mobility scheme was discussed. A letter asking the
IMS to suggest suitable names had been received from the EMS
and that letter also asked for an Irish person willing to serve on
the ‘Mathematics panel’ for networks. It was agreed that the
Committee would discuss the matter further before deciding on
what to do.

The advantages to be offered under the HCM scheme were
pointed out to members.

5. Treasurer’s business

The proposal for a change in the financial year to correspond
with the calendar year was approved by the meeting following a
motion proposed by D. Tipple and seconded by M. O Searcéid.

The Treasurer, D. Tipple then produced a report on the in-
terim period October — December 1992 between the end of the
financial year under the old system and the beginning of the fin-
ancial year under the new system. This was accepted.

6. EUROMATH report

R. Timoney gave a brief report on the recent status of the EUR-
OMATH project with the aid of a few slides, in his capacity as
the chairman of the National Coordinating Committee for EUR-
OMATH in Ireland. R. Timoney is also a member of the Project
Committee of EUROMATH, which is charged with bringing the
project work to a successful conclusion.

The overall objective of the EUROMATH Project is to pro-
mote the use of modern information technology among mathem-
aticians in Europe.

¥
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The project is run by the European Mathematical Trust,
an organization founded by the mathematical societies of 18
‘Furopean’ countries (actually EC + EFTA countries). There is
participation by Eastern European countries also, as observers.
The project is funded under the SCIENCE program.

For what purposes do mathematicians use computers? An-
swers: ’ '

Document preparation
Symbolic and numeric computation
Database search

Flectronic mail etc.

A

Looking at databases for as moment (RT is in charge of over-
seeing the work being done by EUROMATH in this area), one
might come up with the following ideal scenario:

1. access to online versions of Math Reviews and Zentralblatt
would be cheap and simple;

2. formulae in screen views of an abstract from an online data-
base would be easy to read;

3. references from a database search could be directly inserted
in the list of references of a paper;

4. remote, local and personal databases would be accessible us-
ing the same query language.

The project hopes to realize all of these items (except that

it depends partly on external bodies to completely REALIZE the

objective of viewing Zentralblatt formulae on screen, for example).

On the question of document preparation, the project has
identified a trend towards the use of SGML (Standard Gener-
alized Markup Langunage) by publishers, database providers and
others. The Project aims to cater for this trend (as well as WIEX
typesetting) by producing 2 WYSIWYG editor which would com-
bine the usnal advantages of WYSIWYG systems with the power
and flexibility of Markup-based systems like IXTRX. Here is a short
comparison of the usual WYSIWYG and Markup systems:
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WYSIWYG: Markup:
*  Complete freedom in *  Coherent and well
layout designed documents
*  Requires experience *  Can lead to

of document design excessive uniformity

*  Direct manipulation *  Structure present in
on screen *  source

* WYSIAYG *  Edit-typeset-preview
on screen *  loop

(WYSIAYG = what you see is all you get.)

"The whole EUROMATH system is being designed around this
editor (using the editor as a coherent user interface in fact) and
the schedule is for completion before mid 1993.

In the meantime Mathematics Institutes are being invited to
participate in the project by subscribing to EUROMATH. Sub-
scribing now will entitle institutes to receive an early version of
the EUROMATH editor right away (for either SUN4, SUN3, DEC
3100/5000 or IBM RS600 workstations) plus getting the produc-
tion version when it is ready in 1993. Also institutes will benefit
from a special rate for the online version of the Zentralblatt. The
cost of EUROMATH subscriptions for the period until the end
of 1993 has been fixed at 1500 ECU for institutes who subscribe
before the end of 1992 and 2000 ECU for those subscribing later.

Some of those present felt this was a lot of money.

7. Any Other Business

1t was noted that two reports had appeared in the UK which might
be of interest to members. One was “The future for Honours De-
gree Courses in Mathematics and Statistics’ {Feb 1992) by a group
working under the auspices of the LMS and with the support of
the Royal Statistical Society and the Institute of Mathematics
and its Applications. It dealt with 3- versus 4-year degrees in the
English context (excluding computing).

o
P
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~ The second was the so-called Kingman report, officially en-
titled ‘Mathematics strategy for the future’, published by SERC
and dealing more with support for research.

Richard Timoney
Trinity College, -
Dublin.




Conference Announcements

GROUPS 1993 GALWAY / ST ANDREWS

An international conference on groups will be held in Galway
from 1st to 14th August 1993. It will be the next in the se-
quence Groups-5t. Andrews 1981, 1085, 1989. The speakers will
include J. L. Alperin (University of Chicago), M. Broué {(Ecole
Normale Supérieure, Paris), P. H. Kropholler (QMW, London),
A. Lubotzky (Hebrew University, Jerusalem) and E. I. Zel’manov
(University of Wisconsin at Madison). A GAP workshop will be
led by J. Neubiiser and M. Schénert (RWTH Aachen). Further
information may be obtained: -

from C. M. Campbell or E. F. Robertson, Mathematical Institute,
University of 5t Andrews, 5t Andrews KY16 9SS, Fife, Scotland
(e-mail: groups93@cs.st-andrews.ac.uk);

or from J. J. Ward, T. C. Hurley, or 5. J. Tobin (Honorary Pres-
ident) University College, Galway, Ireland
(e-mail: matward@bodkin.ucg.ie).

GROUPS IN GALWAY 1993

The annual Groups in Galway meeting will take place in Uni-
versity College Galway on Friday 14th and Saturday 15th May
1993, Further information will be available from Dr John McDer-
mott, Department of Mathematics, University College, Galway,
or from matnewelldbodkin.ucg. ie

Correspondence

‘THIS BODE’S ILL FOR BOOLE

Dear Sir,

The ‘Numerical Recipes’ books of Press et al. have
gained a wide following and lock set to become standard clas-
sics. The same basic book appears it FORTRAN, Pascal, and
C flavours, with accompanying diskettes of canned software. The
no—nonsense approach is designed to appeal to practical people,
and one finds the book on the shelves of researchers and teachers
in every scientific and technical area.

It follows that the opinions of Press et al. are likely to become
gospel, and the nomenclature used by them is likely to become
standard.

Now in fact, their opinions are just their opinions and al-
though some of the recipes are simply awful, what prompts us to
action i1s a curiosity of their nomenclature.

They introduce integration rules by presenting the Trapez-
oidal Rule, Simpson’s Rule, and Bode’s Rule, and then say:

“At this point the formulas stop being named after fam-
cus perscnages, so we will not go any further”.

So who is this famous personage, Bode?

Given the fact that Bode’s rule is identical with Boole’s rule,
we are led to conjecture that Bode and his rule came into being
through the close juxtaposition on some blackboard of an ‘o’ and
an ‘1.

Boole has been robbed by a phantom!

7
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In view of Boole’s association with this country, it would seem
appropriate for us to nail this particular piece of thievery before it
goes too far, if indeed it has not already done so. Frankly, we are
inclined to doubt that the truth wiil ever catch up, but we might
as well try.

J. F. Feinstein,

A. G. O’Farrell,

St Patrick’s College,
Maynooth,

Co. Kildare.

GROUPS IN GALWAY 92
Rex Dark

The annual Groups in Galway meeting was held on 15th and 16th
May 1992, with the help of sponsorship from the Irish Mathem-
atical Scciety, the Royal Irish Academy, and University College,
Galway. There were about twenty participants.

The first lecture was by A. Christofides (UCG) on “Galois
groups and Riernann surfaces”. After tea, R. Sheehy (UCC) spoke
on “Frobeniug’ conjecture”, and the last lecture on Friday was by
H. Smith (Bucknell and Cardiff) on “Some remarks on maximal
subgroups of infinite groups”.

The Saturday morning session was begun by K. Hutchin-
son {(UCD) who spoke on “Galois group actions on classgroups”,
followed by E. Robertson (St Andrews) on “Semigroup present-
ations”. After lunch, the meeting closed with a lecture by
B. Hartley (Manchester) on “Simple locally finite groups”.

Rex Dark
University College
Galway



THE 1992 IMS SEPTEMBER MEETING
Michael Brennan and Brendan McCann

The 1992 September meeting took place on Thursday 3rd and
Friday 4th September at Waterford Regional Technical College,
and was organized by the mathematics staff at WRTC. There were
over 40 participants at the meeting, and it was very encouraging to
note that many of the lectures were attended by computer science,
engineering and physics staff at WRTC.

After the opening address by the principal of WRTC, Mr Ray
Griffin, the first speaker was Professor Darrel Ince (Department of
Computing, Open University). In his talk, Discrete mathematics
and the formal development of programs, he outlined some of the
advances and retreats of formal (that is, mathematical) methods
of program specification and verification. The second talk of the
opening session was given by Dr John McDermott (UCG). It was
entitled Colouring problems, and in it he described some of the
problems involved in determining the chromatic number (that is,
the minimum number of colours needed to distinguish the vertices)
of a directed graph.

After lunch on the first day, Professor David Armitage (QUB)
spoke on Harmonic functions: background and recent results. In
his talk he reviewed the development of the theory of harmonic
functions, and included an account of some of the new results
of the past few years. Then Mr Eamonn de Leastar (WRTC)
presented a talk on Numerical data types in C and C++, in which
he discussed the differences between the two languages, using as
an example a simple program specification.

There followed a coffee break, after which Professor Gilbert
Strang (Massachusetts Institute of Technology) discussed the case
of Wavelet transforms vs. Fourier transforms. After presenting

10
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examples, an application to high resolution television, and a re-
view of the mathematical theory, he concluded that the Fast Four-
ier Transform will not, in most cases, be superseded by the Fast
Wavelet Transform. The final talk of the first day, Numerical
solution of convection-diffusion problems, was given by Dr Martin
Stynes (UCC). He talked about some of the very difficult numer-
ical problems encountered when trying to approximate the solu-
tion to the second order differential equations which mode} phys-
ical situations with “dominant” convection and secondary diffu-
sion.

The second day of the meeting began with Higher order
symmetry of graphs, a talk given by Professor Ronald Brown
(University of North Wales, Bangor). He described a category
theoretical approach to the idea of symmetry, involving the cat-
egory of digraphs, appropriate morphisms, and the general notion
of a topos In place of a set. Then Professor Joaquin Gutiérrez
(Universita Politecnica di Madrid) talked on Pelynomials and
series in Banach spaces, and dealt with those series in Banach
spaces whose convergence is preserved under certain polynomial
mappings. After coffee, Professor John Lewis (DIAS) spoke
on Thermodynamic aspects of probability theory. He discussed
Boltzmann’s equation: S = klog W (where S is the entropy of
an equilibrium state, and W is the number of microscopic states
corresponding to that equilibrium state), and the corresponding
probability theory namely Large Deviation Theory.

The afternoon session began with Professor Strang’s second
talk New ideas on teaching calculus, linear algebra and applied
mathematics, in which he gave a flavour of his own teaching style
by going through a number of easy-to-follow examples. Then Dr
Patrick Fitzpatrick (UCC) talked about A theorctical basis for
Padé approzimation, where the problem is to approximate a poly-
nomial of given degree by the quotient of 2 polynomials of lesser
degree. He discussed applications to coding theory, and showed
how Grébner bases help to resolve some of the problems.

After coffee Mr Christopher Boyd (UCD) gave a talk on Pre-
duals and linearization of holomorphic mappings, which dealt with
dual-nuclear spaces of holomorphic functions. The meeting then
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closed with an address by the President of the IMS, Dr Richard
Timoney.

The organizers would like to thank all the speakers and parti-
cipants at the meeting, especially those who chaired the sessions.
In addition they would like to thank Waterford Regional Technical
College and the City of Waterford Vocational Education Cormmmit-
tee for their generous funding, and the Waterford branch of the
Bank of Ireland who provided a contribution towards the running
costs of the meeting.

Michae! Brennan and Brendan McCann
Regional Technical College
Waterford

THE CONTINUITY
OF THE SEMI-FREDHOLM INDEX

Michedl O Searcéid

Introduction

It is well-known and easy to prove that the index function is con-
tinuous on the set of Fredholm operators on a Banach space. It
is also true that the index function is continuous on the larger
set of semi-Fredholm operators. The proof presents no difficulty
in the case where the semi-Fredholm operators are simply those
operators which are left or right invertible modulo the compact
operators, as happens in the case where the Banach space is a Hil-
bert space. The nsual proofs in the more general context [4, p.60],
[1, pp.62-63] use the notion of gap between between subspaces and
require more preliminary work than one might have suspected ne-
cessary. In this note we show how to avoid such unsatisfactory
excursions by giving a natural operator-theoretic proof of this ba-
sic result. The nature of the proof makes it convenient to consider
the slightly more general case in which the operators act between
two possibly different spaces.

