THE USE OF THE COMPUTER
IN MATHEMATICS TEACHING
PAST HISTORY - FUTURE PROSPECTS

D. J. Evans

Initially, the digital computer was created to facilitate the solution
of problems that required numerical computations which were for

. Dlgital computers first made tl1efp appearance on college and
umverS{ty campuses in the late 19505 At that time virtually all
computing was done in batch mode and programmine using a sci-
entific programming language such as FORTRAN ;r pos.;’ibllv a
Iocgl dialect. Under these conditions, the time from submission
t? Job return would be not less than 45 minutes. The forlid-
ding nature of FORTRAN syntax and the complexity of its .inputw
output statementg required that a more “uscr friendly” language
be created. As a result, alternative languages such as UBASIC{J asz
WATFOR were created and extensively used by students.

?he next major development, jn computing which affected
teaching use was INTERACTIVE COMPUTING. Under this
mode of operation, a user could be connected to a mainframe
from a remote location, enter a program, and execute it. As a
regu]t the “turnaround” time between Jobs became Jass .tha:ll 5
minutes, - L

New applications of the computer to nstruction and teaching
also became possible soon after, Perhaps the major new develg -
ment of coneern to g today was COMPUTER AIDED INSTR-UCI;
TION {CAT) which quickly became a foca) point of concern for
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education researchers. The output from most of the programs at
that tinc was still numerical or perhaps consisted of “computer
graphics”. Some instructors, however, began to use GRAPHICS
terminals and their impact was immediately fels.

With the introduction of the MICROCOMPUTER in the
late 1970s, graphics became widely available. More importantly,
the microcomputer changed the locus of control from the cam.
pus computer center running large mainframes in a multiuser en-
vironment to a deparimental computer laboratory controlled by
the local teaching stall. With the introduction of the IBM per-
sonal computer and the Apple Macintosh processor, bit mapped
screens soon became available for sophisticated graphics use as the
amount of random access memory increased from 48K to 519K or
more and the processors operated very much faster. The declining
price for computers also made it possible for most high schools to
have computers available for their students.

The developments T have outlined are of ever changing tech-
nology driven primarily by non-instructional needs. Neverthe-
less, as technology changes the instructional applications will also
change. As we look to the future, the one thing we can be certain
of is thal the technology will continue to advance, and that com-
puters will continue to decline in price. Thus we have today an
environment in which our students arrive at college knowing how
to use a computer and able to purchase a microcomputer for ap-
proximately £200 with a capability greater than many of the early
mainframes. In addition, hand held calculators are now readily
available with a programming and graphics capability equivalent
to the early microcomputers. There can be no doubt that this
technology will affect both the way we teach UNDERGRADU-
ATE MATHEMATICS and the COURSE CONTENT.

As we look to the future, we see an ever changing technology
which will continue to provide opportunities for teaching innova-
tion. The advanced workstations of today will become the com-
monplace equipment of tomorrow. These machines will be linked
by networks which will access fileservers, high quality printers,
and gateways to external resources such as remote data bases and
libraries. So instead of focusing on the use of computers to im-
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prove the te_aching of current mathematicat topics, we can begin
to explore simulated learning environments which will enablcgous
to teach subject material previously thought to be too al_;stract. ]
complex for undergraduates. | ”

Computer Impact on Mathematics

In Mat?ematics computers first made their impact on Numerical
Analysis and during the period 1956-75 the subject developed
greatly, both in stature and discipline. Statistics, also bein]z“ a
numerate topic, quickly followed the same fate. It ’has only b:en
recently, since the introduction of the more powerful supercom-
puter and parallel computers that we have seen a similar impact
on Algebra, to be followed shortly with improved graphics and
visualization technology on {eometry. .

Discrete Mathematics

plscrete mathematics is what computers actually do. Therefore
it should be compulsory to all our students if they are to achiew:
some proﬁc_iency and affinity with computers. It is the malhem:
atics of finite and countable sets, and it includes topics taught
thrc_)ugl.lout the standard secondary and college curricula Thzsej
Foptcs inctude logic, set theory, combinatorics, discrete p.robabi}—
ity, _functif)ns and relations on discrete structures induction, re-
curston, difference equations, graph theory, trees ;}crebraic qt:ruc—
tures, and linear algebra. s ‘-

Finite Differences

T.he computer age has given new impetus to the method of finite
differences, which treats problems of time evolution posed in dis-
crete rather than continucus form. This is an old subject studield
by Boole in the 19th century.

