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(13), then we define
Gv=DB7"Cr, Hyo=n'p,,

G = (B - 4G L, i= 2,3, .. N -1 (14)
Hio=(B: — AiGioy)y YD, - Aidlioie), =23 .. N
Then, fori=34, . ,nﬁl,k:i—Q,ikB, o1
j=i—2
Hrictor =Mooy + (21U T Goar,
1=k

and the vector components X; of the solution are given by

X = Hin i i= 1,2,3, ... . n

Parallel Algorithms

More recently the problem of designing algorithms whick can he
efficiently run on several processors working in parallel has atlrac-
ted considerable interest. Algorithms which are ideal on a single
processor may be highly wefficient, or even fail entirely on parallel
processors and the design of sujtable parallel algorithms for even
the commonest problems is a matter for present day research.

Conclusions
The power of computers has given us the tollowing opportunitios:

1) to make new discoveries in Mathematics;
1) in the teaching of Mathematics 1tself;
lii} to develop new methods (algorithms} which are efficient on
computers for the solution of a wide range of problems and
particularly so on parallel computers.

D. 1. Evans,

Paralle] Algorithms Research Centre,
University of Technology,
Loughborough,

Leicestershire LE1 3T,

England.

CAUCHY'’S MATRIX,TRIX
Al
THE VANDERMONDE M
AND POLYNOMIAL INTERPRETATION

R. Gow
Let K be a field and let oy, ..., @n be elements of K. The n xn
matrix V = V(ai,..., an), where
1 1 1
oy oy o
V = - 3
of 7t ey ap!

. . of
is called a Vandermonde matrix. It is an exanlglof iet;yiei o
for example, Chaptler 3
' ix known as an allernant. See, : ‘ f
I[?]atr’?he Vandermonde matrix plays an important r{)le_ in z;toig-
lJ .s concerning polynomials, symmetric polynomials ﬁﬁp <
flr;r The determinant of V is well known to be the differen

(@i —ay)
i>i -

d thus V is invertible precisely when the o; are aél dl.ﬁ"err(lanis.
A f that det V has the form stated above may be give :
onn[ﬁg. Row operations show that det V equai§ th‘i dletetr::;l‘llagy
of the n x n matrix obtained from V by replacing its las

product

the row

{fler) flaz) ... flon)),
where f is any monic polynomial in K[z] of degree n — 1. We

choose f to equal

(z— ). (2 —an_1).
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Then we have f(o;) =0 for i £ n and
flon) = (a, — ar}.. Aon — Qn_1}

If W is the n x n matrix obtained from V for this cloice of f, we
casily see that

det V' =det W = f(ay, ) det Viay, ... on 1)

and the result follows easily by induction. Occasionally, evalu-
ations of det V' in the literature seem to be unnecessarily complic-
atfed, as they refer to facts about homogeneous polynomials. The
orlginfﬂ evaluation of the determinant is due to Cauchy {Journal
de L’Ecole Polytechnique, X VI, 1815).

‘ Let P denote the n-—dimensional vector subspace of K[z] con-
sisting of all polynomials of degree at most n—1. The polynomials
1, z, ..., " ! form the standard basis of P. Let Ply-.., pn ben
polynomials in 7. Then we may write

kt3

L k-1
Pi = é AT 7,

k=1

where the a;r are elements of K. If we evaluate the p; ab Lhe
points oy, ..., &, we obtain the matrix relation

P =AYV,

where P is the n x n matrix whaose (¢,7) entry is p;(a;). Suppose
that the a; are all different, so that V is invertible. We choose Lhe
i to be the_Lagrange interpolation polyromials for the points oy,
-+ .y &n, Which are defined by the formulae
D= __F where p =
i P’(O‘i)(ﬂl"‘a’i) Pﬁ(xﬁa’l)---(l’_au)

ff” 1 <2< n. Then we find that p;(«;) = 1 and pileg) = 000
i # j. Thus the matrix relation above becomes

I, = AV
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and the matrix A is the inverse of the Vandermonde matrix. We
gee that the coeflicients of the interpolation polynomials enable us
to find the mverse of V. :

Suppose now thal we have n additional different elements 3y,
...y Pn owith a; # 8; lor all £ and j. The n x n matrix