1. Preliminaries

If X and ¥ are Banach spaces, then B(X,Y") will denote the set of
bounded linear operators from X to Y, and F(X,Y) will denote
the set of finite rank operators in B(X,Y) . When X =Y we shall
write B(X) instead of B(X,Y) and F(X) instead of F(X,Y) ; all
similar notation will be abbreviated in the same way. Identity
operators on spaces will be denoted by I; the space in guestion
will always be obvious from the context. For each T € B(X,Y) ,
the nullity nul(T"), and the defect def(T') of T" are defined to be

13
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the dimension of the nullspace of T and the codimension in V of
the closure of the range of T respectively. Provided not both these
quantities are infinite, we define the index of T by

i0d(T) = nul{T) — def(7).

We shall be concerned with two sets of closed range operators, the

sets of upper and lower semi-Fredholm operators, defined respect-

ively to be

4+ (X, Y} ={T €B(X,Y) : T(X) closed in ¥ and nul(7) < oo}
and

2_(X,Y)={T € B(X,Y) : T(X) closed in Y and def(T) < oo}.

‘Their intersection, denoted by ®(X,Y), is the set of Fredholm
operators, and their union, $4(X,Y), is the set of semi-Fredholm
operators. We shall consider two further subsets of B(X.Y) ,
called the sets of left Fredholm and right Fredholm operators.
These are denoted by ®;(X,Y) and @,(X,Y) and are defined by
X, Y)={TeB(X,Y):3SeB(Y,X)with ST—I ¢ F(X)}

and
2, (X,Y)={T€B(X,Y):3S€B(Y,X) with T'S - I € FY)}

It is well known that (X, Y) is contained in ®,(X,Y) and
@,(X,Y) is contained in &_(X,Y) and that, for arbitrary Banach
spaces, these inclusions are often proper. Indeed, unless ¥ is a
Hilbert space, there always exists a Banach space X such that the
inclusions are proper [5]. Our strategy is to reduce the general
continuity result to that for left and right Fredholm operators.
The latter result is easy and we prove it in this section for the
sake of completeness.

Note first that the following index theorem holds just as it
does for Fredholm operators on a single space, with the same
proof [2 pp.208-9]: For Banach spaces X,Y,Z and operators
v € ®(X,Y) and T» € &(Y,Z) we have T3T) € (X, 2)
and ind(T2T1) = ind(T3) + ind(T}), with a similar result for right
Fredholm operators.

Lemma 1.1, Let X and Y be Banach spaces. Let 7' € &;(X,Y)
and G € F(X,Y). Then T+ G € ®(X,Y) and ind(T + G) =
ind(T). {A similar result holds for right Fredholm operators)

Continurty of the Semi-Fredholm Index 15

Proof: It is obvious that T+ G € &(X,Y). Let P € B(Y) be
any projection-of ¥ onto G(X). Then (I - PY(T+G) = (I - P)T
and, since the index of I — P is zero, the result follows from the
index theorem. ul

Now, since the group of invertible elements of B(Y) is open,
the continuity result for left and right Fredholm operators is a
special case of the fellowing propesition:

Proposition 1.2, Let X and Y be Banach spaces and suppose
T € ®&(X,Y). Suppose § € B(Y,X) and G € F(X) satisfy
ST—I=G. Suppose U € B(X,Y) is such that I+ U S is Fredholm
of index zero in B(Y). Then T+ U € & (X,Y) and the index of
T + U is the same as the index of T. (The corresponding result
with the obvious changes holds for right Fredholm operators).

Proof: Since T+ U = (I + US)T — UG, the result follows from
the index theorem and Lemma 1.1. m}

There is a lemma attributed by Banach to Auerbach which
states that if X is a finite dimensional normed linear space of di-
mension n and X* is its dual, then there exist normalized bases
r1,...,2, and fi,...,fn for X and X* respectively such that
filz;) = 1if i = j and fi{z;} = O otherwise (0 < ¢,j < n). Ru-
ston’s delightfully simple deduction of this result from the com-
pactness of the unit ball can be found in {3, p.200]. The following
easy corollaries are given on pages 312-314 of the same work.

Lemma 1.3. Suppose X is a normed linear space and Y and Z
are closed subspaces of X with dim(Y) = n and dim{X/Z) = m
(m and n finite). Let ¢ > 0. Then there exist projections P,Q €
B(X) with P(X) =Y and (I - Q)(X) = Z such that ||P|| < n
and |Q|| £ m+e.
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2. Results

Lemma 2.1. Let X and Y be Banach spaces. Then the sets
{T € B(X,Y) : T is bounded below and ind{T) = —co} and

{T € B(X,Y) : T is surjective and ind(T") = oo} are open in
B(X,Y) .

Proof: We consider only the first set; the other can be treated
simnilarly. Recall that the set of bounded below operators in
B(X,Y) is open and that such operators are characterized as the
closed range operators with zero nullity. Let T € B(X,Y)} be
a bounded below operator and let ¢ > 0 be such that for each
U e B(X,Y) with ||U|| < € we have T + U bounded below. Let
(Ta)new be a sequence in B(X,Y) , converging to T, such that
[T —Th|| < € for all n € N and suppose ind(T,) > ~oco for
all n € N. Then T, € ®(X,Y) for each n € N. We must
show that ind(T) # —co. Suppose firstly that the T}, all have
the same finite index, —k. We shall justify this assumption later.
Then def(1,,) = k < oo (n € N), and, by Lemma 1.3, there ex-
ists a sequence of projections (@n)nem in F(Y) such that both
To(X)=(I—-Qu){Y) and ||@n] <k 4 eforallne M.
Now, for each n € N, there exists S, € B(Y, X) such that

SpTh=1 and T,5,=T1- Q..
It follows from this that, for each n € N,

1-Q | =‘:
1Sall |

TSn (T —Tn)Sn
15l HSwl

Since the I — @, are uniforinly bounded and since T is !
bounded below, it follows that the S, are uniformly bounded. ‘
So ||Sa{T — T)|| < 1 for sufficiently large n € N, and, since ‘
SpT = I+ Sa(T —Th), it follows that S, T is invertible in B(X).

Hence there exists S € B(Y, X) such that ST = I. In particular,
T € &(X,Y) so that ind(T) = ~k # —0, by Proposition 1.2,

(2]
(3]

Continuity of the Semi-Fredholm Index 17

Now our hypothesis that the T, all have the same index is
actually true: Suppose m,n € N and let

B8 =sup{a €[0,1] : ind{aT, + (1 — o)1) = ind(Tn)}.
Write V' = 87, + (1 — 8)Tm. Then V is bounded below, since
[|T+ V|| < ¢, and is the limit of a sequence of Fredholm operators
each of whose index is ind(T;,). By what we have just proved,
putting V in place of T, we get ind(V) = ind(T},). Now the
openness of ®(X,Y) and the continuity of the Fredholm index
proved in 1.2 ensure that § = 1 and that ind(7,) = ind(Tn).
This compleies the proof. o

Theorem 2.2. ®4(X,Y) is an open set and the index is con-
tinuous on 4 (X,Y).

Proof: We prove the result for $,(X,Y). That for ¢_(X,Y)
can be proved similarly. Suppose then that 7€ $4(X,Y). Since
the result for #(X,Y) is contained in Proposition 1.2, we may
assume that ind(7T") = —co. The nullspace Z of T is finite dimen-
sional, 0 has a complement W in X. Denote by Tw - W =2 Y
the restriction of T to W. Then Tw is bounded below and also
ind(Tw) = —co. By Lemma 2.1, there exists ¢ > 0 such that for
each U € B(X,Y) with ||U{| < ¢ we have (T + Ulw € B(W,Y)
bounded below and ind(T + U)w = —oo. Since Z is finite dimen-
sional, it follows that T+ U € ®4(X,Y) and ind(T + U) = -0
as required. a
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BOUNDARY BEHAVIOUR OF HOLOMORPHIC
AND HARMONIC FUNCTIONS*

Stephen J. Gardiner

Abstract: We give below a survey of some recent results concerning
the boundary behaviour of holomorphic and harmonic functions. The
unifying theme is the role played by the integral condition

t
3 %,t)dt < oo, (1)

where ¢ is a non-negative Lipschitz function.

1. Thin sets

Let {2 be a domain (non-empty, connected open set) in the com-
plex plane C. Recall that a function v : 2 = (—c0,00], where
u % 00, is called superharmonic on @ if u is lower semicontinuous,
ie.,

u(zg) < hzrg}zlulf u{2) {z0 € Q}), {2)

and if

27
g
u(zg) > ] u{zo +re"}2—:_ when {z:]z—z|<r}C Q. (3)
0

*This article is based on a lecture delivered at the 44th British
Mathematical Colloquium held at the University of Strathclyde
in April 1992.
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As the definition suggests, such functions need not be continuous.

However (assuming that 0 € £2 for simplicity) we can combine (2),
{3) and Fatou’s lemma to obtain

2
L . df 2= .. df
8 : - ig
u{0) < ][, llrﬂéﬂf u(re )271' Shﬂié‘if o ulre )ﬁ

< limsu J[% u(re'®) do < u(0
- r—>0+p 0 2n < u(0),

50

2w " de
e ) —
jﬂ u(r )271_ -+ u(0) (7 = 04).
Thus superharmonic functions possess a certain weak, or “aver-
age”, continuity property. More specifically, it can be asserted
that

u(z) = u(0) (z=0,z¢ E),
where the exceptional set F is “thin” at 0. As an upper bound on

how much of £ exists near 0, we mention that E\{0} is contained

in-an open set whose circular projection, F, onto the interval (0,1)
satisfies

o

k
— < co.
é—logl{tEF:Z k-l <t < 27k}

(Here |A| denotes the one-dimensional Lebesgue measure of A.)
On the other hand, E can be highly dispersed: for example, E
can be dense in 2.

Formally, a set ¥ is called thin at 0 if one of the following
{equivalent) conditions holds:

(i) there is a superharmonic function u on a neighbourhood of 0

such that

zl_xbr&;r‘:}%u(z) > Iiyl}[rllf w(z) ; (4)
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(ii) there is a superharmonic function u on a neighbourhood of §
such that '
- u(z) e u(z)
— 1 f ——
A e s gt/

o u] B
(31) ch*({z EE:27% 1<zl <27%)) <00
k=1
(Wiener’s criterion),
where C*{A) denotes the outer capacity (see [20, Chapter 7]}
of a set A with respect to the unit disc.

With regard to condition (i) above, we remark that the right
hand side of (4) is equal to u(0). Thus sets ¥ which are thin at
0 are characterized by the property that knowledge of the values
of 1 on E\{0} is not sufficient to determine u(0). An account of
thin sets can be found in Helms [20, Chapter 10].

There is a corresponding notion of thinness at a boundary
point that can be defined by analogy to {ii) above. Let Dy =
{z 4+ iy :y > 0} and define '

P(z):}- {(z =z +1iy € D).

(This is the Poisson kernel for Do with pole at 0). A subzet ¥ of
Dy is called minimally thin at 0 with respect to Dy if there 1s a
positive superharmonic function u on Iy such that

fimint 42)
:00,2eE Pz}

NP C))
s z}igr,lzlg.gu P(Z) ’ (5)

Again minimally thin sets may be dense (in Dy), and can only
be described in terms of capacities. However, if we are dealing
solely with harmonic functions u, the sets E that can arise in (5)
are of a more specific nature due to Harnack’s inequalities. A
precise description of such sets is given below in a reformulation
of a result of Beurling [3].
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Theorem A. The following are equivalent conditions on a subset
E of Dg.‘
(1) there is 2 positive harmonic function h on Dy such that

... h(2) .. h(z)
1 i ;
R T BRI o S

(it} there is a positive number ¢ and a Lipschitz function ¢ :
[—1,1] — [0, oo} such that

(Y -
tTdt < oo and EN{|z| < e} C {z+iy: 0 <y < é(2)].
-1

In the following sections we discuss several applications of the
above integral condition.