‘ A discrete mathematics centered on difference equations is
timely, not only because of the increased usage of computers bu&
because of the known shortcomings in the Infinitesimal Calc‘ulu‘;

The Calculus of Newton and Leibniz was designed to cir)c.un‘l—.

vent the difficulties of dealing with the discrete by the passage
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to continuous limits. Sums became integrals, differences became
differentials, and the computational labour of repeated additions
and subtractions avoided by the power of the Infinitesimal Cal-
culus. Anocther difficulty with traditional calculus is that many
modern problems resist continuous meihods. Even the student
who succeeds with calculus needs to appreciate discrete approxim-
ation schemes which can be implemented on the computer. Such
schemes are increasingly important for the solution of the analytic-
ally intractable differential equations arising in many applications
in the real world.

Discrete mathematics also creates a link between ideas and
techniques of computer science and important and useful math-
ematical notions. An elementary course on the subject can even
bring students into contact with active research in mathematics,
physics, chemistry, and other areas.

Lincar Algebra

The topic which has been most affected by present day computers
is Linear Algebra. What then may the main topics in a Linear Al-
gebra course of the future become? Surely the elementary theory
concerning the concepts ol linear independence, span, basis, and
dimension will remain fundamental, and properties of the algebra
of matrices and linear transformations will not lose their import-
ance. Also the geometry of vecters will continue to provide im-
portant insights and examples. The analysis of linear systems
of equations and the investigation of eigenvectors and eigenvalues
will require added emphasis, since the computer software allows us
to ask so many more interesting questions mvolving these objects.

However, reduction methods and echelon forms will need a
different approach, since the software and algorithms which carry
out the necessary computation are often quite different from those
now taught. Without doubt, reduction to upper triangular form,
possibly using partial pivoting (and followed by back substitution
if there is an equation to be solved) should be the main hand
computation approach, as this is similar to the LU-decomposition
that a good Linear Algebra software package uses.

Methods for computing matrix inverses and detailed discus-
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sions of determinants probably require less attention. Since ap-
plications rarely require {he cormnputation of a matrix inverse it is
always better to solve the related linear system. Also determin-
ants have decreased in importance since modern algorithms for
approximating eigenvalues and eigenvectors make no use of them.
Furthermore, two other applications of the determinant, Cramer’s
Rule and the adjoint formula for the matrix inverse have become
even more superfluous since the computation is done by software
which makes no use of them.

There should also be a subtle alteration in emphasis through-
out the course. Instead of paying close attention to the elements of
a matrix, a point of view that is reinforced by hand computation,
the properties of the matrix as an entity should be stressed.

Finally, the major addition to the Linear Algebra course
should be the study of applications. Interesting applications that
lead to linear systems of equations should be studied, i.e. tem-
perature distributions found by approximating values at discrete
grid points, input-output models in economics, electrical circuit
analysis, least-squares approximation, balancing chemical reac-
tions, and network analysis. Applications that involve locating
eigenvalues and eigenvectors include: Markov chains, biological
population models, and models of genetic inheritance. If there is
tirne to study first-order linear systems of differential equations,
many more applications become within reach.

Numerical Sclution of Systems of Equations

Methods of solving systems of eguations are divided into (i) dir-
ect and (ii} indirect, or iterative, methods. For linear equaticns
the direct methods include the well known Gaussian elimination
process, the indirect methods include the Gauss-Seidel method.
The direct methods have the advantages (a) that they will
always produce the solution provided that it exists, is unique and
that sufficient accuracy is retained af each and every stage, and
(b) that the solution is found after a known number of opera-
tions. They have the disadvantage that very sparse systems of
equations, such as those which arise in finite difference /element
approximations to differential equations, may become rapidly less
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sparse as the elimination process proceeds so raising the stor?.xge
requirement {rom a multiple of n (for n equations) to something
like n?.

The iterative methods, on the other hand, may fail te con-
verge to a solution and if they do converge it is not ol?vious how
many operations they will require to produce the desired accur-
acy. They have however, the very considerable advantage tl}at
they are very well suited to computers and presecve the sparsity
of the coeffictent matrix throughout.

Direct methods for the numerical solution of non-finear sys-
tems are rarely available; there is, after all, no direct methoc! for
solving the general polynomial of even the fifth degr§e and so iter-
ative methods are generally used. As in the case of linear sy-stems,
convergence may not always occur, though condit10n§ sufficient to
ensure convergence are usually known; and although in some cases
the number of iteration necessary to proditce convergence to a spe-
cified accuracy may not be easily predicted, it is frequeqtly not a
matter of great importance. However accelerating techniques can
often be used if time is limited.

