(1]

56 IMS Bulletin 28, 1992 x4

r*{p,q) in (0,1) such that if f is p-valent in an annulus A(S), and
0 < d<r*p q), then [is at most g-valent in U.

The author’s proof ol this result — whicli is basced on a norinal
family [1, p. 213] argument, as a complex analyst reader might
anticipate — is somewhat technical in detail and sheds no light on
how the questions raised by the theorem miglt be answered, so we
do not include it here. One question which arises ts whether the
theorem is true il we replace the condition ‘g > 2p” with ‘g > p°
but a more fundamental question is :

What is the value of r*(p,q) for cach permissible patr (p,q)?

We conclude by leaving these open questions, unciouded by
any conjectures, for the reader.

T

Reference

R. P. Boas, Invitation to Complex Analysis. Random IHouse, 1987.

J. B. Twomey,
University College,

Cork.

ON A QUESTION
POSED BY GRAHAM HIGMAN

Gerard M. Enright

Consider a function f of the non-negative integers given by the
following rules:

f(3nr) = 4n
fBrn+1)=4n+1
f(3n + 2) is undefined (n=0,1,2,3,...).

Since f(0) = 0 and f(1) = 1, the function may be repeatedly
and indefinitely applied to 0 and 1; that is, for z = 0 and 1, f*(z)
is defined for all & > 0.

Question: Is there any integer z > 2 such that f%{z) is defined
for all £ > 07

This function was introduced by Professor (Graham Higman
[1] during a lecture on explicit embeddings of finitely presented
groups. He posed the question and he conjectured that the answer
was “No”. To be precise, he declared “No” to be his “first best
guess”.

In this paper, we will not prove Higman’s conjecture but we
will produce a good deal of evidence in its favour. Neither will
we discuss the group theoretic context in which the question was
raised. Instead we present an exploration of the problem as an
example of computer-aided mathematics suitable for secondary
school and college level students.

We use elementary programs in BASIC to obtain data on
tlie function and we use this data in further development of the
problem, leading to more efficient programming. Our suggestion
1s that students’ knowledge and understanding of mathematics is

57

58 IMS Bulletin 28, 1992 e

reinforced by doing mathematics and that a computer is a very
useful tool in this process. We demonstraie the power and scope of
electronic computation. We also slhow its limitations when faced
with a great volume of calculations and with very large numbers,

Let z be a positive teger. The sequence obtained by re-
peated application of the function f, {z:,f(z),fg(z), Flz), .. 3,
will be called the f-string of z. If » ig such thaf f(’”‘l)(z) is
congruent to 2 mod 3 for some m then S™(z) is undefined and
the f-string of z, {z,f(z),fz(z),fa(z), o FETU) as length
m. Otherwise z hag infinitely long J-string and the question is
whether any such 2 > 2 exists.

The following program may be used to compute f-strings.
10 INPUT S
30 PRINT S, ;

40 IF(S Mop 3)=0 THEN S5=4%5/3:G0TO 30

50 IF(s Mop 3)=1 THEN S=4*((S—1)/3)+1:GUTU 30
60 IF(5 MOD 3)=2 THEN PRINT"STOP"

80 END

Here are two results:

7 9 12 16 21 28 37 49 85 STOP
19 25 33 44 STOP
Here are two more in F-string notation-

{264,352,469,625,833}

{961, 1281, 1708, 2277, 3036, 4048, 9397, 7196} .

Our first objective is to prove that there is no integer =
between 2 and 1,000 for which fk(z) is defined for all £ > g
We do this by computing the -strings of all such -, QOur use
of this method betrays the fact that we expect all f-strings to
be finite, as we are inclined to support, Higman’s conjecture. e
then consider the feasibility of extending our methods to a higher
number range.

The program above may be suitably amended by the follow-
ing additions:

10 FOR T=2 TO 100D
20 S=T
70 NEXT T

o] On a Question Posed by Graham Higman 59

Running on a BBC Master 128 microcomputer all f-strings
are screencd in 51 seconds and transferred to paper on a Sta‘u"
LC-10 dot-matrix printer in 10.6 minutes.. Program line 60 is
not necessary but it is useful, on a large printout of numbers, to

ighligh - -strl Lops.
highlight where each f-string s . ‘

5 Students may be patient enough to wa%t 10.6 mmlutes for a.
listing of the first 1,000 f-strings but it is unlikely that either they
or their teachers will want to extend this method much further. I}E
would take two class periods to list 10,600 and more than a wee
of non-stop running to list all f-strings up to 1 million. Surely we
can do better than that. ‘

All integers in the sequence 2,5, 8,11, 14, ... have’f—strmgs of
length 1 simply because f(3n+2) is undeﬁne.d_ So_ let’s not waste
time checking them. The following program is a little better.

