HOW TO COMPOSE A PROBLEM FOR THE
INTERNATIONAL
MATHEMATICAL OLYMPIAD?

Fergus Gaines

A difficult task for the organizers of any national team for par-
ticipation in the International Mathematical Olympiad (IMO) is
to fulfill the request of the host nation to submit original prob-
lems for consideration by the jury for inclusion in the Olympiad.
To compose such problems requires considerable skill and even
mathematicians of a high calibre can find the task difficnlt be-
cause many of the techniques of the professional mathematician
are excluded by the requiremert that the problems have “element-
ary” solutions. Arthur Engel has written a very interesting article
[2] describing his thought processes in composing IMQ problems.
Since the author is actively involved in the preparation and train-
ing of the Irish IMO team he has felt it incumbent on himself

to compose suitable problems. This article describes some of Lis
attempts.

In this article four avenues of approach to the task of com-
posing IMO problems are considered. They are:
§1. Use a known result in some area of mathematics that might
reasonably be assumed to be outside the knowledge of the con-
testants.
§2. Do a variation on a known elementary, but tricky, result.
§3. Compose a problem from a topic being currently taught by
the composer.

84. Use someone else’s problem!

§1. In past Olympiads some of the problems which appeared were
direct applications of a piece of mathematics which is well-known
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to mathemalicians, e.g. the pigeon-hole principle or the concept
of an cigenvalue. But nowadays it 1s taken for granted that such
problems would be deemed too trivial, because of the training that
many of the contestants recelve. The first idea the author had for
constructing an Olympiad problem was to take a known result in
some area of mathematics that might be reasonably assumed to
be outside the knowledge of the contestants and to vary it a little.
Thus, on page 3 of Jacobson’s book {3] on Jordan algebras is the
following result of Hua Loo Keng:

Theorem. Let ¢ be an additive mapping of a division ring A
into a division ring A" which preserves inverses. Then o is either
a homomorphism or an antihomomorphism.

The question we ask is: does this give a non-trivial problem for
the real numbers? As an answer we have

Problem 1. Let f be a function from the real numbers to the
real numbers such that f(1) =1, f(a +8) = f(a} + f(b) for all a
and b and f(a)f{1/a) = 1 for all @ # 0. Prove that f(z) = z for
all x.

Proof. Tt is easy to prove that the properties f{(1) = 1 and
fla+b) = fla) + f(b) for all ¢ and b imply f(z) = = for all
rational numbers 2. It is also not difficult to prove that f is
injective and that f(—z) = —f(x) for all 2.

Next we note that, if f(a) # f(a?),

1/{fta) = 1) = 1/|f (a1 - a))]
= f[1/at 1/(1 - a)]
= 1/[f(e) - f(a)?].

Thus f{a?) = f(a)? here and this resuit is still true when f(a) =
f(a®). Thus f(z) > 0if 2 > 0. So @ > b implies f(a) > f{b).

Finally, if z is any real number there exist two sequences {a,}
and {b,} of rational nurabers such that z is the only real number
satisfying the condition e, < z < b, for all natural numbers n.
Then a, = f(a,) < f(z) < f(bn) = b, holds for all » and hence
f(z) = z for all real numbers 2.
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This problem was submitted to the 30th IMO in Germany in
1989 but was not shortlisted. Perhaps it was not suitable because
a characterization of the real numbers might not he known to
some contestants.

Another, more recent, result that it was felt might yield a
suitable problem is the following result of Leep and Shapiro [5]:

Theorem. Let G be a subgroup of index 3 of the multiplicative
group of a field F. Then every element of F is expressible in the
form g+h where g and b are elements of (7, except when | F| = 4,
7, 13 or 186.

Replacing £ by the rational numbers doesn’t seem to make
the theorem any easier and, in any case, one shouldn’t expect too
many of the IMO contestants to know much about groups. But
the theorem is the motivating idea for the following problem.
Problem 2. Let Q denote the set of rational numbers. Let S be
a nonerpty subset of Q with the properties:

Q) 0gs;

(ii) if sy, s2 € S then s1/s2 € S,

(it} there exists ¢ € Q with g # 0 such that every nonzero
rational number not in S is of the form gs for some 5 £ S.

Prove that if € 5 then there exist y, z € § such that 7 — Y+ z.

This problem is too easy for an IMO but it was included in
the 1991 Irish Mathematical Olympiad and gave a lot of difficulty
to the contestants because of the group theory concepts involved.

§2. Another idea for composing a problem is to take a known
elementary, but tricky, result and do a variation of it. Ior example,
the following is a well-known, difficult result in plane geometry.