The revival of interest in iterative methods brought about by
the use of computers has led to significant advances in the Stud3{ of
functions which are iteratively defined, e.g. by a nonlinear relation
of the type

Zn1 = F(Zy)

where Zj is a given complex number and the function F(Z) may
contain one or more parameters. Some simple functions of this
type are the quadratic equation

az? bz 4+c=0 (1)

By rearranging terms and a change of variable we can express this
in quadratic iteration form, i.e.

Zasr = 2, FC, (2)

from which there are 3 possibilities:
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1. The sequence Z,, converges to a limit o which is the solution
of (1).

2. The sequence Z,, does not converge but the points Z,, remain
bounded.

3. The points Z,, eventually move outside any bounded regian.

In general all 3 cases can occur. Moreover, the complex values of
{ for which the sequence starting with Zy = 0 is either of type 1
or of type 2 form the well known Mandelbrot set, which has been
the topic of much research recently.

Algorithms

An algorithm is simply a procedure for solving a specific problem
or class of problems. The idea of an algorithm has been around
for over 2000 years (e.g. the Euclidean Algorithm for finding the
highest common factor of two integers) but it has attracted much
greater interest in recent years following the introduction of com-
puters and their application not conly in mathematics but also to
problems arising in technology, automation, business, commerce,
economics, social sciences, ete.

Computer algorithms have been developed for many com-
monly occurring types of problem. In some cases several al-
gorithins have been produced to solve the same problem, e.g. to
sort a file of names into alphabetical order or to invert a matrix,
and in such cases people who wish to use an algorithm will not
only want to be sure that the algorithm will do what it is sup-
posed to do, but also which of the several algorithms available
is, in some sense, the “best” for their purposes. An algorithm
which economizes on processor time may be extravagant in its
use of storage space or vice-versa and the need to find algorithms
which are optimal, or at least efficient, with respect to cne or more
parameters has led to the development of Complexity Theory. For
instance the Fast Fourier Transform has reduced the time com-
plexity from order n? to order nlogn, which is of considerable
practical importance for large values of n.

An important aim in algorithm design is to ensure that the
algorithm is “robust” 1.e is guaranteed to produce the required
answer under as wide a variety of conditions as possible.
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However, the interest is still (and always has been) on reli-
able methods which always converge. For instance the quadratic
cquation (1) when a, b and ¢ are real can be solved in many ways.
However from the Theory of Equations we have the roots g, g
are given by

b ¢
) tay=—— and ooy =~
a a

which when written in iterative form

(nty _ b (m) (nt1l) _ €
oy == 2} and oy = aa(ln"H) (3)

where agu) 1s given, give a convergent algorithm and is preferable
to the quadratic iteration form (2).

The direct methods too should be reconsidered in the de-
manding circumstances of present day software requirements. A
simple program just using the formula

—b 4 /b?% — 4ac
2a

will just not do. A robust software package should check its input
for validity as well as all the possible variations of the formula, i.e.
when the roots are complex, etc. Also it must generate sufficient
€ITor messages so as to leave no doubt in the user’s mind. Thus
a complete flow diagram for the direct solution of the quadratic
equation (1} is shown in Fig. 1.

Another area of great importance is the acceleration of the
convergence of iterafive processes especially for the large systems
of linear equations which occur in scientific problems.

Given the trivial (2 x 2) system Az = b where A4 is symmetric
and positive definite, i.e.




QUADRATIC EQUATION ar?+bx+c=0

Unseen wput ¢, b, a —
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FIGURE 1

then the well known Gauss-Seidel method
:nng) = a:c(zk) + b
1) = (k1)
is known to give acceptable convergence unless ¢ = 1. Tt is usual
to apply the successive overrelaxation (SOR) method, i.e.

:l.’(lk+1) = .‘E(lk) + W (ar(;) + by - I(lk))

$2k+1) = :z:gk) 4wy (aa:(lkH) + by — 1'(3“)

Use of Computers in Mathematics Teaching 39

where the overrelaxation parameter wi is chosen from the formula

2
L4 V1 —a?

w; =

to obtain an extremely rapid convergence when a is very close to

1.

