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1. Introduction

Ordered algebraic structures, such as ordered fields and ordered
veclor spaces, have long been studied in mathematics, both for
their own intrinsic interest, and for their applications. In re-
cent years partially ordered groups have became important in
connection with the theory of operator algebras, particularly C*-
algebras. The most important way in which a connection is mani-
fested is by means of K-theory. For example, if A is an AF-algebra,
then Ky(A} is a partially ordered group, and this group can be
used to analyse and classify A, We discuss this in Section 3. In
another direction, if a partially ordered group is given, one can as-
sociate to it a certain universal C*-algebra. In the good cases, this
algebra turns out to be the C'*-algebra generated by the Toeplitz
operators with continuous symbols on the dual group. The theory
of these algebras and operators has been developed by the author
and by others, and we discuss some of its aspects both in the
following section and inn Section 3.

A partially ordered group is a pair (G, <) consisting of a
discrete abelian group G, and a partial order < on & which is
iranslation-invariant, that is, if ¢ < y, then z + 2 < y +
(#,y,2 € G), and the positive cone Gt = {z € G | 0 < =z}
generates (7 {that is, G = Gt — GT).

Although this definition is a purely algebraic one, we observe
that the theory of partially ordered groups has been strongly in-
fluenced by functional analysis—specifically, by the theory of par-
tially ordered vector spaces. Also, as indicated above, the applic-
ations to operator algebras have largely determined the direction
of recent research in this area.
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If G is an abelian group, a cone of G is a subset €' such that
C+CCC ON(-C)={0},and G = C —C. Given a cone C,
one can define a partial order on G by setting <yify—zec(C.
This partial order is the unique one making & a partially ordered
group whose positive cone is C.

Clearly, if G is a partially ordered group, then GF is a cone
of (.

If G is a subgroup of R, it is a partially ordered group, with
positive cone Gt = GNRY. We shall always understand the order
on subgroups of R to be this one. The group Z" is a partially
ordered group, where the positive cone is N™. Such a group, and
any partially ordered group isomorphic to it (as a partially ordered
groun), is called a simplicial group.

A large class of examples of partially ordered groups is ob-
tained by considering the self-adjoint part of a C*-algebra. Since
these algebras feature prominently in the sequel, we recall their
definition. A C *-algebra is a Banach algebra endowed with an
mvolution operation a v+ a” such that |ja"al| = llall* for all ele-
ments a. Every such algebra has a faithful representation as a
norm-closed self-adjoint algebra of operators on a Hilbert space.
This class of algebras has a very well developed theory, and a vast
range of important applications to other areas of mathematics,
such as algebraic topology and differential geometry, and to the
scicnces, in particular, to quantum mechanics. For an introduce
tion to C*-algebras, see [9]. I A,, is the set of hermitian elements
(o™ = a) of a C*-algebra A, then it is a partially ordered group,
where the positive cone is the set of all squares a2 (a € Ayp).

An important way in which partially ordered groups arise nat-
urally is given by the process of deriving a group from a semigroup,
the Grothendieck construction. Let C be an abelian cancellative
sermigroup with zero element. An equivalence relation is defined
on C'x C by setting (z,y) ~ (z,y'), when 241 = 2"+ y. If [2, ]
denotes the equivalence class of (z, y), and G is the set of equival-
ence classes, then G is an abelian group under the addition opera-
tion [, y]+[+', ¥'] = [x +2’, y+4/]. The zero is [0,0] = [z, 2], and
the additive inverse of [x,y] is [y, z]. The semigroup € can be em-
bedded in G by means of the injective homomorphism a v [z, 0],
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and then & = C — C. The group  is the cnveloping group of C,
and has the universal properiy that every homomorphism from ¢
imto an abelian group extends uniquely to a homomorphism of G
into the group. The prototypical example, of course, is given by
C — N, and & = Z. The Grothendieck construction is important
in a number of situations, as for instance in the Kp-theory of unital
C*-algebras. Partial order comes into this because, although there
are advantages in replacing a semigroup by its enveloping group,
in some cases we also need to keep the original semigroup in mind
as well {an example is given below, in connection with stable iso-
morphism of AF-algebras). If C has the property that z +y =0
implies that 2 = y = 0 (x,y € C), then C is a cone of G. Thus,
in this case, (G is a partially ordered group in a natural way. In
this fashion, Kg(A) is a partially ordered group, if 4 is a unital
AF-algebra. (Note that Ky(A) is not always a partially ordered
group for arbitrary C*-algebras.)

‘We shall give more examples as we proceed.