The Steiner-Lehmus Theorem. {1]. If the bisectors of two
angles of a triangle are equal in length then the triangle is isosceles.

The following variation suggested itself.

Problem 3. Let ABC be a triangle with L a line through ¢
parallel to the side AB. Let the internal bisector of the angle at
A meet BC at D and L at E, and let the internal bisector of the
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angle at 55 meet AC al J" and L at G. If DE = F@ prove that
CA=CR.

Proof. Let BC =a, CA = b, AB=cand 4 = 20, B = 28.
Obviously
CF a ab be
—_— = = = B C_D = R
FA ¢’ ¢l a+te b+e¢
Suppose @ > b, Then a > 3, sina > sin g and sin 2a > sin24. In
the triangle CFG

GF  CF
sin2a  sinf

and thus _
absin2a

FPe=
¢ (a+c}sin 3
In the triangle CDE

cD ED

sina  sin28

and thus .
absin 23

ED = (b4 e)sina’

Since GF = ED we get
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(b + c)sinersin 2o = (@ + ¢) sin Fsin 2.

: a b
Using t >t that = — $
sing the fact tha snla  smo we ge
sine _ {a+c)b  ab+be

stnfd  (b+cle  ab+ac

since @ > b, This implies sina < sin 3, which coutradicts ihe
assumption a > b. It follows that @ < b. In the same way, a > b.
Thus a = b.

Proofs of this result using Euclidean geometry and coordinate
geometry have also been found.

This problem made it to the short list at the 31st IMO in
Beijing in 1990 but did not feature in the final Jury discussions.

§3. Another area of inspiration for composing IMO problems is
whatever the composer is teaching at the time! Thus, in teaching
a course on complex analysis the author felt that the topic of
Mabius transformations should yield a tricky problem. Aud, sure
enough, we have
Problem 4. Let P be the set of positive rational numbers and
let the function f from P to itself have the properties
() F(z)+ f(1/z) = 1 and
(i) f(2z)=2f(f(2)) forall z € P.
Determine, with proof, a formula for f(x).
. 1
Proof. Let x = 1in (i) to get f(1) = 3
1
Then (ii) yields f(2) = 2f (§> and, putting z = 2, (i) gives
1 1 2 .
f(i) =3 and f(2) = 3 Trying a few more values of 2 leads -
one to suspect that f(z) = z ] forallz € P. If 2 € P then =
can be written as — where m and n are relatively prime natural

n
numbers and we shall assume that all the rational numbers we
deal with are expressed in this reduced form. Let h{z) =m+n
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mo.. . £
where z = — s in reduced form. We prove that f(z) = by
n z41

induction on h{z).

It 1s clear that

- satisfics properties (i) and {i1) of the
X
problem.

1
Next, h(x} = 2 forces z = 1 and h{z) = 3 forces 2 = = or 2.
Thus we have already verified the formula for f{z) when h(z) < 3.
Solet z € P with h(x) > 3 and assume the formula for f(y) holds
for all y & P with Ay} < h{z).
Let x = — be in reduced form and suppose m and n are both

Fi3
odd. Suppose also, without loss of gencrality, that m < n. Since

h( m )—n<m+n:h,(a:)

n—1m

m m
(=)=
n—im n
There exists a natural number d such that n — m = 2d4. Thus
m
()
n—1in
1 2m
- §f (n - m)
1 m
=3/ (3)
m
2{m + d)

we have

flz)

by the induction hypothesis, since

m 1
h (F) =m+ i(n — )
= TT—HE < h(x).
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Hence
m z
flz) = = )
() m+n r+1

Thus the formula holds if m and n are both odd.

Now 1
suppose one of m and n, m say, is even. Then m = 2¢,

for some integer & > 1 and some odd integer r. Then we get

nﬂ:f(%@
o)

9k-1,.
=2 _
f <2k‘1r+ n)

1 (@)

and we note that

(o) =1

Letting m) = m and n; = n we have proved that there exist
natural numbers my and no, with mq even and ns odd, so that
flmi/ny) = Qkf(ng/mg) and h{my/ny) = h(ms/ns). ,\/Ve then
have f{m;/ny) = 281 — f(ma/ns)]. Repeating this process we
get a sequence of positive rationals my/n; with m; even and n;
odd, f(mi/”_i) = 281 - flmig1/nig1)], where k; is the highesz
powerlof 2 dividing m; and h(m;/n;) = hiz) for i = 1,2,...
Since there are only finitely many rationals satisfying the
last. condition there exist natural numbers r and s with r < g
so that m./n, = m;/n,. Then there exist integers p and ¢ so
that f(m./n.) = p+ qf(m./n,) and ¢ = +2¢ for some natural

|
|
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number ¢ Hence we get the unique value p/{1 — q} for f{m,/n,).
'Fhus we get a unique value for f{z). Since only properties (i) and

{ii) were used in deriving this value of fiz}, and T satisfies
I

these properties, uniqueness implies that f(z) = P So the
x
result is true by induction.