2. The angular derivative problem

In this section D denotes a simply connected domain in € such
that 0 € @53, Further, f denotes a bijective holomorphic mapping
from Dy to D which has angular limit 0 at 0. {We recall that a
function g on Dy is said to have angular limit ] at 0 if, for any
positive number k,

g{z) =1 (z=24+iy—=0, y>klzl))

If the derivative f' has an angular limit at 0, this is called the an-
gular derivetive of f at 0, and is denoted by f(0). The existence
of f(0) depends on D, but not on the choice of f: that is, if it
exists for one such function f then it exists for them all. For fur-
ther properties of the angular derivative we refer to Pommerenke
[21, Chapter 10]. The angular derivative problem is as follows:
give necessary and sufficient geometric conditions on D such that
F{0) exisis, and 0 < |f(0)] < oc.

This problem has a long history and remains unsolved.
However, significant progress was made recently by Burdey
[7], using deep probablistic methods. To state his tesult, we
define F, to be the family of functions ¢ : R — R which satisfy
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the Lipschitz condition |¢{z) — ¢(y)] < |z — y| and for which
{y > ¢(z)} N {|z| < €} € DN {|z| < €}. Further, let

¢e(t) = inf ¢(t), ¢F =max{g, 0}, ¢; =max{—¢0}.

T $EPR.

Burdzy’s theorem is stated below.

Theorem 1. Suppose that, for some ¢ > 0,

J[l ¢j(t)dt < 00.
-1

2

Then f'(0) exists and 0 < |f'(0)| < oco. Further, f'(0) # 0 if and

only if )
: ¢z (t)
'l;l Tdi < CO.

Rodin and Warschawski [22] attempted to prove Theorem 1
by classical means, but were only partly successful: the problem
was to find a classical proof of Theorem 2 below, originally proved
by Burdzy and Williams [8] using probabilistic methods. This was
first achieved by Carroll [11] using an ingenicus, but very difficult,
argument. Since then two short proofs of the resuli have been
found: ome by Sastry [23] based on extremal length arguments,
and one by the author [15], based on Beurling’s Theorem A. Let
¢ : R — R be Lipschitz, and let Dy = {z + iy : y > é{2)}.

Theorem 2. Let ¢ > 0 and let hy be a positive harmonic function
on Dy {|z] < €} which continuously vanishes on D4 N {|z| < €}.

If 14 14—
_/ gt(—t)dt<oo and [1¢ (t)dt=00; (6)

2 2
-1 1

then hy(iy)/y — oo as y — 0+.

The idea of the proof in [15] is to use Theorem A to compare
positive harmonic functions hg, hg+, by on the regions Dy, D+,
Dy (resp.) which vanish on the boundary, at least near 0. It is
easy to see that ho(iy)/y has a positive limit as y — 0+. The
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same can be established for hy+ (iy}/y using the convergent in-
tegral condition in (6). However, the “negative humps” in the
boundary of Dy cause hy(iy)/y to diverge to oo as y —> 0+ be-
cause of the divergent integral in (6). This is the tricky part of
the proof, as Theorem A does not immediately apply to these
“negative humps”. See [15] for further details.

3. X-domains

Let U be the unit disc, X be a certain class of holomorphic func-
tions on I/, and X (), 1) be the class of all holomorphic functions
f:U — D, where D is scme domain in €. In this section we are
interested in results of the form: f € X for oll f in H(U, D) if
and only if D saeiisfies ceriain geometric conditions. For example,

X could be the Nevanlinna class A" of holomorphic functions f on
U for which

2%
sup f logt |f(re)|d8 < o0 ;
d<rClJp

or the Smirnov class N1 of functions f in A for which

3T . b2 )
f log™ [f{re’*)de — j log" |£(e")ld0 (r—+1-).
0 0

{(Any function f in A has radial boundary values f(e'f) almost
everywhere.) The following two results are due to Frostman [14]
and Ahern and Cohn {1] respectively. A set is called thir af oo if
its inversion in the unit circle is thin at 0.

Theorem B. Let D be a domain in C. Then f € N for all f in
#(U, D) if and only if 3D has positive logarithmic capacity.

Theorem C. Let D be a domain in C. Then f € N'* for all f
in (U, D) if and only if C\D is not thin af co.

We will present two further results of this type. Let h' denote
the class of harmonic functions on ¥ which can be written as the
difference of two positive harmonic functions on I,
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Theorem 3. Let 77 be a simply connected domain which contains
{z+iy:z > 0}. Then Rf € ' for all f in H{U, D) if and only if

° dist (iy, 8D
. (—1-1-1—(_1_3’;—;9—)4:13; < oo, (7).

We observe that, if D C {¢ > 0} and f € (U, D), then
Rf > 0, so {trivially) Rf € A'. Theorem 3 shows precisely how
much larger than {z > 0} we can allow D to be while still ensuring
that Rf € h'. The condition (7) is of the same type as (1), after
an inversion in the unit circle.

It is easily seen that R € A! if and only if e/ € N. Referring
back to Theorems B and C we are led to consider when ef € AT,
A subset of {z > 0} is called minimally thin at oo if its inversion
in the unit circle is minimally thin at 0.

Theorem 4. Let D be as in Theorem 3, suppose (7) holds, and
let Dy be a domain contained in D. Then ¢/ € N'* for all f in
H(U, Dy) if and only if {z > 0}\D, is not minimally thin at oo
with respect to {x > 0}.

Here D, is not required to be simply connected. The larger
is the set D\D;, the smaller is H(U, D1). Theorem 4 describes
precisely how large D\D; must be to ensure that we have the
stronger property e/ € Nt for all f in #(U, D). It turns out
that only {z > 0}\D; is significant. We remark in passing that
{z > 0}\D; is not minimally thin at co with respect to {z > 0}
if and only if the set

{120 €R*: (2 4 23+ 2] +iza ¢ D1}

is not thin at infinity in R*. Theorems 3 and 4 are proved in [16).
Theorem 3 is related to the angular derivative problem.
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4. Bets of determination for harmonic functions
Let P(C, z) denote the Poisson kernel for U with pole ¢; that is,

T
P25 = -

"27r'|z_——(t,:j"5 (ze U, edl).

If { is a fixed point of 8U, then P((, -} is a positive harmonic fune-
tion on U which vanishes on 8U\{(}. However, in what follows,
we will sometimes fix z and regard P(., z) as a positive continu-
ous function on JU. Let H*' denote the collection of positive
harmonic functions on U. There is a one-to-one correspondence
between members h of #* and finite Borel measures s on U,
given by

we) = [ PG Gen)

We consider here two seemingly different types of problem:

(i) given a class A of harmonic functions on I, characterize those
_ subsets E of U/ such that supy H = sup, H for all H in A;
(ii) given a class B of functions on 8U, characterize those subsets

E of U such that any f in B has the form § = i,\kP(i,zk),
1
where the points z;, belong to E.

Surprisingly there is a close relationship between these two
types of problern. The key idea in both is that there must be
“enough of E” near “appropriate points” of U . We define = set

Biyp= 1] {z: s —wl < (1-u))/2)
wel
and a function
ET (6 :L lz =¢| 2 dady (¢ € BU),
1/2

which takes values in [0, co]. By “enough of £” near ¢ we mean
E I/z(o = o0.

i
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Theorem 5. Let E C U. The following are equivaient:

" (i) supg H = supy H for every H in h';

{ii) E"l‘/2((:) = oo for every { in OU; .

(i) for every positive continuous function f on U there exist
a sequence (A} of positive numbers and a sequence (z) of
points in E such that

FO =S MPCm) (D). ®
k=1

This elegant result is due to Hayman and Lyons [19]. The
convergence in (8) is uniform, by Dini’s theorem. Alternative
proofs and a variety of extensions can be found in [5], [13], [17],
[12] and [2]. In particular, [17] contains a short proof based on
Beurling’s Theorem A (cf. the definition of E7 /2(C )} together with
a result which includes the following,

Theorem 6. Let EC U and h € Ht. The following are equival-
ent:
() infg H/h = infy H/h for all H in H*;
(ii) E},5(C) = oo for almost every (#n) ¢ In 0U.
Further, each of the above conditions implies:
(i) for every f in L'(up) there exist (Ax) in £1(C) and a sequence
(zx) of points in E such that

£ =3 MP(,2)/h() o)
k=1

(convergence in the sense of L'(u4)), and
(1 £llz2(un) = inf {Z1X&] : (9) holds for some (z) in E}.

If h = 1, then (cf. Bonsall [4]) (iii) above is actually equivalent
to (1), (ii) and:

(ii") for almost every (Lebesgue) ( in OU, there is a sequence of
points in E which converges to ¢ within some angle.
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5. Better-than-angular limits

Sections 2 and 3 illustrated the relevance of (1) to boundary dis-
tortion. In section 4, divergence of the integral in (1) was related
to having “enough” of E to determine suprema/infima of har-
monic functions on U, or to achieve representation of functions
on 8U in terms of Poisson kernels. Finally, in this section, we dis-
cuss the role of (1) in describing approach regions for boundary
behaviour of holomorphic and harmonic functions.

Many results in function theory state that functions (in Dy,
say) have angular limits almost everywhere on 8Dy, or on a subset
of 8Dy of positive Lebesgue measure. We will now point out that
rather more can be asserted. Let & denote the class of Lipschitz
functions ¢ : R — [0, 00) such that (1) holds. A function g on D)y
is said to have @-limit! at ¢ € R if there exists ¢ in & such that

glz) =1 (z =1, y> d(z —1)).

It is easy to see that the existence of a ®-limit at ¢ implies that g
has an angular limit at £, but not conversely.

Theorem 7. Let u be a harmonic function on Dy such that, for
every t in E (where E C R), there is an angle with vertex at t in
which u is bounded below. Then u has (finite) ®-limits at almost
every (Lebesgue) t in E.

'The existence of angular limits under the above hypothesis is
due to Calderén {9] and Carleson [10]. Brelot and Doob [6] showed
that u must have minimal fine limits at almost every point ¢ in
E. However, the latter result does not immediately combine with
Theorem A to yield Theorem 7, since u need not be positive on
Dg. The proof of Theorem 7 can be found in [15]. An example
of its application occurs in [18]. The conclusion of the theorem
clearly remains true if u is a holomorphic function on Dy which,
for each ¢ in F, is bounded in an angle with vertex at ¢.

NOTE. The results in this paper which concern harmonic funec-
tions have natural analogues in R"(n > 3). Details can be found
in the appropriate references.

6]
[7

[11]

[15]
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INTERNAL FORCING AXIOMS:
A MARTIN’S AXIOM AND
THE PROPER FORCING AXIOM

Dedicated to the memory of Alan H. Mekler.
Eoin Coleman

In the course of the last twenty-five years research in the combinat-
orics of partially ordered sets has resulted in the discovery of new
set-theoretic hypotheses — sometimes dubbed internal forcing ax-
ioms. This elementary article presents in section 1 the simplest of
these (Martin’s Axiom). In section 2 we look at some applications
(the completeness of the category ideal, Lusin sets, (J-sets, prob-
lems of Moore, Alexandroff, Suslin, Whitehead and Kaplansky).
Tinally in section 3 we deal briefly with the Proper Forcing Ax-
iom, a powerful generalization of Martin’s Axiom. We’ve collected
the relevant references in an annotated bibliography in section 4,
rather than in the body of the text.

‘We try to show concretely how internal forcing axioms work
{giving complete proofs whenever feasible), stressing the resemb-
lance to the classical diagonal arguments of Baire and Cantor.
In our choice of applications we seek to underline the fact that
mathematical conjectures having no apparent set-theoretic refer-
ence may depend for their resolution on axioms beyond those of
ordinary set theory. To put it another way, there are at least
three truth values in mathematics: true, false, and independent
of ordinary set theory.

Section 1: Forcing

Internal forcing axioms are about forcings. Let us recall that a
forcing is simply a partial order, i.e. a pair P = (P, <) such that
P is a non-empty set, < is a reflexive antisymmetric transitive

31
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binary relation on P (so, for all p,gq,r € P, (i) p < p, (i) if
p<gand ¢ <p, then p=gq, and (i) if p < ¢ and ¢ < 7, then
p < r).. Elements of P are called conditions. Conditions p and
g are compaizble iff they have a common upper bound in P, i.e.
(3r € P)(p £ r and ¢ < 7); otherwise p and g are incompatible. A
subset [J C P is dense in P iff (Vp € P)(Ir € D)(p < r). A non-
empty subset GG of Pis a filter in P iff (Vp,¢ e GYIre G)(p < r
and ¢ < r)and (Yp € P)(Vqg € G)(if p < g, then p &€ G). Finally
i D is a family of dense sets in P, we say that a filter G in P is
D-generic iff for every D e D, GND £ §.