10 FOR T=3 TO 999 STEP 3

20 FOR R=T TO T+1

25 S=R

30 PRINT 3, ;

40 IF(S MOD 3)=0 THEN S=4#$/3:G0TQ 30

50 IF(S MOD 3)=1 THEN S=4*((S-1)/3)+1:GATO 30

60 IF(S MOD 3)=2 THEM PRINT“STOP"

65 NEXT R

70 NEXT T

80 END .

With this program it takes 45 seconds to screen the f-strings
and 7.8 minutes to print them out. ‘

'T'wo sequences of numbers have f-strings of length 2. These
are:

4,13,22,31,40, ...
6,15,24,33,42, ..., o
the sequences {9n +4 :n = 0,1,2,3,...} and {9n+6 : n =

0,1,2,3,...} respectively. - S

We are}prompted to look at the function definition with in-
tegers written in terms of their least residues mod 9 rather than
mod 3. f is undefined on all integers of the form 9n -+ 2, 9n+5
and 9n +8. f* is undefined in two cases since F(On +4) =12n+5
and f(9n + 6) = 12n + 8. Hence, 5 out of every 9 integers have

60 IMS Bulletin 28, 1692 B

o]

f-strings of lengths 1 or 2 and we need culy cxamine the other
4. The revised program screens results in 37 seconds and prints
them in 6.1 minutes.

From the pattern of STOPS indicating f-strings of length 3
we are led to exanune the function definition with integers ex-

pressed in terms of least residues mod 27. The following results
are easily established.

f 1s undefined on all integers of the following forms:
2Tn+ 2, 2Tn+ 5, 2Tn+ 8, 2Tn + 11, 27n + 14,
27n 417, 270+ 20, 2Tn 4 23, 27Tn + 26.
£? is undefined in the following situations:

F(2Tn 4 4) = 3604 5,
f(2Tn +4-8) = 36n + 8,
F(27Tn 4+ 13) = 36n + 17,
F(27n 4 15) = 36n + 20,
F(27n + 22) = 36n + 29,
F(27n + 24) = 36n + 32

f? is undefined in the following situations:

FA2Tn+ 3) = f(36n+ 4) = 48n 5,

J2(2Tn + 10) = f(36n + 13) = 48n 4 17,
FH2Tn + 18} = f(36n + 24) = 48n 1+ 32,
S (2Tn + 25) = f(36n + 33) = 48n + 44.

With this analysis we may confine attention to just 8 out of
every 27 numbers and we know that all excluded integers have
f-strings of length at most 3. The following is our best program
so far.

10 FOR T=7 TO 979 STEP 27

20 FOR R=1 TD 8

30 OGN R GOTO 40,45,50,55,60,65,70,75
40 S=T:GOTO 80

45 5=T+2:G0OTO 80

On a Question Posed by Graham Higman 51

50 S=T+5:GOTO BC

55 S5=T+9:G0OTO BC

60 S=T+12:G0OTO 80

65 S5=T+14:GOTO 80

70 S=T+20:GOTO 80

75 3=T+21

80 PRINT S, ;

90 IF(S MOD 3)=0 THEN $=4#5/3:G0T0 80
100 IF(S MOD 3)=1 THEN S=4#*((S-1)/3)+1:GOTO 80
110 IF(S MOD 3)=2 THEN PRINT"STOP"

120 NEXT R

130 NEXT T

140 END

A screen run takes 30 seconds and printout fime s 4.5
minutes. We have reduced running time by 40% and printing
timie by nearly 60%. It would still take 3 days of non-stop
running to reach our 1 million target.

To continue with this approach, we should now analyse func-
tion behaviour with integers written in terms of least residues
mod 81. We should exclude from testing all integers which have
S-strings of length at most 4. The work involved might be con-
sidered rather cumbersome.