Amongst partially ordered groups, three subclasses are par-
ticularly important, namely, archimedean groups, totally ordered
groups, and dimension groups. In the following section we shall
confine our discussion to totally ordered groups and archimedean
groups. We defer discussion of the much larger class of dimension
groups to Section 3.

2. Ordered groups

A (totally) ordered group is a partially ordered group {(G,<) in
which every pair of elements is comparable, that is, for all z, y € G,
either z < y or y < x. Of course, the subgroups of R are ordered
groups, but the simplicial group Z™ is not, unless n = 1,

If G and H are ordered groups, we can endow the product
group (7 x H with a natural order making it an ordered group.
Define (z,y) < (2',y') to mean that either z < z’, or r = 2’
and y < y'. This order is called the lericographic order, and
when endowed with it, G x H is called the lexicographic product.
In a similar manner, one can define the lexicographic product of
ordered groups Gfi,...,Gy, or indeed, or of an infinite sequence
(Gn)Z, of ordered groups.
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The same group may admit different total orders. For in-
stance, Z° has the lexicographic order, and also, if @ is an irra-
tional number, it has another order, namely the one whose cone
is the set of all elements (m, n} such that m + én > 0.

Note that an ordered group is necessarily torsion free. Also
it is not hard to show that a torsion-free partially ordered groupj
G is an ordered group if and ealy if Gt is a maximal cone. In
fact, any torsion-free abelian group can be made into an ordered
group, and we are therefore assured of a large supply of examples
of ordered groups. {This result is due to Levi (71)

Let & be a discrete abelian group, and denote by G its Pontry-
agin dual group. I x is a non-zero element of 7 of finite order, the
set {y(z) |~ € (7} is finite, and not a singleton, so it is disconnec-
ted. Hence, (7 is disconnected. Conversely, if & is disconnected
one can show that G admits a non-zero element of finite orde£
{[13], p47). Thus, G is torsion free if and only if ¢ is connected.
This turns out to be important in the theory of Toeplitz operators
defined relative to ordered groups, which we now discuss bricfiv.

If G is an ordered group, the Hardy space H*G) is the
L? norm closed linear subspace of L*(() consisting of all func-
tions f whose Fourier transform f is supported in G+, { G = 7,
one gets the classical Hardy space on the circle group T. Much of
the original H? space theory has been extended to the more gen-
eral situation by Helson and Lowdenslager—for a detailed account
sce Rudin [13].

Let P denote the orthogonal projection of L¥HG) onto H2G).

If v is a complex-valued continuous function on G, then the
bounded linear operator

H¥(G) = H*(G), [+ Plef),

is denoted by T,,, and called the Toeplitz operator with symbol .
Using the fact that (¥ is connected, the author gave a new proof of
a result of Widom and Devinatz which asserts that the spectrum
Qf 1."‘;. 1s connected [10]. An important question concerning T, is
its invertibility. In the classical case (G = Z) it is well known that
invertibility of 7y, s equivalent to the existence of a continuous
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logarithm for . The author extended this result to the general
case {10], and here again the proof uses the connectivity of G

Denote by A(G) the C*-algebra of operators on H*(() gen-
erated by the Toephitz operators. This algebra, and certain of its
subalgebras, turn out to be interesting from the point of view of
(*_algebra theory. For instance, one gets a new class of simple
C* subalgebras (a C*-algebra is simple if it has no non-trivial
closed ideals—it is important to have examples of such algebras,
but they are not always easy to obtain). The K-groups of these
algebras are difficult to compute and have received much atten-
tion recently. For subgroups of the reals, the K-theory has been
completely computed, and for general ordered groups some im-
portant partial information has been obtained. We shall return
to this topic later, 1n connection with dimension groups.

An archimedean group is an ordered group G such that for
every pair ¢,y > 0 there exists a positive integer n such that = <
ny. The subgroups of Ik are clearly archimedean, and in fact these
are all the archimedean groups, up to ordered group isomorphism
(for a proof see [13]). If &7 ts an archimedean group, then the
commutator ideal of A(G) 1s simple, a result due to Douglas [3].
(The commutator ideal is the smallest closed ideal containing all
of the additive commutators ab—ba.) The author showed that the
converse is also true—if A (G} has simple commutator ideal, then
(7 is archimedean. Thus, order properties of the group are strongly
reflected in algebraic properties of its associated C*-algebra, and
conversely.

In analysing the C*-algebras A{(G), the author discovered the
following result concerning ordered groups, which may be new:
A finitely-generated ordered group Is a lexicographic product of
a finite number of archirnedean groups. This does not, by any
means, reduce the study of the algebras A((G) to the case where
(7 is a subgroup of R, but it is a usefu] result in the theory of
these algebras (see [11]).