An even more rapid convergence is abtained when A is skew

symmetric, 1.e.
1 @
a=(2 1)

Now the successive underrelaxation (SUR) method becomes

r(lk'H) = ;c(lk} + wa (——a:cgk) + b — :r:(Lk))

r(zk'H) = J.'gc) + wo (ax(lkﬂ) + bg — a:gk))

where the optimal acceleration parameter ws is now given by

2
14+ 1+ a?

Wwg =
A comparison of the results for the 3 methods is given in Table 1,
where N is the number of iterations required to achieve an accur-
acy of 1075,

u Gauss-Seidel SOR SUR.
w=1 N w1 N wa N
0.8090 1 33 | 1.2596 |11 | 0.8748 ) 7
0.9969 1 2,238 | 1.8545 | 88 | 0.8292 | 8
0.9988 1 5,732 | 1.9065 | 141 | 0.8288 | 8

TABLE 1: A comparison of the convergence rates of

the Gauss-Seidel, SOR and SUR methods.
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Recursive Algorithuns

Algorithm design is an important topic which we should teach to
our students — especially how to construct a recursive algorithm
and in the following we show the details of a recursive parallel
algorithm design.

in the numerical solution of partial differential equations by
the implicit methods there occurs the problem of repeatedly solv-
g linear systems involving tridiagonal matrices possessing diag-
onal dominance. Current algorithmic solution methods involve a
Gaussian elimination of the matrix equation to upper triangular
form with unit diagonal entries, from which tle solution vector can
be easily obtained by a back substitution process. In algorithmic
form, we calculate the quantities

c ; .

T T T S S
b bi ~ asgiy
d di —ahi_y | (4a)

hi= —, h= , =23, 0.0 n,
by by ~ Gigin1

and the solution is given by
2n = Ay, o= hi— g, t=n—1,n-2 .91 (48)

However, it is well known that sucly back substitution processes
{4b} are more ideally suited for serial computers and nowadays
with the ever increasing usage of parallelism in algorithrus it is
necessary to investigate whether a more efficient parallel algorithm
based on the Gauss-Jordan method can be formulated.

We now consider the (n x n) tridiagonal system given by

bl [55] . Ty d]_
ag bz Co 0 Lo dg
= (5)
0 s T Cpoy :
Iy bn L dn
and since b; > a; +¢;, i = 1,2, ..., n then we are assured that no

pivoling is required in any ensuing elimination process and hence
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the tridiagonal matrix structure will be maintained in successive

ehminations. . _ .
Initially the first equation is normalized by setting

d
g= hig= ot (6)
1

Then, the coeflicient of z; in the second equatio_n is elimnated by
multiplying the first equation by —a, and adding to the second
equation, 1.e.

h‘l a
1 91 x .
0 ba—asg oo 0 T2 | dy —aghy g -
as bz c3 = :
0

which is then normalized by setting

2 ; do —aghi o
=, fhag= =7
g2 bs — azgn °7 b — g

From now on the Gauss-Jordan elimination proceeds differently
and eliminates coefficients both below and above the diagonal as
fouov';sl'ie coeflicient of zs in the third equation i?‘ eliminated lby
multiplying the second equation by —ag and adding to th.e th_lrd
equation, and the coefficient of z4 In t_he first equation 1s_ehm—
inated by multiplying the second equation by —g; and adding to
the first equation, i.e.

h =g ha o
Ty 1,0 -
é [1} _?292 0 2 jl‘?-Oh
by —azgs ca a1 _ ds = (_]3 20 (8)
aq by Cq B ] :
0]

which is similarly normalized by setting

g3 = i“—. fz p = w, and by =hyo—gihago
bs — asgs ' ba —azg
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A further step of elimination Ulustra 2
th_e _algorlthm. The coefficient of T3 tﬁf tf!l:::t?;
eliminated by mu]tiplying the third eqlmtion‘b
to Ll_ne fourth equation, the coeflicient of d
1s eliminated by multiplying the third eq
to the second equation, the coeflicient o
eliminated by multiplying the third eq
to the first equation, e,

urth equation s
: —a4 and adding
23 W the second cqualion
valion by — gy and adding
fa:; in the first equation i:
uation by g, g, and adding

L0 0 ggg, Ty fr ) + figahis g
L0 —g,g 0 T3 N2 — gohy g
I , g3 T3 hea o
4 = G403 Cy Ty = d.} ‘(I4’1,35 o
G ag 65 Cs ( )

which ig similarly tormalized by setting

_ Cyg dy —

5= \ g = BT ahs,
\ 4~ daq3 bs — aygy {10)
1,2 = h ¢

, L1+ @gahe g, and hay = hy, = g2ha g

By continuing j imi
E 18 a similar manner ; i
for the rows 3.4, .. 21, 1t can

b '] i
e verified that ultimately the system (5) is transformed Lo t)e

form
1 x

I fey

1 0 2 faj’: .