"o sort out these definitions, consider the following situation.

Example 1.1: Adding a Cohen real. Let P be theset {f: fisa
function from a finite subset of N to {0,1}} and define a partial
ordering on P by f < g iff g extends f, i.e. dom f C domg and
g [ domf = f. Certainly P = (P, <) is a forcing. Conditions f
and g are compatible iff they agree on dom fNdom g, in which case
the union fUg is a condition extending f and g. So if & is a filter
in P, then | JG =J{f : f € G} is a function from a subset of N to
{0, 1}, since the union of compatible functions is itself a function.
Note also that if f € G and » € dom f, then ((JG)(n) = f(n).
Examples of dense sets are the sets C;, = {g € P : m € domg}
for each m € N: given any f € P, either f € Cy,, or m ¢ dom
and then g = f U {m,0) belongs to Cy, and f < g. Observe that
the dense sets which (G intersects determine to some extent the
function | JG: for example, if GNCpp, # B, then m € dom|JG. So
if G is C-generic where C = {C,,, : mm € N}, then | ]G is a function
from (all of) N to {0,1}. If D 2 € and G is P-generic, then [JG
is called a Cohen real. Note that a Cohen real does not belong to
P, since its domain is the infinite set .

Internal forcing axioms are putatively consistent answers to
the natural question: for which forcings P and families D of dense
sets in P does there exist a D-generic filter GG in P? The first and
weakest internal forcing axiom is a very easy Cantorian diagonal
argument.

Proposition 1.2. If P is a forcing and D is a countable family
of dense sets in P, then there is a D-generic filter G in P.
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Proof: Enumerate D as {D, : n € N} and by induction on n

‘choose p, such that pp € P and form > 1, p, € Dy—1 and

Pn—1 < pn (possible since Dp_q isdense in P). Now let G = {g €
P:(@AneN)(g <pn)}

We'll apply this to prove a very well-known theorem.

Corollary 1.3 {The Baire category theorem). If X is a compact
Hausdorff space (or a complete metric space) and Ap, Is a (topo-
logically) dense open subset of X for n € N, then [J{A4, : n € N}
Is non-empty.

Proof: Let P betheset {p C X : p is a non-empty open set} and
define p< giff g Cp. For n € N theset D, = {pe P: Cl(p) C
A} is dense in P: given ¢ in P, we know A4, Ng # ¥, so since X
is regular there is p € P such that Cl{p) € A, Ng; nowp € D,
and ¢ < p. Proposition 1.2 yields a filter ¢ which intersects
each D, non-trivially. Let A be {Cl(p) : p € G}. Clearly
A CHAn : n € N} since GN D, # §. Note also that for each
finite F C G, [H{Clp): p € F} is non-empty: G is a filter, so
thereisr € G{(¥pe F)(p<r)andso @ # r CN{Cllp): p€ F}.
Now since X is compact, it follows that A is non-empty.

As it stands, Proposition 1.2 is the best one can do. If D is
uncountable, the conclusion does not necessarily hold.

Proposition 1.4. There is a forcing ) and an uncountable family
R of dense sets for which there is no generic R-filter.

Proof: Let I be an uncountable set, let @ be {f : f is a function
from a finite subset of N to I}, and define f < g iff ¢ extends
f. Foric I, theset R; = {f € ¢ : 7 € range f} is dense in Q.
Taking B = {R; : ¢ € I'}, we note that if G were an R-generic
filter, then | J G would be a function from a (countable) subset of
N onto the uncountable set I — an impossibility.

We can make precise an important difference between situ-
ations 1.1 and 1.4 by considering the sizes of the sets of pairwise
incompatible conditions in the respective forcings.
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Definition 1.5. Suppose P is a forcing.

(1) An antichain in P is a set A C P of pairwise incompatible
conditions.

(2) We say that P has the countable chain condition (P is c.c.c.)
iff every antichain in P is countable.

(3) A subset C of Pisa chainin Piff (Vp,g e C)(p<qgorg<
p).

Some authors refer to (2) as the countable antichain condition.

Thus the Cohen forcing P of 1.1 is c.c.c. trivially, since P
is itself a countable set, whereas in 1.4 @ is not c.c.c., since
A = {fi 1 i € I} is an uncountable antichain, where f;(0) = i
for i € 1. By restricting attention to c.c.c. forcings, we avoid the
counterexample of 1.4 at least, and it makes sense to reformu-
late Proposition 1.2 for c.c.c. forcings and uncountable families of
dense sets.

Definition 1.6. We let MA, abbreviate the hypothesis: f Pis a
c.c.c. forcing, D is a family of dense sets in P and D has cardinality
at most &, then there is a D-generic filler G in P.

Just to clear up some notation: we use &, A, ... to denote
infinite cardinals; the first infinite cardinal is Ry; the first un-
countable cardinal is ;. For a set X, |X| is the cardinality of X,
P(X) is the power set of X. The cardinal 21X| is [{f : f is a func-
tion from X to {0,1}}|; At is the least cardinal greater than \.
For example, R1 = RF, Bg = |NJ, 2% = |R|, and 21X| = |P(X)|
(identifying subsets of X with their characteristic functions).

For each infinite cardinal & we obtain a version of 1.2 for
c.c.c. forcings and families of dense subsets of cardinality at most
k. Some are obviously true; some are false.

Proposition 1.7. (1) MAy, is true. (2) MA, implies & < 2Xo,
(3) MA, is false for every A > 2o,

Proof:  Proposition 1.2 clearly implies 1.7 (1). Part (3) follows
from (2). For (2), we show that there is no mapping F from «
onto the set N2 = {f : f is a function from N to {0,1}}. Suppose
that ¥ maps & to ¥2. Let H = range F'. For each h € H, let
Ry = {f € P:(In €dom f)(f(n) =1~ h(n))}, where P is the
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. Cohen forcing of Example 1.1. Note that R is dense in P. Asin
1Llet Co, = {f € P . mcdomf}. NowD = {C,,, Bp : m €

M, h € H}Hs a family of dense sets in P and D has cardinality
at most & (recall £ + No = & since & is infinite). By MA, there
is a D-generic filter G in P. The Cohen real | JG belongs to N2
(since GNCrp, # 8 Ym € N), but does not belong to H (since
foreach h € H, GN Ry # B, s0 (In € N)(UG(n) =1 - h{n)),
giving [ JG # R). Thus F is not onto.

Remark that letting x = ¥ in (2) and using (1), one obtains
Cantor’s theorem: 2% > Ry. The original diagonal argument runs
as follows: if {h, : »n € N} C M2, then the function g defined by
g(n) =1~ ha(n) for n € N belongs to N2 but differs in the nth
place from each h,. In the argument from 1.7 (1) (2), one finds
the required function g by considering the c.c.c. forcing consisting
of the finite approximations to g and defining appropriate dense
sets.

Guided by the information in Proposition 1.7 we write down
Martin’s Axiom.

Definition 1.8. Martin’s Aziom MA is the hypothesis (Vx <
2M0)(MA,, holds).

From the definition and Proposition 1.7 we obtain immedi-
ately:

Corollary 1.9. (1) The Continuum Hypothesis CH (2% = R, )
implies MA. (2) CH implies that MAy, s false.

Of course if CH holds, then MA is just MAy, and of little
interest since we can prove the stronger result 1.2. For this reason
MA is often taken to mean MA and ~CH (2% > N;). In this
connection, Solovay and Tennenbaum established the following
relative consistency result, which we shall discuss in section 3.

Theorem 1.10. CON(ZFC + MA + —CH), i.e. the system of
axioms of ordinary set theory and MA and —CH is consistent.

In other words, if no contradiction can be deduced from ZFC
(the axioms of ordinary set theory), then none can be deduced
from ZFC + MA + -~CH. We’ll often use the equivalent semantic
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formulation: there is a set-theoretic universe (a model of ZFC) in
which 2% > ¥y and MA holds. It follows immediately from 1.9
(2) and 1.10 that MAy, is independent of ordinary set theory, i.e.
MAy, can neither be proved nor refuted from ZFC.

We finish the proofs for this section by showing that MA, 1s
equivalent to the seemingly weaker axiom MA: if P is a c.c.c.
forcing of cardinality at most &, D is a family of dense sets in P
and T has cardinality at most «, then there is a D-generic filter
GinP.

Proposition 1.11. MA_ implies MA,.

Proof: Given a family T of dense sets in an arbitrary forcing
P we find a suitable subforcing Q of cardinality at most s as
follows. Let c be a {partial) function from P x P to P defined
thus: if p and g are compatible, ¢(p, q) is 2 common upper bound
{otherwise ¢(p, ¢) is not defined). Foreach D€ D, letep : P — D
be defined by ¢p(p) € D, p < ¢p(p). Now let @ be a non-empty
subset of P of cardinality at most « closed under the functions ¢
and cp for 2 € D. Easily Q = (@, <} Q) is a c.c.c. forcing of
cardinality at most «, and for D € D, ¢ N D is dense in Q. So by
MA_, there is a filter H in () intersecting every § N D. The filter
G={pec P:(3qc H)(p < ¢)} is now D-generic in P.

And to make explicié the connection between the internal
forcing axioms of this section and the Baire category theorem, we
should point out that 1.3 implies 1.2 and MA, is equivalent to the
topological hypothesis: if X is a c.c.c. compact Hausdorf space,
then the intersection of at most « dense open subsets of X is non-
empty. (Remember that X is c.c.c. means that every collection of
pairwise disjoint non-empty sets is countable.)

Section 2: Applications of MA

In this section we prove some easy independence results {Lusin
sets, ¢J-sets) and mention some further applications of MA. Qur
first aim is to study the effect of MA on the real numbers: what
kinds of subsets does B have?
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Recall some Baire catéegory terminology: a subset N of a

" space X is nowhere dense Hf X \ Cl(N) is a dense open set (equi-

valently, Int(CI{(N)) = §); a subset F of X is of first category iff
F is a countable union of nowhere dense sets in X.

Theorem 2.1. Assume MA. Suppose X is a second countable
space. I F is a family of nowhere dense sets and F has cardin-
ality & < 2%9, then [ JF is of first category. For example, MA
implies that every set of reals of cardinality less than 2% is of
first category, and the category ideal on R is complete: the union
of fewer than 2% first category subsets of R is of first category.

To prove 2.1 we need a useful combinatorial lemma about

P(IN).

Lemma 2.2. Assume MA,. Suppose that A and B are famil-
ies of subsets of M, A and B have cardinality at most «, and if
Ay, ..., Apn € A, BEDB, then B\ (4, U ... A,) is infinite. Then
there exists C C ™ such that C N A Is finite and C N B Is infinite
forallAc A, BeB.

Proof: Write A = {4; : i € I}, B={B; :i € I} where I
has cardinality « (allowing repetitions if necessary). Define P
to be the following set: {(h,a) : h is a finite subset of I and
a is a finite subset of MN}; say (h,a) < (B,0)if A Ck, a Cb
and (b\ a) N (U;cp 4i) = 0. Tt is straightforward to check that
P = (P, <) is aforcing. 'To see that P is c.c.c., note that (h, @) and
(k,a) are compatible for any h and k, so if W C P is an antichain
in P, then W is countable (since there are only countably many
possibilities for the second components of elements of W), It’s
easy to check that the sets D; = {{h,e) : i € A} and E;, =
{(h,a) : la N B;| > n} are dense in P.

Now apply MA, to get a filter (7 intersecting each member
of the family £ = {D;, E;, : i € I, n € N} (£ has cardinality
at most k). We’'ll complete the proof by showing that C' = | J{a :
(3R)[(h, ) € G]} is as required. Fix i € I. Since GN E;p, # 0,
it follows that |C'N B;| > n for each n € N and so CN B; 1s
infinite. Also G D; # 8, so take (h,a) € G N D; and note that
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CNA; Ca (if (kb)) € G, then (b\ a) N A; # @ since (h,a) and
(k, b) are compatible); so C'N A; is finite.

Lemna 2.2 for countable collections 4 and B is a simple ex-
ercise (in ZFC) which does not require any diagonalization. Let’s
go back now to the proof of Theorem 2.1.