1 1 1
o= ay -3, T ay—fFn

1 1 1
an—51 an—Bz 7 an-fa

is called a Cauchy matrix. The Cauchy matrix 1s an example of a
bialternant or double alternant, as discussed in Chapter X1 of [5].
It was introduced by Cauchy in a work [1, pp 151-159] published
in 1841, where its determinant is calculated. The Cauchy matrix
also appears briefly in Frobenius’s development of the irreducible
characters of the symmetric group [3, p.153]. In this connection,
see also, for example, exercise 6, p.38, of [4]. We shall denote this
Cauchy matrix, whose (4, j) entry is (@; ~ 3;)7!, by C(e, B). The
author has been intrigued with the problem of finding a suitable
setting for the Cauchy matrix, analogous to the role of the Van-
dermonde matrix in polynomial theory. The purpose of this paper
is to relate C(a, 8) to the Vandermonde matrix and show how its
determinant and inverse may be evaluated. Since starting this
work, we have found that our formula for the inverse is given, in
an older formulation, in Section 353 of {5]. The referee of this pa-
per has also pointed out that M. J. Newell has given an approach
to the Cauchy matrix on p. 347 of [6] that is rather similar to our
presentation in this paper. Thus our findings are certainly not
new, but we hope that this subject may be of interest to those
who are not specialists in symmetric functions.

We continue to use the interpolation polynomials p;, based
on the polnts a1, ..., an, and introduce a corresponding family
of interpolation polynomials ¢;, based on the points 81, ..., .
Thus

._m___q_uﬂw ere g = (x — I .
qt_q'{a’,‘)(ilf—,@i) hete ¢ = (& — B1}.. . (z — Bn)
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Since {q,.. ., u } is a basis for P, there exist elements e;x of I
with
Pi = Z Cikifx
k=1

for1 <i<n. Evaluating the polynomials on eacl, side of the
equation above at 4;, we obtain eij = pi(f;). Recalling the defin-
ition of p;, we see that

—r(5;)
Plaij(o: ~ 3;)
Consequently, if E = (ei;), we have the relation
D(als' "IQR)E: %C(QJ!G)P(ﬁll"'rﬁﬂ)t

where D_(al, —an) and P(A, .. -2 By} are the diagonal matrices
whose diagonal entries are pleg), oL, P'(az) and p(g,), . o
(B ), respectively. Expressing the polynomials p: and g; in terms
of powers of 2, we have, say,

n

pi = E gzt

k=1

¢ = ibz‘krk"l
k=1

for 1 <4 < n. Our discussion earlier shows that if A = {ai;) and

B = (bij); then

and

A= Vier,...,a0)"!, B = Vg, ....8.0)" %
However, we clearly have A = E77 and we obtain the relation
V(a')_l = _‘D(a'la .- ~:er)_lcr(a)f8)P(,Bl: RS ﬁn)v(ﬁ)—fv

where we have written V{a) and V{8) in place of Vie, ... o)
and V(B1,...,8.). Thus we have proved the following result.

= ‘ Cauchy’s Matrix 49

Theorem 1. Let o), ..., o, be n different elements in K and
let p be the polynomial

(z—a1).. (z—a,)

in K[z]. Let 81, ..., B, be a further n different elements in K with
a; # B; for all i and j. Let C{a, B) be the n x n Cauchy matrix
whose (1, j) entry is (a; — B;)~'. Then we have the equation

Cle, 8y = —D(avy, .. ., &n)V(C}:)_IV(ﬂ}P-(ﬂl, e Pa)

Here V(a) = V(ay,...,a,) and V(B) = V(B1,...,08n) are ihe
Vandermonde matrices based on the o; and B;, respectively, and
D(ay,...,an) and P(f,, .. -+ Bn) are the n x n diagonal matrices
whose diagonal entries are plar), ..., p'(x,) and p(B), ...,
p(fn), respectively.

Corollary 1. The determinant of the Cauchy matrix is

(—1)rin=1)/2 il — o) [Tis;(8: - 85)
Hi,j(ai — %) ’

Proof. We may assume that the o; and the B; are all different,
since otherwise the determinant is clearly 0 and the formula holds
in this case. Theorem 1 shiows that we have

2 i P [Tis (8 = 55)
iy p(8) [T (0s — o)

However, it is easy to verify that

det C(ar, B) = (1)

n

HEGE (1) =02 [T — ay)?
i=1 i>j
and

IT2(3) = (=1" T(e: - 8;)
i=l i
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and the regut follows.

