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SOME QUESTIONS CONCERNING
THE VALENCE OF ANALYTIC FUNCTIONS

J. B. Twomey

In this short note we discuss, and illustrate by means of some ex-
amples, certain questions concerning the valence of analytic func-
tions of one complex variable, that is, the number of times such
functions take their values. We present a theorem which asserts
the existence of certain constants relating to the valence of anal-
ytic functions in the unit disc, and conclude the note by raising
some questions regarding these constants for the reader.

We begin with a definition. Suppose a function f is analytic
in a domain D in the complex plane. We say that [ is p-velent in
D, p a positive integer, if (1) f takes no value more than p times
in D, and (i1) f takes at least one value exactly p times in D. If
p = 1 we have, of course, a univalent (or one-to-onej} function. The
following result for univalent functions is elementary and known:
(1) If f is analytic in the unit disc U = {z : {z| < 1} and univalent
in the annulus

A(§) = {z:48 < jz{ < 1},

where 0 < & < 1, then f is univalent in the full disc U.

This result is an easy consequence of Darboux’s theorem [1, p.
115]: If f is analytic on and inside a simple closed curve v, and f
takes no value more than once on <, then f is univalent inside .

It is natural to attempt to generalize {1) and to ask whether
there is an analogous result for p-valent functions when p > 1.
(This question was first posed by A. W. Goodman in a seminar in
Tampa many years ago and this author’s interest in these problems
dates — albeit discontinuously — from that occasion.) We note
immediately that the direct analogue of (1}, namely
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{2) [ analytic in U and p-valent in A(8), 0 < § < 1 and p>1
‘ = [ is p-valent in U,

i5 false for every p > |. We illustrate this here for the casc p=12
with an example which shows that, given any & in {0, 1}, there

exists a polynomial which is 2-valent in A{4), but which is not
2-valent in /.

Eﬂxarnple 1. Let Po(z) = z(2? - o), where o, = 1 — 1/4n?,
Then, for n > 2, P, is 2-valent in the annulus A{2) and 3-valent
in U. "

To gnderstand this example — simple as it is — it is helpful
to examine the image of the unit circle C = {z : || = 1} under
the mapping w = P, (z}.

A
N

Fig. 1 P.(C) Fig. 2 P(C)
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See T'ig. 1. Now if # is any point inside the bounded component
Op of B, = C\ P,(C) that contains the origin, then

;;Aarg{}jn(:} — B} =3,

where Aarg denotes the net change in the argument as z traverses
€' i the positive sense. Hence, by the argument principle [1, p.
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104}, every such value B is taken exactly three times in UV by
P,. For similar reasons, every value in each of the other four
bounded components of £, is taken exactly once or twice only,
The component O, shrinks to the empty set as n. — oo (see Fig.2
for 7{CY, where P(2) = 23—z = lihy00 Falz)), and, as £,(0) =
0, it is clear that, for each n > 2, there is a disc D, centred at
the origin with radius g, (decreasing o zero as n — 00) such that
Pu{Dy) D On. But then P, can take no value more than {wice
in &'\ D, and {assuming that [/ \ D, contains the two non-zero
zeros of P,) is thus 2-valent in the annulus A(e,). We leave it to
the reader to prove that this is so with g, = % forn > 2.

A function f satisfying the conditions in (2} is not necessarily
p-valent in U, therefore, but it is the case {and easy to prove) that
such a function is g-valent in U for some positive integer g. The
value of g can be arbitrarily large, however. Indeed, as our next
example shows, given ¢ > p > 2, there exists an analytic (unction
which is p-valent in A(§), for some 4 in (0, 1), and ¢g-valent in U/

Example 2. Let p and q be integers with ¢ > p > 2 and set
F(z) = exp(qrz). Then F is p-valent in the annulus

4p — 3

{z:/1—{ "

12 < g < 1)

(for instance), and g-valent in U

This example, as the reader will readily verily, is an easy con-
sequence of the standard perlodicity property of the exponential
function.

Example 2 leaves open the possibility that if f is any function
satisfying the conditions in (2}, and ¢ is an integer greater than p,
then f is at most g-valent in ¥/, provided § is small enough. This,
finally, is indeed —— with a qualification — essentially what our
tlieorem asserts.

Theorem 3. Suppose that p,q are integers with p > 2 and ¢ >
2p, and that fis analyviic in U. There exists a (largest) number
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r*{p,q) in (0,1) such that if f is p-valent in an annulus A(S), and
0 < d<r*p q), then [ is at most g-valent in U.

The author’s proof ol this result — whicli is basced on a norinal
family [1, p. 213] argument, as a complex analyst reader might
anticipate — is somewhat technical in detail and sheds no light on
how the questions raised by the theorem miglt be answered, so we
do not include it here. One question which arises ts whether the
theorem is true il we replace the condition ‘g > 2p” with ‘g > p°
but a more fundamental question is :

What is the value of r*(p,q) for cach permissible patr (p,q)?

We conclude by leaving these open questions, unciouded by
any conjectures, for the reader.
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ON A QUESTION
POSED BY GRAHAM HIGMAN

Gerard M. Enright

Consider a function f of the non-negative integers given by the
following rules:

f(3nr) = 4n
fBrn+1)=4n+1
f(3n + 2) is undefined (n=0,1,2,3,...).

Since f(0) = 0 and f(1) = 1, the function may be repeatedly
and indefinitely applied to 0 and 1; that is, for z = 0 and 1, f*(z)
is defined for all & > 0.

Question: Is there any integer z > 2 such that f%{z) is defined
for all £ > 07

This function was introduced by Professor (Graham Higman
[1] during a lecture on explicit embeddings of finitely presented
groups. He posed the question and he conjectured that the answer
was “No”. To be precise, he declared “No” to be his “first best
guess”.

In this paper, we will not prove Higman’s conjecture but we
will produce a good deal of evidence in its favour. Neither will
we discuss the group theoretic context in which the question was
raised. Instead we present an exploration of the problem as an
example of computer-aided mathematics suitable for secondary
school and college level students.

We use elementary programs in BASIC to obtain data on
tlie function and we use this data in further development of the
problem, leading to more efficient programming. Our suggestion
1s that students’ knowledge and understanding of mathematics is
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