Well, X is second countable, so one can choose a listing {U,, :
n € N} of a countable basis for the topology on X in which each
non-empty basic open set is listed infinitely many times. Let B, =
{meN: U, CUsfor FEF, let Ap = {me N :U,NF # @8}
take 4 = {Ap: F € F}, B= {B, : n € N}. To see that 4 and
B satisfy the hypotheses in 2.2 for « = max{|F[, Ry}, remember
that a finite union of nowhere dense sets is nowhere dense and
that every basic open set is listed infinitely many times. Apply
MA, to find C as in Lemma 2.2. Let R, = (H{U,, : m € C
and m > n}. R, is a dense open subset of X: given Uy, choose
m &€ CNBy, m > n solU, CU; and U, C R,. Finally
let M, be the closed nowhere dense set X \ R,,. It'll suffice to
show that | JF C {J,ep Mn. For F € F, C N Ap is finite; pick
n € C\ Ap, n > max(C N Ap), then for every m € C, m > n
gives Un NF =B, 50 FCHX\Um :meC,m>n}=M,.

in passing, we note that a similar result holds replacing sets
of first category by sets of Lebesgue measure zero.

From 1.3 and 2.1 we obtain an independence result. Let
C(¥,) abbreviate the assertion: if A C R has cardinality ¥,
then A is of first category. We conclude that C(¥;) is independ-
ent of ordinary set theory: if CH holds, then C(R,) is false (R is
a counterexample (by 1.3)}; if MA + —CH holds, then C(X;) is
true (by 2.1).

Befcore going on to Lusin sets, we need to count the subsets
of R.

Proposition 2.3. The following collections have cardinality ex-
actly 2%: (1) the open sets of reals; (2) the closed sets;
(3) the closed nowhere dense sets.

Proof: Ad (1): Every open set can be expressed as a countable
union of open intervals with rational endpoints. There are count-

iy
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ably many such intervals, so there are at most Ng" = 2%0 possible
choices for open sets of reals. Easily there are at least 2%¢ open
sets. ' o .

Part (2) follows from (1), closed sets of reals being exactly
the complements of open sets; part (3) is immediate from (2).

Lusin sets are a little more obscure than uncountable sets of
first category:

Definition 2.4. A subset K of R is called a Lusin set iff
(i) X is uncountable and
(it) whenever F' C R is of first category, then X N F is countable.

Lusin sets {discovered of course by Mahlo) are rather unusual:
with regard to category, they are not small (no uncountable subset

. of K is of first category}; with regard to Lebesgue measure, they

are very small indeed (recall that for every positive ¢ there is a
closed nowhere dense set N such that R\ NV has measure less than
€). But are there any Lusin sets? Well, it depends.

Theorem 2.5. (1) CH implies that there Is a Lusin set.
(2) MA + —CH implies that there are no Lusin sets.

Proof:  Ad (1): By 2.3 and CH we can list all the closed nowhere
dense sets in a list {Ny : o < ¥}, Define K = {ro:a < N} by
transfinite induction on @ < ®;. Given {rg : 8 < o} note that
My =\ {Ns : B <a}U{rs: 3 < a} is of first category (since o
is a countable ordinal), so by 1.3 one can find r, € R\ M,. By
construction, K is a Lusin set: if I is of first category, then for
some e < ¥y, FC Myandso KNF C{rg: 8 <a}.

Ad (2): Supposing contrariwise that K is Lusin let F C K
be a subset of cardinality R;. By 2.1, F is of first category, being
the union of its singleton sets — in contradiction to 2.4 (ii). So
K doesn’t exist.

The (-sets which we define next occur naturally in the study
of Moore spaces. We'll explain why after the definition and some
basic facts.

Definition 2.6. A set A C R is a @-sef iff every subset of A is
a relative F,; (i.e. a countable union of closed sets in the subspace
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topology on A). For example, every countable set is a (-set. Are
there any uncountable (-sets?

Proposition 2.7. (1) If 2% < 2% then there are no @-sets of
cardinality «.

(2) If A is a Q-set, then A has cardinality less than 2%°. In par-
ticular, CH implies that every ()-set is countable.

Proof: Part (2) is a consequence of (1), noting that A < 2* and
taking A = 2%, As regards (1), suppose that B has cardinality
#. By 2.3 there are at most 2% relatively closed subsets of B,
80 there are at most (2N°)N° = 2%0 relative F,’s of B. However,

|P(B)} = 218l = 2% > 9% 50 some subset of B is not a relative
Fy, ie. Bis not a Q-set.

Theorem 2.8. Assume MA. (1) Every set of reals of cardinality
less than 2% js a Q-set.
(2) For R < k < 2%, 2% = 2% (3) 9% jg a regular cardinal.

Proof:  Part (1) is similar to 2.1 and we give just a sketch. Sup-
pose X C A C R and A has cardinality s < 2%. We show
X 1z a relative F;. WLOG X is a non-empty proper subset of
A. Choose a countable open basis {V, : n € N} for R such
that no two different reals belong to the intersection of infin-
itely many V. Let O = {n € N : =z € V,} and note that
A={0;:2€ X} and B= {0, : z € A\ X} satisfy the hypo-
theses of 2.2. Using C from 2.2, the open sets G, = | |{Vi : k€ C
and k& > n}, the closed sets F, = R \ G,, one verifies that
XCU{Fa:neN}), ANX C{H{Gs :n € N} and so X is
a relative Fj,.

Ad (2): Let B C R have infinite cardinality k£ < 2%, By
part (1), B is a Q-set, hence by 2.7 (1), 2% = 2*. Ad (3): Since
R has cardinality 2%, we work with R. If R = [ J{4; : i < A}
where |A;] < 2%, then by 2.1 each A; is of first category and so
by 2.1 again A > 2% (The reader familiar with Koenig’s Lemma,
will deduce part (3) immediately from part (2).)

Thus MA + —CH implies that there are uncountable ()-sets.
Taken in conjunction with 2.7 (2) this means that the existence
of an uncountable {J-set is independent of ZFC,
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From 2.8 (3) it also follows that ~CI does not imply MA,
since there are set-theoretic universes in which 2"° is not a regular
cardinal.

Uncountable @-sets are related to the Normal Moore Space
Conjecture (NMSC) which states that all normal Moore spaces
are metrizable. A space is normal iff for all digjoint closed sets A
and B there are disjoint open sets U and V, ACU, BC V. A
Moore space is a regular space X with a sequence of open covers
{Gn : n € N} such that for each z € X and open I/ with ¢ € U,
there is » € N such that | }[{G € G, : z € G} C U. Examples
of normal non-metrizable Moore spaces can be obtained in the
following way.

Example 2.9. For this we take an uncountable set B C R.. Let
M(B) be the set BU {(z,y) € R? : y > 0}; the neighbourhoods
of b € B are the bubbles at b, i.e. {8} UInt(D) where D runs over
the discs in the upper half-plane tangent to the z-axis at (b, 0);
the neighbourhoods of (z,y) are the usual Euclidean ones. M (B)
is called the Moore space derived from B and is a separable non-
metrizable Mocre space. It turns out that M(B) is normal iff B
is a (J-set. It is also known that the existence of an uncountable
(J-set is equivalent to the exisience of a separable normal non-
metrizable Moore space. So MA + -CH implies that NMSC is
false, even in the separable case. Of course this leaves open the
question whether the falsity of NMSC follows just from ordinary
set theory. The resolution of this issue is a little different from the
independence results we've considered so far. It involves so-called
large cardinal axioms, axioms which roughly speaking assert the
existence of cardinals so large that they cannot be shown to exist
on the basis of ordinary set theory. We state the result, omitting
the technical definitions and details:

Theorem 2.10. (1) IFNMSC holds, then there is an inner model
of ZFC with a measurable cardinal. (2) The Product Measure
Extension Axiom (PMEA) implies NMSC. (3) IfZFC + “there
is a strongly compact cardinal” is consistent, then ZFC + PMEA
is consistent, and so ZFC + NMSC is consistent.

Before leaving metrizability questions, let us mention an ap-
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plication of MA in the study of manifolds. Taking a manifold to
be a connected regular Hausdorfl space M for which there is a
positive integer n such that each point of 3 has a neighbourhood
homeomorphic to R", one can prove:

Theorem 2.11. (1) Assume MA + ~CH. Then every perfectly
normal manifold is metrizable.

(2) There is a set-theoretic universe L in which there exists a
perfectly normal non-metrizable manifold.

Thus again the answer to a query of Alexandroff is independ-
ent of ZFC.

Our next application concerns the uniqueness of the real line
(R, <). Suslin’s Hypothesis claims that there are no Suslin trees.
Recall that a Suslin tree is an uncountable c.c.c. partial order
T = (T, <) satisfying: (a) (Vi € T)Pred(t) = {s € T : 5 < 1}
is a chain which is well-ordered, i.e. every non-empty subset of
Pred(t) has a <-least element; (b) T has no uncountable chains;
(¢) (vt € T)Suc(t) = {s € T : t < s} is uncountable. The study
of Suslin’s Hypothesis led to the discovery of Martin’s Axiom.

Theorem 2.12. MAy, implies SH: there are no Suslin trees.

Proof: Suppose for a contradiction that T is a Suslin tree. By
(a) and (b), Pred(?) is order-isomorphic to a countable ordinal
h(t), the height of £ in T, so (¢) implies that the set D, = {t €
T : h(t) > o} is dense in T for each ordinal @ < R;. Apply MAy,
to find a filter G in T intersecting each 2, non-trivially. Now &
is an uncountable chain in T', contradicting (b).

It is consistent with ordinary set theory to assume that SH
is false. For example, in L (the smallest transitive set-theoretic
universe containing all the ordinals) there is a Suslin tree.

Most mathematics stndents learn (in a possibly different ter-
minology) that if (S, <) is a separable, uncountable, unbounded,
Dedekind-complete, dense linear order, then (S, <) is order iso-
morphic to the real line (R, <) (just recall the well-known back-
and-forth argument of Cantor characterizing the rational line (Q,
<}}. Suslin’s Hypothesis is equivalent to the assertion that sepaz-
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ability can be replaced by the condition that every collection of

pairwise disjoint open intervals in the linear order is countable.
Finally we turn to two famous applications of MA in al-

gebra and analysis. We say that an infinite abelian group A is

 a free group iff A has a linearly independent set of generators; we

say that A is a W-group iff for every surjective homomorphism
m: B — A with kernel Z there is a homomorphism ¢ : A ~+ B such
that w(¢(a)) = a for all & € A (in other words Ext(4,Z}) = 0).
For example, every free group is a W-group. Whitehead asked: is
every W-group free? Shelah showed that MAy, implies the exist-
ence of a non-free W-group. He was also able to prove that in L
every W-group is free. So the Whitehead problem is independent
of ZFC. Tt is remarkable that the concepts invelved in his research
vield, via trees, considerable information on NMSC.

Let’s conclude this section with an automatic continuity prob-
lem in analysis. Recall that C[0,1] is the commutative Banach
algebra of continuous functions on the closed unit interval. Ka-
plansky’s question asks: is every homomorphism from C[0, 1] into
a commutative Banach algebra continuous? Assuming MAy, one
can build a set-theoretic universe in which the answer is positive.
On the other hand, in L the answer is no, so again Kaplansky’s
question is independent of ZFC.

Section 3: Proper forcing and the Proper Forcing Axiom

In section 1 we introduced the countable chain condition in a
rather ad hoc manner, essentially to obviate the counterexamples
arising in 1.4, That end might be achieved by other means. For
example, regarding M Ay, , the first independent instance of MA, it
is natural to inquire whether there is a weak property of forcings,
implied by the c.c.c., for which there is a consistent internal forcing
axiom of the form: if P has the property, D is a family of dense
sets and D has cardinality at most &y, then there is a D-generic
filter G in P. How should one look for such a property? Weli,
in this context, the important point about MA and MAy, is the
relative consistency theorem 1.10. One could start by analysing
the proof of 1.10. This is one of the tasks in Shelah’s monograph
{18, p.200]. We review briefly the ideas to motivate the concept
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of proper forcing and the Proper Forcing Axiom PFA.

The basic strategy in the relative consistency proof of MA
+ —CH is to start from a set-theoretic universe V, (in which CH
holds) and to build a bigger set-theoretic universe V, in which
MA + --CH holds. We build V; in stages and each stage is called

~ an iteration. The construction of a stage goes roughly as follows.
Given a set-theoretic universe V, a forcing P € V and a filter G in
P which is generic over V (i.e. G is D-generic where D is the set
{D €V : Disdense in P}), then there is a smallest set-theoretic
universe V[G] such that V C V[G] and G € VI[G]. Except in
trivial cases, G ¢ V, so V[G] is a bigger universe than V. For
example, if P is the Cohen forcing of 1.1 and G is generic over V,
then the Cohen real | | G is a real belonging to V[G] but not to V.
Now extending V to V[G] is not without potential danger. For
example, suppose that R} is the fitst uncountable cardinal in Vv
if V[G] should chance to contain a function from N onto R}, then
RY is a conntable set in V[(], so that NY[G], the first uncountable
cardinal in V[G], is greater than RY . In this situation, we say
that P collapses ;. If on the other hand RY is NY[G], then we
say that P preserves By. The proofs that MAyx, and MA + —-CH
are consistent rely on three principal facts: (1) If P is c.c.c., then
P preserves Ny; (2) there is an iterative operation under which the
class of c.c.c. forcings is closed; (3) MA, is equivalent to MA.
(We actually verified (3) in 1.11.)