I is probably clear how this problem was composed: write

down a few properties of the function and try to recover

the original function from these properties.

This problem was also included in the 1991 Irish Mathemat-
ical Olympiad. It was intended originally to submit the problem
for consideration by the IMO jury in Sweden in 1991 but, owing
to an error in the author’s original solution, the problem was con-
sidered too easy. T. J. Laffey supplied the crucial argument for

. L, ™ ) _
dealing with — when m 13 even and n is odd.

n

It can happen with IMO-type problems that a very elegant
solution can be produced which the composer did not envisage
(The author would welcome such a solution to Problem 4 above!).
At the 30th IMO in Braunschweig the following problem was ac-
companied by a very complicated solution and was rated A++ by
the jury:

Problem 5. A permutation {(z;,zs,...,r3,) of the set {1,
2,...,2n}, where n is a positive integer, 15 said to have prop-
erty P if |#; — 2;41] = n for at least one ¢ in {1,2,...,2n — 1}.
Show that, for each n, there are more permutations with property
P than without.

My colleague Michedl O Searcdid came up with this elegant
proof of a mere general result:

We say that the permutation (zi, g, ..., z2,) has an an ad-
jacent pair if and only if |#; ~ z;41] = n for some 7 with 1 <
i< 2n — 1. Let § be the set of those permutations with eractly
one adjacent pair and let 7" be the set of permutations with no
adjacent pairs. We shall prove that |S| > |T']. This 1s clear if
n=1 Soletn > 1. Let f:7T — S such that f(zrq,...29.) =
(2,23, .., Tj1, &1, L), ..., T2a) Where [z, — z;| = n. Then fis
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well-defined and injective. Tt is not surjective since, for example,
the permutation (1,n+ 1,2,3,.. n,n+2,.. .2n) is in S but not
in T Hence |5| > |T'|. This more general result now implics the
proof of problem 5.

§4. One final way of getting a problem for the IMO is to use
someone else’s! The other “Irish” problem shortlisted for the IMO
in Beijing is the creation of Charles Johnson of the College of
William and Mary in Virginia. It is:

Problem 6. An eccentric mathematician has a ladder with
n rungs which he ascends and descends in the following way:
whenever he ascends each step he takes covers a rungs of the lad-
der and whenever he descends each step he takes covers b rungs
of the ladder. By a sequence of ascending and descending steps
he can climb from ground level to the top rung of the ladder and
climb down to ground level again. Find, with proof, the smallest
value of n, expressed in terms of @ and b.

Solution. The smallest value of n is a + & — (a, b} where {a, b} is
the greatest common divisor of @ and b. This is obvious if alb or
bla.

Suppose that {z,b) = 1. Suppose also that a > b {there is
no loss of generality since the problem is symmetric with respect
to ascending or descending the ladder). Then there exist natural
numbers 7y, 81 so that

a=0bs +r
where 0 < r; < b. In general, given the remainder ri_1, there exist

integers r; and s; so that a+rj_; = bsj+r;, where 0 <r; < b1,
forj=123,.... Sincee =r; (mod b) we get rj = jr1 [(mod b),

for j = 1, 2,.... Since {r,b) = I the integers vy, ra,..., 1 are
distinct and thus are equal 10 0, 1, 2,...,5 — 1 in some order.
We must have r, = 0, since r; = 0, for some 7 < b, implies

that r;1; = 71, which is a contradiction. I the mathematician
1s standing on rung r;, (counted from the bottom) of the ladder
and a + r; < n then, by ascending by a rungs and descending hy

i
i
¢
I
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bs;4y rungs, he can get Lo rung rj41. So, il a+b—1 = n, we have
a+r; <nforj=1,2,...,0and, since b =1 = r; for some j,
he can clearly get to tung r; for each j =1, 2,...,b and thus he
can climb to the top rung of the ladder and back to ground level
again. { n < a+ & — 1 he can ot reach tung r; for some j < b
and thus he can not reach “rung” rs, t.e. ground level, and thus
he can not ascend and descend the ladder in the required way. So
the smallest value of nis a+8~1. Finally,if {a,b) = £ > 1 replace
a and & in the above discussion by a/k and &/k, respectively, and
then scale all integers up by & to get a + & — {a, b} as the smallest
value of n.
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