Alternatively, we may further exploit the fact that the only
integers with f-strings of length 4 or more are those of form 27n +
one of {0,1,7,9,12,16,19,21}. The general form of f3{z) may be
calculated in each case. The values are 64n + the corresponding
element of {0, 1, 16,21, 28,37,44,49}. Let us restrict attention to
integers of this latter form. Eliminate all integers congruent to
2 mod 3, all congruent to 4 or 6 mod 9 and all congruent to 3,
10, 18 or 25 mod 27. The f-strings produced, when the revised
program is run through the range 16 = £3(7} to 2369 = f3(1000),
are of length at least 7 but the first 3 elements of each one are
omitted. A screen run takes 12.5 seconds and paper printout takes
1.5 minutes. Extension of this melhod might also be considered
cumbersome. '

The idea of restricting output to the longer f-strings may be
used in a more elegant process. Let us modify the program listed

62 IMS Bulletin 28, 1992 &

above so as to output only those f-strings of length at least 7.
The new listing is as follows:
10 DIM F(7)
20 FOR T=7 TO 979 STEP 27
30 FOR R=1 TO 8
40 ON R GOTO 50,60,70,80,90,100,110, 120
50 5=T:GOTO 130
60 3=T+2:G0TD 130
70 S=T+5:GOTD 130
80 S=T+9:GOTO 130
20 S=T+12:G0T0 130
100 S=T+14:GOTD 130
110 S=T+20:G0TO 130
120 5=T+21
130 F(0)=S
140 FOR I=1 TO 6
150 IF (S MOD 3)=0 THEN $=4%S/3:G0T0 180
160 IF (S MOD 3)=1 THEN S=4#%({S-1)}/3)+1:G0TO 180
170 IF (S MOD 3)=2 THEN 250
180 F(I1)=5
190 NEXT I
200 FOR J=0 TD 6:PRINT F{(J),;:NEXT J
210 IF (S MCD 3)=0 THEN $=4%5/3:PRINT 3,;:G0T0 210
220 IF (S MOD 3)=1 THEN $=4%((S-1)/3)+1:PRINT 5,;:G0TO
210
230 IF (s MOD 3)=2 THEN PRINT "STOpR"
240 PRINT:PRINT
250 NEXT R
260 NEXT T
270 END
On a run of this program, the 88 results are printed in 2.2
minutes. A re-run with the following changes:
10 DIM F(13)
140 FOR I=1 TC 12
200 FOR J=0 TO 12:PRINT F(J),;:NEXT J
vields the 8 integers between 2 and 1,000 which have f-strings
of fength at least 13 in just 18 seconds. The longest S-strings in

i On a Question Posed by Graham Higman 63

this range are those of 163 and 331. Both of these have lenglh
15 and they end with f1*(163) = 9104 and f14(331) = 18545. We
have a procedure now which we may reasonably hope to apply to
higher numbers. Students might be encouraged to find out how
many integers up to 10,000 have f-strings of length 19 or more
and which of these has the longest f-string. How many integers
up to 100,000 have f-strings of length 25 or more? Which of these
is the longest?
The program is easily amended flor these investigations. kor
example:
10 DIM F(19)
20 FOR T=7 TO 9997 STEP 27
140 FOR I=1 TO 18
200 FOR J=0 TO 18:PRINT F(J),;:NEXT J
A run of this modified program shows that there are just 5
integers up to 10,000 with f-strings of length at least 19. Output
takes 2.8 minutes. The numbers are: 3475, 4633,6177, 8236, 8607.
The first of these, 3475, has the longest f-string. It ends with

F3(2) = 2596901.

The next three f-strings share this endpeint because

F(3475) = 4633, F(4633) = 6177, F(6177) = 8236.

Let us go a step further with the following changes:
10 DIM F(25)
20 FOR T=7 TO 49984 STEP 27
140 FOR I=1 TO 24
200 FOR J=0 TO 24:PRINT F(J),;:NEXT J
A run now takes 14.85 minutes. There are just 5 integers up
to 50,000 with f-strings of length at least 25. The longest is that
of 38,754, which ends with

£77(38754) = 91549952, .

Extending the range to 100,000 yields another 7 integers with
f-strings of length 25 or more. There are 6 such integers between

64 IMS Bulletin 28, 1992 =

100,000 and 200,060 and 6 more between 200,000 and 300,000. So
far then, we have shown that there are just 24 integers z in the
range 2 to 300,000 for which f?#{z) is defined. The integer 38,754
still has one of the longest f-strings at 28 terms, a lenglh equalled
only by 65,610 and not exceeded.

Having reached 300,000 without finding an infinite f-string,
we are inclined to rush onwards but we face two problems. We are
approaching accuracy limits of the computer language (BBC BA-
SIC) and program running times are rather slow (for classworl).

On the question of time, our current program, which is
designed to list f-strings of length 25 or more, takes about 28
minutes for each 100,000 number range. Our 1 millien time es-
timate stands at 4 hours and 40 minutes. We would rather not
sacrifice program simplicity and legibility for minor efficiencies
but one significant improvement would be to change all variables
to integer type. Also integer division is executed faster than
ordinary division. With these alterations, the program runs on a
BBC Master 128 at about 22 minutes for each 100,000.