From this very brief sketch we learn that each property of
forcings for which analogues of facts (1), (2) and (3) obtain, will
give rise to a consistent internal forcing axiom. One of the most
interesting and powerful among these properties is properness.
There are several equivalent definitions of properness. We give
one which allows an easy proof that proper forcings preserve ;.

Definition 3.1. (1) Let A be an uncountable set. We use [A4] o
to denote the collection of countable subsets of A. A subset ¢
of [A]®* is a club (closed unbounded set) iff (i) every element of
[A]% is contained in an element of C' and (ii) for every increas-
ing sequence 29 C #; € ... Cz, C ..., &, € C, the union

UnEN Ty € C
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(2) A subset S of [A]M° is stationary in [A® ifESNC # 0

- for every club C.

(8) For a set-theoretic universe M and a set A € M, we write

({A]#e)M for the set {z € M :in M, z is a countable subset of

Definition 3.2. A forcing P € V is proper iff for every uncount-
able set A € V, if § € V is stationary in {[A]**)Y, then S is
stationary in ([A]®)VI€] for every filter G in P generic over V.
Loosely put, proper forcings preserve stationarity.

To exercise these definitions a little, let’s prove proper for-
cings preserve ij.

Theorem 3.3. Suppose that P € V is proper and G is a generic
filter over V. If in V[(] the set a is a countable set of ordinals,
then in V there is a countable set b of ordinals such that a C &.
Thus RY = R} ]

Proof: Since in V[G] a is countable, there is an uncountable car-
dinal A with a € (A[*)VI€L. In V[G],

C= {:c € ([/\]N")V[G] ta C x}

is a club. But § = ([A]*)V is stationary in ({A]**)", hence S is
stationary in ([A]M*)¥1%] since P is proper. Therefore SN C £ 0.
Choose be SN C.

Definition 3.4. The Proper Forcing Aziom PFA is the hypo-
thesis: if P is a proper forcing, D is a family of dense sets in P

and D has cardinality at most ¥, then there is a D-generic filter
Gin P.
The Proper Forcing Axiom is the analogue of MAy, for proper

forcings. We finish by noting some basic theorems.

Theorem 3.5. (1) If P is a c.c.c. forcing, then P is proper. So
PFA implies MAy,. (2) PFA implies MAy, is false.
(3) PFA implies 2% = Ry. So PFA implies MA.
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Theorem 3.8. If ZFC+ “there is a supercompact cardinal” is
consistent, then ZFC + PFA is consistent.

The large cardinal axiom in 3.6 is used to establish the ap-
propriate version of 1.11 for proper forcings. There are variants
of PFA which do not require any large cardinal axioms for their
consistency proofs. There are also even stronger axioms {Martin’s
Maximum MM) which are studied in the literature.

Section 4: Biblographical notes

Martin's Axiom is the eponymous subject of the monograph [8,
p.200]. Good brief introductions to MA are [19, p.200], [17, p.200],
chapter 2 in [11, p.200] and perhaps [22, p.200].

On Q-sets, see [14, p.200]. NMSC is covered in [20, p.200]
and [5, p.200}. The articles [7, p.200] and [16, p.200] provide good
accounts of the impact of logic and recent set theory. The book
(4, p.200} 1s an excellent text on set-theoretic methods in algebra,
with many applications of MA and PFA. The lecture notes in [3,
p.200] deal with MA in analysis (Kaplansky’s conjecture); [15,
p-200] presents the solution to the Alexandroff problem and is an
introduction to non-metrizable manifolds.

Proper forcings and variants appear in [18, p.200]. Applica-
tions are in [1, p.200], [2, p.200], [9, p.200] and [4, p.200]. A very
interesting variant of PFA which does not require a large cardinal
axiom in its consistency proof can be found in [13, p.200].

An extensive account of large cardinal axioms is provided in
{10, p.200] or in [8, p.200]. [8, p-200] and [11, p.200] cover all the
axiomatic set theory which we didn’t. Iterations are treated in [1,
p.200], [11, p.200] and [9, p.200]. [21, p.200] has the proof of 3.5
(3).
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EXPLICIT RELATIONSHIPS BETWEEN
ROUTH-HURWITZ AND SCHUR-COHN
TYPES OF STABILITY

Ziad Zahreddine

Abgtract: Given two linear systems of differential equations with real
or complex coefficients, and of the same arbitrary dimension. Suppose
both systems are stable, one in the Routh-Hurwitz sense and the other

* in the Schur-Cohn sense. We directly express the coefficients of each

system in terms of those of the other. These relationships, being ex-
plicit, make it possible to convey any stahility criterion of either of the
two types to the other.

1. Imtroduction

The concept of stability in differential equations has been defined
in many different ways. Among these various definitions are
the well-known Routh-Hurwitz and Schur-Cohn types of stahil-
ity. Given a linear system of differential equations, the classical
Routh-Hurwitz problem is that of obtaining necessary and sufli-
cient conditions for all eigenvalues of the system to lie in the left
half of the complex plane. The Schur-Cohn problem is that of
establishing necessary and sufficient conditions for all eigenvalues
to lie within the unit circle. Solutions to these problems have
been the subject of intensive research over the last few years [2,
[3), [9], [12] and [14].

1t is often noticed in the literature that some interesting res-
ults about stability, in the Hurwitz sense for example, triggers an

AMS subject classification: primary 34 D, secondary 93 D.
Key words and phrases: Routh-Hurwitz stability, Schur-Cohn sta-
bility, continuous-time systems, discrete-time systems.
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interest in the corresponding problem in the Schur sense or vice
versa. See for example the introduction in [11] and example 4.2
in [8].

Recently some notable attempts have been made to give a
common interpretation to the algorithms for testing the stabil-
ity of contiruous-time (Routh-Hurwitz) and discrete-time {Schur-
Cohn) systems of differential equations [6], [10] and [13]. An ex-
cellent survey is given in [1] for continnous-time and in (5] for
discrete-time systems.

The search for a unified approach to the study of root distri-
bution of complex polynomials with respect to the half plane for
continuous systems, and with respect to the unit disc for discrete
systems, has been advocated by many eminent researchers in the
field, see for example [4]. An interesting way of looking at the two
problems of stability is to relate them to each other through the
bilinear transformation z = (1 + w)/(1 — w), which is equivalent

to w = (2 —1}/(z+1). This is a one-to-one mapping between the

left half of the complex z-plane, i.e. the region R(z) < 0, and the
unit, disc [w| < 1 in the complex w-plane. For a general discussion
of bilinear transformations in this context, see [7]. Such connec-
tions prove useful in gaining new insights into the nature of the
different algorithimns.

This paper is a further thrust towards a firm unified approach
to the relevant testing procedures for both continuous-time and
discrete-time systems. In section 2 we give some notations, and
the main results of the paper are given in section 3.

2. Notations

If Ais an n x n real or complex matrix, and X (t) is an n-
dimensional column vector function of £, let X/ = AX be a
systemn of differential equations, with eigenvalues z;, 2z, . .. ) Zn-
Then the characteristic polynomial of this system inay be writ-
ten in both factored and expanded forms as follows: f(z) =
[Ti=1(2—2) = 3°7_; a;z"~7 where ag = 1 by definition. Sirnilarly
it X' = BX is a system with cigenvalues wi, wa, ... , Wy (where
wj is related to z; of the previous system by w; = (2;—1)/(z;+1))
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then its characteristic polynomial is g{w) = [T (v — w;) =
E?:o bjwd, with by = 1. . '
The intimate relationship between Routh-Hurwitz and Schur-

Cohn types of stability could best be expressed by the following:

Theorem 2.1. The system X' = AX is Schur-Cohn stabie if and
only if X!'= BX is Routh-Hurwitz stable.

14w . z—1
Proof: Suppose z = T or equivalently w = PN where

z and w are complex numbers. The following relationships can
easily be established

- 2 —
= _2(zz ;) and zzz—1= (w+)
|z + 1

W+ W - ll__wi2!

from either of which it follows that |z < 1 if and only if Rw < 0.

3. Main Results
If X' = AX and X' = BX are the two systems defined 1n section
2 with their corresponding characteristic polynomials, then

Theorem 3.1.

B0

=0 g=max(t—p,0)

bP = ™
2 (=1)a
t=0
forallp=1,..., 5.
Proof: Cousider f(z) = Y7 g@:z" " with zeros 21, ... ,2, and
2= (14w;)/(1—w;) for j =1,...,n Hence wy,...,wp are

the zeros of

P = (i)

t=0
1

= oo (- W+ u)
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Therefore wy, ..., Wy, are the zeros of the polynomial
h(w) =" ar(l — wy (1 + w)"~*
t=0
n t t n—t n_t
= atZ(—l)T( )wTZ( )w”
t=0 r=0 T ==0 8
n t n-t
L —1
=22 Z(—l)r< ) (n )atw”"”.
t=0 r=0 5=0 AN
We make the following trans- G
formation from the (r,s) plane to I

the {p, g} plane:

p=R—~7—35 ¢=7 £
Then the rectangle in the {», s} plane \ p
with sides # = 0, r = ¢, s = 0, EANEOAN
s = n—t is transforied into the par-

alielogram in the (p, ¢) plane with sides ¢ = 0, ¢ = ¢, ¢ = n —p,
g =t — p. Hence

p min(nept) . .
5 T ) e

t=0 p=0 g=max(t-p,0 ¢

Write h(iv) = Y 0_o Npw" P, where
n min{n—p,t) 4 n—i
v TE (-
=0 g=max(t—p,0) 4 R—rp—a
In the polynomial k(w), the leading coeflicient is

¥o= 31 () (1) = v

t=0 t=0

3]
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Now the two polynomials

ZN "=? and g(w prw

p=0 p=0
being both monic and having the same set of zeros are identical,
leading antomatically to the desired conclusion.
The converse of Theorem 3.1 states the following

Theorem 3.2.

n min(n—p,t)

>3 (L)

t=0 g=max(t—p,0)
n
P
t=0

ap =

forallp=1, ...

The proof of this theorem is omitted as it is smnlar to that
of Theorem 3.1.

The author wishes to thank the referee for many valuable
suggestions which have led to significant improvements of the pa-
per.
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UNDERGRADUATE PROJECTS

S. K. Houston and N. H. Smith

Abstract: The rationale for, operation of and assessment of ur_xder—
graduate projects at the University of Ulster are discussed. Specimen
project titles are provided.

Introduction

A debate on undergraduate mathematics teaching in Ireland has
recently been started through this Bulletin [1}, {2]. It has been
continued at a conference organized by the Sub-Commission for
Mathematical Instruction of the Royal Irish Academy and held in
Dublin in September 1991 (RIA-91), [3]. _

O’'Reilly [1] questioned how we teach mathematics at ter-
tiary level, leaving readers with many “focusing questions” and
“questions for exploration”. Dickenson et al. [2] described innov-
ative methods of teaching, learning and assessment used at the
University of Ulster, and went some way to answering O’Reilly’s
questions. Ted Hurley (UCG) continued the debate in his plenary
lecture “Mathematics at Third Level” at RIA-91. In his lecture
he pointed out that

(i) the number of honours graduates in mathematics from Irish
Universities per capita is 3.5 times smaller than the number
per capita from British Universities;

(i) 45% of these Irish graduates entered further study compared
to 14.5% of British graduates.

He concluded that this was an unsatisfactory state of affairs and
made some suggestions for remedying the situation such as putting
greater emphasis on the links between mathematics and comput-
ng.
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The ensuing panel discussion at the Conference [3], on “De-
velopments in Teaching Mathematics” produnced other suggestions
for making courses more attractive and more relevant to the needs
of students seeking employment as mathematicians outside acad-
emia. One suggestion from Anthony O’Farrell (Maynooth) was to
incorporate a project as part of undergraduate courses.