It is easy to find the inver ase
that itg determinant is on~zero. In Theorem 1, we write V{a),

V{g); D(a} and P3) in place of Viay, S}, V(ﬁl,..,,ﬁn),

Diay, . ) and P, .. A, respectively. Tliep Thecrem 1
gives

se of (he Cauchy matrix i Lhe

Cla, ) = “D(OJV(QJ‘IV(H)PW)_I-

Interchanging the roles of the ¥ and 3 we have
Cl.2) =~y (5 V(e)Q(a),

where E(8) and Q{a) are ihe n x n dia,
diagonal entries are ¢'(3;) and q{a;)
Assuming that Cla, ) is invertible,

Cla, g)~1 = PEE(B) o, *)Q(e) D(ar)=,

We also observe that C(8,a) = ~Ca, gy,

the prime denotiug
transpose. We have therefore pro

ved the fol]owing result,

Theorem 2. Let @1 .., o, and 51, oy By be 2n different
elements jn and let p ang q be the polynomials

(;caal)..‘(;r:-—an) and(xnﬁl)...(.r‘f)’,l),

respectively, Then we have the relation

C(Qs ﬁ)_l = —ALC(Q’,ﬁ)’AQ,

where Ay and Az are the diagonal matrices wioge ~th o

entries are p(ﬁ,—)/q’(ﬁ;) and q(a,-)/p’(a,-)
far, the (, 7} entry of Cq, A s

agonal
r fespectively. In particy.

P(Bi)y(ey) .
(8 — )P (2 )/ ()
As an example of the usge o

f this formul
that o; = ; _ Iand 5. =

4, We consider the case
=t for ] < < n. The corresponding

(1]
[2]
(3]

(4]

i - Cauchy’s Matrix 51

Caucly matrix based on these values g

1 1
L3 3
o i
5 3 4
Lo

n n+1 n4-2

This matrix is usually called a Hilbert matrix. The polynomials
pand ¢ for this matrix are

z(z—l)...(x—n—i—l) and (x+1)(z+2)...(.r+n).

Theorem 2 shows that the (4, 7} entry of the inverse of the Hilbert
matrix is

(-D)* (44— DYn+j- 1) |
(i4+7 - )= 1) = 1P (n —41{n — !

which equals

o i—1 n4j-—1 i+7-2\7
(—1)‘+J(i+j—1)(n:_j )( n—i )( i-1 )

as shown in [2, p.304].
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SOME QUESTIONS CONCERNING
THE VALENCE OF ANALYTIC FUNCTIONS

J. B. Twomey

In this short note we discuss, and illustrate by means of some ex-
amples, certain questions concerning the valence of analytic func-
tions of one complex variable, that is, the number of times such
functions take their values. We present a theorem which asserts
the existence of certain constants relating to the valence of anal-
ytic functions in the unit disc, and conclude the note by raising
some questions regarding these constants for the reader.

We begin with a definition. Suppose a function f is analytic
in a domain D in the complex plane. We say that [ is p-velent in
D, p a positive integer, if (1) f takes no value more than p times
in D, and (i1) f takes at least one value exactly p times in D. If
p = 1 we have, of course, a univalent (or one-to-onej} function. The
following result for univalent functions is elementary and known:
(1) If f is analytic in the unit disc U = {z : {z| < 1} and univalent
in the annulus

A(§) = {z:48 < jz{ < 1},

where 0 < & < 1, then f is univalent in the full disc U.

This result is an easy consequence of Darboux’s theorem [1, p.
115]: If f is analytic on and inside a simple closed curve v, and f
takes no value more than once on <, then f is univalent inside .

It is natural to attempt to generalize {1) and to ask whether
there is an analogous result for p-valent functions when p > 1.
(This question was first posed by A. W. Goodman in a seminar in
Tampa many years ago and this author’s interest in these problems
dates — albeit discontinuously — from that occasion.) We note
immediately that the direct analogue of (1}, namely
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