Schools and colleges will also have other equipment. Com-
parisons may be made of running times of similar programs on
different computers, in different versions of BASIC and in other

languages. The author also used an RM Nimbus X20. This 80186

based 8MHz computer supports BBC BASIC and runs it faster
than the B3C Master Series. It is not necessary to use integer
variables to take advantage of quicker integer calculations. The
Nimbus runs our current program ahout 43% faster. The printer
used in this experiment was an Epson LQ800 but printer speeds
are not very significant now that output volume is considerably
reduced.

Whether or not one is satisfied with this time, roundoff errors
will ruin any attempt to go further. The next integer for which
f*(z) is defined is » = 335167. Either computer will accurately
produce the f-string of z up to

FH (2} = 791783233
but then give 1.05571098 E9 and the message “Too big at line
2407, Now the student can have the satisfaction of doing a few

B On a Question Posed by Graham Higman 65

simple divisions and multiplications with pen and paper to pro-
duce the rest of the f-string beyond the capability of the machines.
Results are as follows:

F?8(z) = 1055710977
F2%(z) = 1407614636
£2°(2) is not defined.

We might amend the program by inserting brackets to give
division pricrity over multiplication in the calculation of successive
function values in the variable S. This however merely postpones
the inevitable breakdown to z = 491731. The maximum mnteger
which can be handled by BBC BASIC is 2,147,483,647. Larger
real numbers can be stored but tenth and subsequent digits will be
rounded and accuracy lost soon after the maximum integer value.
Again the student who is not afraid of a few long calculations can
go bevond the computer for the rest of the f-string of 491,731. It
ends at a length of 40 terms with

F3%(491731) = 36672278528,

The student who survives that calculation will not want to
give up before reaching the 1 million target. Would you be pre-
pared to omii those program lines which compute the 26th and
subsequent terms of the long f-strings? Let the computer stop at
the 25th term and thus avoid roundoff errors and numbers which
are too big. The Nimbus works at about 13.5 minutes for each
100,000 number range or 2 hours 15 minutes for a million run
and there are a total of 69 integers z between 2 and 1,000,000 for
which f?*(z) is defined.

Since the Nimbus can handle real numbers which are just
a little bigger than the maximum integer. some more help may
be squeezed from the computer. The program can be extended
successfully to give 28 terms of sufficiently long f-strings. There
are just 17 survivers and it seems reascnable to complete that
number of calculations by hand. The results are as follows:

Seven integers less than 1,000,000 have f-strings of length 28:

66 IMS Bulletin 28, 1992 o]

38754 65610 563401 595852

725097 972979 988666.
Four integers have f-sirings of length 29:

422551 446889 543823 §27199.
Three integers have f-strings ol length 30:

335167 794422 940402.
The three remaining integers are:

491731 6550611 874188.
The f-strings of these three have the exceptional lengths of 40, 39
and 38 respectively. Allend with the same number 36,672,278 ,528.
In fact, the last two are substrings of the first because

F(491731) = 655641 F(655641) = 874188.

More powerful persoral computers in the 80286 and 80386
ranges may be available to some students. Microsoft (3W BASIC
is normally supplied in the MS-DOS package. Greater accuracy
and faster running times can be achieved. The author transferred
the program to a 256 MHz Morse 486 personal systermn. Double
precision numbers have an accuracy level of 17 digits internally
with up to 16 displayed. The MOQD aperator, however, so uselul
for modulus arithmetic, has an upper limit of 32,767 and must be
replaced by direct computation. A million run can be achieved, in
a time of 24.4 minutes, on the Morse 486, printing full f-strings for
all integers z between 2 and 1,000,000 for which f?#(z) is defined.

It is observed that the hand completed results are all verified
by the machine and it is felt that this is a good point at which to
end the article. The patient reader might, however, like to know
that the f-string of length 40 arising {from 491,731 is not only the
longest of any integer less than 1 million but it is also the longest
f-string of any integer less than 10 million. Socn after that, it is
equalled and then surpassed. The longest f-string of any integer
less than 100 million s that of 95,305,399 which has 47 terms.

" On a Question Posed by Graham Higman 67

Reference

.] G. Higman, Some explicit embeddings of finitely presented groups {Lec-

ture at Groups in Galway Conference, May 1990) (Unpublished).

Gerard M. Enright,

Department of Mathematics and Computer Studies,
Mary Immaculate College,

Limerick.