Project work has been a compulsory part of undergraduate
mathematics at the University of Ulster, and before that at the
Ulster Polytechnic, since the institution was opened in 1971. At
the Ulster Polytechnic, Mathematics was offered as one (or two)
subjects within a Combined Sciences degree and a final year pro-
Ject was undertaken in one of the main subjects studied. The
University of Ulster has honours and ordinary degrees in Math-
ematics, Statistics and Computing [2], and includes a final year
project. This article is an attempt to share with colleagues our
experiences in operating projects and to provide some ideas for
use or for further discussion, '

Rationale for Project Work

A project is an extensive piece of work carried out individually by
students under supervision. They write and submit a full report
on their work and the assessment is based largely on this report.
At the University of Ulster, the project comprises one module
out of six taken by students in their final year. Tt contributes
equally with other units to the final year assessment and grading
of students and they are expected to spend about one-sixth of their
time working at it. We have been able to arrange that one day per
week is entirely free of lectures and this provides an opportunity
for students to work at their project.

The aims of the project module, as specified in the Course
Handbook are

(i) toinvolve the student in a substantial task whose corapletion
within a strictly limited time interval will require inventive-
ness, knowledge of the subject areas of the course, the ability
to exercise critical evaluation and judgements, and the ability
to work to tight deadlines and properly to pre-plan schedules
of work,
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(ii) to simulate a situation in professional practice in which the
mathematician must be capable of bringing all appropriate
resources to bear on the solution of a particnlar problem,

(iii) to develop the student’s ability to think independently, work

. without tight supervision, and make soundly based decisions,

(iv) to encourage initiative and creativity,

(v) to allow study in depth of a topic which either is not fully
treated in the lectures or involves the integration of diverse
subject areas,

(vi) to expose the student to a situation in which familiar tech-
niques have to be applied in relatively complex and perhaps
unfamiliar settings,

(vii) to stress the importance of a literature search, making use of
modern techniques of information retrieval,

‘(viii) to give further experience in written and oral communication
and in the producticn of a coherent and lucid technical report.

These give an indication of the extent of the project and of
the skills which students should develop by undertaking it. In
addition, students are expected to make appropriate use of com-
puting hardware and software, and almost all projects require a
substantial amount of computing because this is an essential skill
for today’s mathematicians. The student treats this as a research
project and learns many of the basic skills of research work. While
it would be useful to give the student an original problem to work
on, this is not always possible and indeed not altogether neces-
sary since students will have to make the problem “their own”
and contribute their own thinking and doing to various aspects of
it. We include lists of all topics we have used later in the article.

Organization

The process for the organization of final year projects begins in
the second term of the penultimate year. Staff in the Mathematics
Department are asked to submit tities to the project co-ordinator.
Tt is recommended that each member of staff submit at least two
titles and preferably more, with the guarantee that not more than
two will be allocated to students. In addition, some colleagues
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from other departments are happy to assist by suggesting a title
for projects which they would be prepared to supervise. Where
the title is insufficient to make it clear to the project co-ordinator
what the project will involve, a short description is requested.

When the complete list of titles has been comnpiled, it is sent
to the students, who are away on placement. They are asked to
reply by a fixed date, listing a few project titles in order of prefer-
ence. It is also suggested that, as an alternative, they provide their
own project as a result of their experiences in placement. Such a
project must not be duplication of the work dome in placement,
which is separately assessed anyway, but may be an extension of
it.

1t is not surprising that some project titles are more popu-
lar than others and may be the first choices of several students.
However, with 16 staff and about 25 students, it has been found
possible to allocate projects without having to go below the third
preference, and even then it has been necessary to go as far down
as the third usually only when a student has replied after the
specified date and other allocations have been made.

It is considered to be essential that each student should have
a supervisor who is a member of the Mathematics Department
so that there is someone who is ultimately respensible for ensur-
ing that the project proceeds satisfactorily. Thus, if the project
chosen 18 not one of those offered by a member of the Department,
someone within it is asked to act as joint supervisor. In asking
colleagues to act in that capacity consideration is given by the
project co-ordinator as to whether a particular mathematical skill
is required as well as to the overall supervisory responsibilities of
colleagues in an attempt to share the duties fairly evenly. Once
student and supervisor(s) have been matched up, it is left to both
parties to make contact.

It was recommended that work should start a few weeks be-
fore the beginning of the academic year. To a considerable extent
the arrangements for students meeting supervisors during the life-
time of the project is left to those concerned. While it is important
that regular meetings are held so that the momentum of the work
is sustained, their frequency and duration depend on factors such
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as the amount of assistance required and the supervisor’s personal
methods of carrying out their duties. A short interim report was
requested from the students by the end of Jannary. That gave all
parties some idea of what had been done, what remained to be
done and whether any remedial action needed to be taken. The
report does not influence the final assessment. The main report
had to be submitted by the end of the first week of the Easter
vacation. However, students were strongly recommended to have
their reporis ready by the end of the second term; the extra week
was available only to take care of last minute hitches in printing
and binding. In the future, University regulations will require
that the time-scale be changad. Instead of there being six mod-
vles each lasting for a year, there will be three modules in each

of two semesters. Thus the project will have to be completed in

about half the number of weeks formerly available, although the
total number of hours should remain about the same. The effects
of this change on the nature and management of projects will be
of interest.

Assessment

The importance placed on the project has been mentioned above.
In the case of the first cohort of the degree in Mathematics, Statist-
ics and Computing each project report was read by two assessors
and marks were awarded on the basis of the report and on the work
done during the year. Where a project was supervised jointly the
assessors were the two supervisors; in the case of single supervision
another member of the Department is the second assessor. Such a
person need not have any particular expertise in the subject area
of the project, since students are required to present their reperts
in such a way that they can be readily understcod by anyone who
has reached the same general level as themselves in the taught
units of the course. Initially the assessors mark the projects inde-
pendently and justify their conclusions in written reports. They
then discuss their findings and agree a common mark.
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Marks are awarded according to the following scheme.
Presentation, organization and Clarity 35%
Content and Results 30%
Student Understanding 20%
Student Effort and Initiative 15%

It can be seen from the first heading that much emphasis
is placed on the student’s ability to communicate throngh the
written word; this is one of the main ways in which the project is
different from the taught units. Clearly, it is not the case that both
assessors are able to award marks under the fourth heading. If an
assessor were involved only slightly or not at all in the supervision,
he or she must rely on the other’s judgement in awarding a mark
under that heading. As with the taught units the assessment of
the project is subject to the review of the external examiner, and
the award of marks is subject to their approval.

The procedure for the assessment of the first cohort of the
degree in Mathematics, Statistics and Computing was much the
same as it was in the degree in Combined Sciences in which the
Department participated. In the latter, only a small number of
students did projects in Mathematics each year and the Depart-
ment was not involved in the assessment of projects in other areas.
As a result it was impossible to determine whether the projects
were being assessed according to a uniform standard. However,
there were 22 projects in the first cohort of the degree in Mathem-
atics, Statistics and Computing and all members of the Depart-
ment were assessors. It was then possible to look more carefully
at the problem of uniformity. It has been suggested that, after the
assessors have reported, two people should take an overview of all
the projects, and, in consultation with the assessors, modify the
marks so that they reflect the rank order. Clearly, such a scheme
would create extra work but would lead to greater confidence in
the uniformity of assessment.

Specimen Titles

1. Computer-aided analysis and design of circular waveguides.
2. Planetary rings.

r
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N .

15.
16.

17.

18.
19.

20.

21.

22.
23.
24.
25.
26.
27.

. Student selection and predicting student success: a Bayesian

analysis,

. Topographic mapping — a study of algorithms.
- The application of sensitivity analysis in linear regression to

detect potential carriers of Duchenne muscular dystrophy.

. The development of a computer graphics package for portfolio

diversification of securities using quadratic programming.

. Attitudes to mathematics.

. The problem of multiple visits in clinical trials.

. A statistical measurement of plagiocephaly in babies.
10.
11.
12.
13.
14.

A generalized printer.

War games and arms races.

A numerical study of diffusion-reaction equations.

PERT network CAD package.

Investigation of hidden line removal within drawing pro-
grams.

A computer-based octree modelling system.

To ascertain the economic advantage of notifying the retro-
spective testing procedure for defective output.
Development of a software package for the administration of
placement.

A study of population models using differential equations.
The complex eigensolution of symmetric and unsymmetric
matrices.

Development of a rule-based expert system giving guidance
to architects and builders on the housing needs of disabled
people.

Examination of relationship between meteorological and
environmental factors and the growth of fungi in an area of
mixed forest.

Conway’s theory of games.

Structure of AA’ for design matrices.

Modelling the duration of spells in a geriatric hospital.
Mathematica: a system for doing mathematics.

The simulation of a CNC routing cell using Witness.
Identifying the mathematics potential of students entering
access courses.
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28. Trajectories of supersonic projectiles subject to realistic
alr-resistance.

29. An LL(1)-grammar conformance checker.

30. Testing for guantitative and qualitative interactions in
clinical trials.

31. Preparation of open learning material via Symbolator and
Latex.

32. An introduction to the analytic hierarchy process.

33. Design of a computer package for a central heating system.

34. Optimum coupling distribution in waveguide design.

35. The prisoner’s dilemma and similar games.

36. Design of a computer package for assisting in the drawing up
of class and staff timetables.

37. The modelling and analysis of cranial evoked potentials.

38. Computerization of a credit union.

39. Numerical approximation of zeros of polynomials using
methods of complex analysis.

40. Implementation and investigation of a technique for digital
power spectrum estimation: DASE.

41. Stock Controller.

42. Development of an expert system.

43. The use of the median and range of a uniform distribution
as indicators of quality characteristics in process analysis.

44. Simulation of a dynamically nested load for a computer
numerical control (CNC) routing machine.

45. Analysing clinical trial end-points using pre-treatment
information.

46. Generalized procrustes analysis.

47. The effects of an observation on the determination of a
regression equation.

48. The effect of temperature on the sales of solid fuel.

Outline of two Project Tasks

1. Numerical Approximation of Zeros of Polynoinials using

Methods of Complex Analysis.

Results from complex analysis can be used to locate the zeros of

polynomials. Numerical Algorithms based on these results have
been designed. The project involves
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(i) understanding the basis of the algorithms, first published in
. the 1950’s;
(ii) writing programs to carry out approximate zero-finding;
(iii) investigating techniques for determining a whole set of zeros
of a polynomial.

2. Mathematica: a System for doing Mathematics
This program will perform symbolic manipulation, including dif-
ferentiation and integration, carry out numerical methods, work
with complex functions, evaluate most common special functions
and display results on screen or printer. The project explores some
aspects of this.

Conelusion

. In this article we have outlined the rationale for project work at

undergraduate level and described the operation and assessment
of the scheme. We have given examples of project titles recently
and currently undertaken by students. We hope colleagues will
find this helpful if they introduce project work to their own degree
courses.
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Book Review

A BASIC COURSE IN ALGEBRAIC TOPOLOGY
Graduate Texts in Mathematics 127

William 5. Massey

Springer-Verlag, 1991, 428 pages
Price DM108, ISBN 3-540-97430-X

Reviewed by Graham Ellis

In the minds of many people, algebraic topology is a subject which
is “esoteric, specialized, and disjoint from the overall sweep of
mathematical thought.” This straightforward introduction to the
subject, by a recognized authority, aims to dispel that point of
view by emphasizing: (i) the geometric motivation for the various
concepts and: (ii) the applications to other areas. The book,
which is stripped of all unnecessary technicalities, would be a nice
text for a one-year MSc course for students with a basic knowledge
of point-set topology and group theory. It consists of updated
material from the first 5 chapters of the author’s earlier book
Algebraic Topology: An Introduction (GTM 56) together with
an updated version of almost all of his book Singular Homology
Theory (GTM 70).

Chapter I is a 31-page partial account of the classification
of compact surfaces. The following 5 chapters contain a thor-
ough introduction to the fundamental group and covering spaces.
Chapter VI explains how problems in 19th century analysis motiv-
ated the development of homology theory. (There is an appendix
at the end of the book, intended for readers with a knowledge of
differentiable manifolds, in which De Rham’s theorem is proved.)
The remaining 9 chapters are devoted to singular homology the-
ory and cohomology theory. In order to simplify proofs Massey
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has chosen to develop these theories cubically rather than sim-
plicially. Chapter XIV contains the Poincaré duality theorems
for manifolds, as well as the Alexander duality theorem and the
Lefschetz-Poincaré duality theorem for manifolds with boundary.
Chapter XV treats the Hopf invariant of a map from a (2n — 1)-
sphere onto an n-sphere.