0 i : M1y

L Ty hn_,D

. . N -
Cf)om ]wiu]ch We can see that the original tridiagonal system is now
wpletely decoupled ang the solution i« immediat‘ely avaiiable

IJ]HS t S5 € tl e IU() S We ¢ {
E Q lJIIllIlaIJZ 12 4 rit im
S 1C Droce
o p S, .ﬂl Ulﬂtc t!lC

&

rothe pattern of
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Ci

i = T -:21 Yoy _1 2
g b.'_aiﬂi’—l ' 3 " (I )
hig = di T dikiz10 i=23, .. .n

b,' — aigi—1

Then,fori:3,4,...,n—l,k:iﬁ‘z,z’u&...,2,1,

. F=i-2
Akt = hgjog_g+ (1)1 H gihi_y .
i=k
Finally, the solution vector z is given by
J.T,‘:h,',n_{, i:1,2,...,n.

Thus, by using column sweep techntques which can be completed
in parallel as the algorithm proceeds we are able to eliminate the
recursive back substitution process completely from the computa-
tion.

The application of this direct method to the numerical solu-
tion of matrix equations arising from finite difference approxim-
ations to elliptic partial differential equalions in two and higher
dimensions can be made in the following manner. For two dimen-
sional problems, these finite difference approximations produce
matrix equations of the form AX = D, where the matrix 4 has
the form

81 Cl
Ag BZ C‘? 0

4 T (13)
0 o Oy

AN By

ilere, the square submatrices Bj are of order n;, where ‘n; corres-
ponds to the number of mesh points on the jth horizontal mesh
line of the discrete problem. The direct inversion method (12) can
be immediately generalized so as to apply to AX = D. Indeed, if
the vectors X and D are partitioned relative to the matrix A of
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(13), then we define
Gv=DB7"Cr, Hyo=n'p,,

G = (B - 4G L, i= 2,3, .. N -1 (14)
Hio=(B: — AiGioy)y YD, - Aidlioie), =23 .. N
Then, fori=34, . ,nﬁl,k:i—Q,ikB, o1
j=i—2
Hrictor =Mooy + (21U T Goar,
1=k

and the vector components X; of the solution are given by

X = Hin i i= 1,2,3, ... . n

Parallel Algorithms

More recently the problem of designing algorithms whick can he
efficiently run on several processors working in parallel has atlrac-
ted considerable interest. Algorithms which are ideal on a single
processor may be highly wefficient, or even fail entirely on parallel
processors and the design of sujtable parallel algorithms for even
the commonest problems is a matter for present day research.

Conclusions
The power of computers has given us the tollowing opportunitios:

1) to make new discoveries in Mathematics;
1) in the teaching of Mathematics 1tself;
lii} to develop new methods (algorithms} which are efficient on
computers for the solution of a wide range of problems and
particularly so on parallel computers.

D. 1. Evans,

Paralle] Algorithms Research Centre,
University of Technology,
Loughborough,

Leicestershire LE1 3T,

England.

CAUCHY'’S MATRIX,TRIX
Al
THE VANDERMONDE M
AND POLYNOMIAL INTERPRETATION

R. Gow
Let K be a field and let oy, ..., @n be elements of K. The n xn
matrix V = V(ai,..., an), where
1 1 1
oy oy o
V = - 3
of 7t ey ap!

. . of
is called a Vandermonde matrix. It is an exanlglof iet;yiei o
for example, Chaptler 3
' ix known as an allernant. See, : ‘ f
I[?]atr’?he Vandermonde matrix plays an important r{)le_ in z;toig-
lJ .s concerning polynomials, symmetric polynomials ﬁﬁp <
flr;r The determinant of V is well known to be the differen

(@i —ay)
i>i -

d thus V is invertible precisely when the o; are aél dl.ﬁ"err(lanis.
A f that det V has the form stated above may be give :
onn[ﬁg. Row operations show that det V equai§ th‘i dletetr::;l‘llagy
of the n x n matrix obtained from V by replacing its las

product

the row

{fler) flaz) ... flon)),
where f is any monic polynomial in K[z] of degree n — 1. We

choose f to equal

(z— ). (2 —an_1).
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