Graham Ellis
University College

Galway




Book Review

HEAT KERNELS AND DIRAC CPERATORS
Grundlehren der mathematischen Wissenschaften

N. Berline, E. Getzler and M.Vergne

Springer-Verlag, 1992 .
ISBN 3-540-53340-0 (Berlin) or 0-387-53340-0 (New York)

Reviewed by Brian Dolan

This book provides a modern unified approach io index theorems
for elliptic operators on compact manifolds. The book grew out of
a seminar in 1985 at MIT and would be useful both for research-
ers with some prior knowledge of differential geometry, wishing to
deepen their understanding, as well as for workers in the field. It
is mathematical in its approach, as befits its subject, and assumes
familiarity with such topics as fibre bundles, connections and co-
homology theory. Despite devoting the first fifty or so pages to
general background on differential geometry I don’t think it would
be a good place for someone with no previous knowledge of the
subject to learn the fundamentals. The aim seems to be to set up
the notation rather than explain the concepts, and the notation
rapidly becomes quite involved. The book is carefully laid out in
logical sequence and a little careful study is well rewarded. Typo-
graphical errors are rare, but do exist. The index is rather short,
but seems adequate. There are one hundred references to some of
the most important publications in the subject and the authors
freely admit that this is by no means exhaustive. Only six of the
references predate 1960 which gives some indication of of the his-
torical development of the subject and it is amusing to note that,
despite the title, there is no mention of Dirac’s 1928 paper! There
s an extensive list of notations at the back of the book which

66

Book Reviews 67

found extremely uvseful, in fact indispensable, in trying to find my
way through the symbols. An indication of the style of the book
is given by the fact that the index is four and a half pages long
while the list of notations is three and a half pages long,.

After the first chapter a general framework is developed, in
terms of generalized Dirac operators on vector bundles with a Z,
grading, giving rise to the concept of a superirace on the space of
fibre endomorphisms and a superconnection on the vector bundle
which is a first order differential operator odd under the Z4 grad-
ing. The definition of a Dirac operator that the authors adopt is
general enough to encompass all the usual first order operators.
A key ingredient of their construction is the one to one mapping
between the space of exterior forms on a differentiable manifold
M and the Clifford algebra for a vector space with a metric, when

" the vector space is viewed as a fibre of the tangent bundle of M,

which they refer to as the guantization map.

The index theorem of Atiyah and Singer is proven, using the
heat kernel approach, and its application to the four classic com-
plexes is exhibited, giving proofs of the Gauss-Bonnet theorem,
the Hirzebruch signature theorem, the index theorem for the Dirac
operator and the Riemann-Roch-Hirzebruch theorem. The au-
thors then go on to treat the equivariant index theorem, which
generalizes the Atiyah-Singer index thecrem to the case where
there is a group action on the manifold M which is compatible
with (i.e. commutes with) the generalized Dirac operator. Thus
the kerne} of the Dirac operator forms a representation space for
the group. The equivariant index is then a generalization of the
character of a group element in a given representation, its super-
trace, and the equivariant index theorem relates this to an integral
over the fixed point set of the group action, which is a subset of M
for non-trivial group actions. Along the way the authors dispose
of the Atiyah-Bott fixed point formula, where the fixed points
consist of isolated, non-degenerate points. They then go on to
state and prove a version of the equivariant index theorem which
holds when the group element is near the identity, which they
term the Kirillov formula, by analogy with Kirillov’s formulas for
the characters of Lie groups.
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Lastly the index bundle and Bismut’s index theorem are con-
sidered. The index bundle is defined for a family of Dirac operators
by considering a fibre bundle 7 : M — B with fibres denoted by
M/B. Tor every z € B, M, = n~1(2) is the fibre over z and
D = {D*|z € B} is a family of Dirac operators on M/B. If
ker(D?) has the same rank for each z the vector spaces ker(D?)
combine to form a vector bundle over B called the index bundle,
ind(D). The construction can be generalized to the case where
the rank of ker(D?) depends on z. Bismut’s index theorem then
relates the character of a superconnection for the family D to an
integral over M/B. It is of interest to physicists as it has proved
to be useful in string theory and the theory of moduli spaces of
Yang-Mills fields.

In addition there are general chapters on equivariant differ-
ential forms and the exponential map, relating the A genus to the
Jacobian of the exponential map of the Lie algebra of SO(n), as
well as a section on zeta functions.

In summary I found the book stimulating and rewarding, as
it brought me a little more up to date in a subject which I know a
little about but am not an expert in, but a thorough reading and
understanding would require a larger investment of time than I
can presently afford.

Brian Dolan

St Patrick’s College
Maynooth

Co Kildare
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Springer—Verlag, New York, Berlin, Heidelberg, 1991. xv+551 pp.
15BN (-387-97495-4.

Reviewed by Rod Gow

Let me say right at the beginning that I think the authors Fulton
and Harris have produced an excellent book, a book which displays
a novel approach to its subject matter and is genuinely informat-
ive. Too often one feels that a textbook is largely a recitation of
known techniques and ideas, with little evidence that the author
has tried to find worthwhile examples or new approaches to diffi-
cult problems. However, this book presents a substantial amount
of unfamiliar material in a way that is pleasing to a mathematician
who has a reasonable knowledge of modern concepts of algebra.
The main subject matter of the book under review is the de-
scription of the irreducible complex representations of the simple
Lie algebras over C. While we have a description of these repres-
entations in terms of highest weight medules, due to E. Cartan
and Weyl, the emphasis in the book is directed towards expli-
cit realization of the representations wherever possible, using the
methods of multilinear algebra, symmetric polynomial theory and
invariant theory. More detail is expended cn the classical Lie al-
gebras, which fall into four infinite families, since these are more
accessible as algebras of vector space endomorphisms and their
representations may be studied rather more explicitly than those
of exceptional algebras such as Fy, Fs, E7 and Es. A worth-
while feature of the authors’ approach is the way they are able
to point out interesting geometric aspects of the representations
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they comstruct. Thus, under the guise of geometric plethysm,
arising in the context of the representations of sl (C) and si3(C),
there is a discussion of the Veronese embedding of a projective
space in a larger projective space and of the associated Veronese
surfaces. (Grassmannian varieties also occur, with a description of
their Phicker embeddings into projective spaces, when the decom-
position of symmetric powers of exterior powers is examined.

The authors organize the material of the book into 26
lectures, rather than chapters. There are numerous exercises
throughout the book, some of which are distinctly demanding of
the reader. There are, however, at the end of the book, 20 pages
of hints, answers and references relating to the exercises. There
are 63 pages of appendices concerning such topics as symmetric
polynomials, multilinear algebra, properties of Lie algebras and
classical invariant theory. There is also a bibliography of six
pages. The book begins with familiar material on the complex
representations of finite groups. However, more emphasis is given
than usual to the problem of decomposing certain tensor products
for particular groups. Indeed, already on p.31, the authors show
that the exterior powers of the natural module of degree d — 1 for
the symmetric group Sg of degree d are all irreducible. While this
is a kanown result, a head-on proof of the kind given is not usually
found in the literature. Lecture 4 is devoted to the construction
of the irreducible characters of §4. This is of course a vast area of
study, where numerous contributions have been made. I enjoyed
the anthors’ presentation, which includes many interesting facts
and different points of view. In Appendix A at the end of the
book, there are proofs of a number of results concerning sym-
metric polynomials which are needed to develop the finer aspects
of the character theory of Sy. In particular, Schur fanctions are
introduced and various determinantal formulae for their evalu-
ation are proved. The Littlewood—Richardson rule for multiplying
Schur functions is described but not proved. However, a special
case, known as Pieri’s rule, is proved and this is often sufficient
for many purposes. It is clear that mmuch of classical determinant
theory, such as one sees in Thomas Muir’s Treatise on the theory
of determinants, finds its natural home in this context. Lecture
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6 presents the theory of Schur and Weyl for decomposing the
n-fold tensor power V®® of a finite dimensional complex vector
space V into irreducible GL{V)-submodules, where GL({V) is the
group of all automorphisms of V. The irreducible submodules are
picked out as the images of the Young symmetrizers, which are
rational muliiples of certain idempotents in the rational group
algebra of S,,. Examples are given to show how the Littlewood-
Richardson rule is used for working out, among other things, the
decomposition of certain tensor products.

Part 11 of the book is devoted to introductory matertal on Lie
algebras and Lie groups. While a Lie algebra is an easily defined
algebraic object, a Lie group seems much more complicated, with
its attendant topology and geometry. The anthors make the point
that the structure of the Lie algebra of a Lie group provides cru-
cial information on the structure of the group. Moreover, the
finite dimensional irreducible representations of the group may be
studied via the irreducible representations of the algebra. Stand-
ard examples of real and complex linear Lie groups are given,
together with less familiar examples of complex tori, related to

elliptic curves and abelian varieties. It is shown how Lie algebras

atise from Lie groups by taking the differential of the adjoint rep-
resentation of the Lie group on the tangent space of the identity
and then how to pass back to (subgroups of) the Lie group via
the exponential map. A number of the basic theorerns on complex
Lie algebras are proved, such as those of Lie, Engel and Cartan.
The Killing form is introduced somewhat later in the book. Then
the irreducible representations of the most accessible of the simple
Lie algebras over C, sl3(C), are investigated. This material, while
straightforward, is vital for understanding the structure of arbit-
rary simple Lie algebras and also plays a role in the representation
theory, via the principal 3—dimensional Lie algebras that occur as
subalgebras of the simple algebras. In order to describe the irre-
ducible representations of sl3(C), it is necessary to develop certain
ideas, such as highest weight vector and weight lattice, that play
the dominant role in the representation theory of all simple Lie
algebras.

Part IT1 of the book develops some more theory relating to
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simple Lie algebras, special cases of which were encountered when
investigating sla(C) and sl3(C). The irreducible representations
of the special linear, symplectic and orthogonal Lie algebras are
constructed and investigated from a variety of points of view,
which T found most instructive and helpful. In order to under-
stand the missing representations of the orthogonal Lie algebras,
which cannot be constructed from tensor operations on the nat-
ural module, the anthors introduce the Clifford algebra and spin
groups. This material again is handled in a very clear conceptual
manner. There is also a brief discussion of the triality automorph-
ism of order 3 in the Lie algebra sog(C). Part IV of the book
contains a variety of material, which we can scarcely do justice
to. Among more familiar topics are Weyl’s character formula,
the weight multiplicity formulae of Freudenthal and Kostant and
Cartan’s classification of real simple Lie algebras. Less famil-
iar topics discussed include the connection between gs and skew-—
symmetric trilinear forms defined on a seven—dimensional vector
space and algebraic constructions, due to Freudenthal, of the ex-
ceptional Lie algebras, where, again, trilinear forms play a basic
role. The relationship between the Clifford algebra based on an
eight—dimensicnal vector space, octonions (Cayley numbers), g2
and the triality automorphism is also briefly explained (g, is, as
far as I know, the fixed algebra of the triality antomorphism).

There are a number of good introductory books on Lie al-
gebras and their representations, such as those Jacobson and
Humphreys. Bourbaki, in his three volumes on Lie theory,
provides a large amount of material as well, much unavailable
elsewhere, but the reader is often asked to find proofs from min-
imal hints. I think that this book, with its concentration on
examples to illustrate and interpret the theory, is a most useful
addition to the literature in this area. Its style will appeal to
pure mathematicians but people, such as physicists, who occa-
sionally have recourse to Lie theory, should also find something
worthwhile for them when studying this text. T did not notice
very many obvious typographical errors in the book. The authors
seem to have prepared the typescript themselves by computer
and this may account for the good quality of the work. The

Book Reviews 73

authors cannot decide on the spelling of octonion, which appears
variously as octonion and octonian, sometimes on t?ne same page.
The name of the Italian mathematician Trudi is given as Trudy
and Gordan, of Clebsch-Gordan fame, has his name co-nm.stently
misspelt as Gordon. The word principle appears for principal on
p.422 and there is a A sign missing from formula‘ B7 on p.474.
However, the overall impression created in this reviewer was that
of an ambitious text, skilfully worked and interspersed with novel
observations, which any library or researcher, experienced or
povice, might purchase without regret.

R. Gow

Department of Mathematics
University College Dublin
Belfield

Dublin 4

rodgow@irlearn.ucd.ie
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