3. Dimension groups

The groups of the title of this section form a class of partially
ordered groups which arise in the study of certain C*-algebras,




16 IMS Bulletin 28, 1992 %)

namely AF-algebras. They have been the subject of intensive
study, and now have a fairly well-developed theory. For a com-
prehensive treatment, see Goodearl’s recent AMS manograph [6].
Dimension groups are also covered in [1], [4] and [5].

An AF-algebra is a C*-algebra A having an lcreasing se-
quence of finite-dimensional C*-subalgebras A4, whose union
UnA, is dense in A. An example of such an algebra is the set
of all compact operators on a separable Ililbert space. On the
other hand, the C*-algebra of all bounded operators is not an
AF-algebra, unless the Hilbert space is finite-dimensional. The
class of AF-algebras is sufficiently close to that of the finite-
dimensional C*-algebras to be tractable, but it is nevertheless a
highly non-trivial class and exhibits typical C*-algebra behaviour.
Some C*-algebras which are important in the theory of quantum
mechanics belong to this class.

For the sake of simplicity, we shall only consider unital
ATF-algebras,

If Ais a finite-dimensional C* algebra, il is easy to see that
for some n, its K-group Ko(A) is equal to a simplicial group Z™.
It now A is assumed to be an AF-algebra, then by definition,
it is a direct limit of finite-dimensional C*-algebras, and there
fore by continuity of the functor Ky, the partially ordered group
Ky(A) is the direct limit of a sequence of sirnplicial groups. These
groups, direct limits of simplicial groups, are called dimension
groups. (The positive cone of a Kg-group is thouglit of as the
set of “dimensions” of the projections of the algebra, and of its
matrix algebras.)

It 1s a remarkable, and very important, result of this theory
that dimension groups have been given a very nice abstract and
usable characterization:

Theorem 3.1 A countable partially ordered group G is a «imen-
sion group if and only if the following conditions are satisfied:

(1) ' nz > 0 and n > 0, then z > 0:

(2) H oy < gy for i, = 1,2, then there exists z € (¢ such that
<z <y,

Condition (2) is calied the Ries: interpolation property. The
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theorem is due to . Effros, D. Handelman, and C.-L. Shen. For
a prool sce [5].

A dimension group closely reflects the structure of its corres-
ponding AF-algebra. For instance, the closed ideals of the aigebra
correspond to certain subgroups of the dimension group, called its
“ideals.” Thus, if the dimension group is simple, that is, has no
non-trivial ideals, the AF-algebra is simple.

If one wants to construct an AF-algebra with cerlain unusual
properties, one may bhe able to do this by interpreting the proper-
{les in terms of the dimension group, and trying to construct the
latter. In an important instance where this approach has been
taken, and has paid off very well, B. Blackadar obtained a cer-
tain AF-algebra with unusual properties, fromn which he in turn
constructed a C*-algebra which is simple, yet has no non-trivial
projections (self-adjoint idempotent elements). This solved a dif-
ficult problem which had been open for many years.

Since simple dimension groups are particularly important, we
give some examples to illustrate the possibilities.

Every countable subgroup of R is a simple dimension group.

Let G = Q" and define the positive cone to be

Gt ={{ze,....2za) |21, .., 2e > 0 U{{0,...,0)}.

The corresponding partial order on G is called the strict order. It
is easy to see that (¢ is a simple dimension group. .

If ¢ = Q2% where the positive cone is G* = {(z,y}) | = >
0} U {(G,0}}, then ¢ is a simple dimension group.

If A and B are AF-algebras, under what conditions on their
dimension groups are they isomorphic? The answer, due to G. El-
liott, is easy to state, but the proof is difficult. A necessary and
sufficient condition for A and B to be isomorphic is that there is an
order isomorphism of the corresponding dimension groups, which
is unital in the sense that the Kj-classes of the units of A and
I3 correspond. If the dimension groups are only order isomorphic
(with no assumption that the isomorphism is unital), then the
algebras are stably isomorphic, which may be loosely asserted to
mean they have the same representation theory.
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We finish up by returning brielly to the theory of Toepliiz
operators. Let G be an ordered group. If ¢ = {i4;) is a square
matrix of order n whose entries are continuous complex-valued
functions on' &, define the Toeplitz operator Ti, to be the matrix
{Z,;) (as an operator this acts on the orthogonal direct sum of
n copies of H*(G}). It is shown by the author in [12] that if To
15 invertible, then ¢ is inverlible and its class {ils “topological in-
dex”) in the K-group K1 (C((5)) is the zero element. This extends
a result known for Z, and more generally, for subgroups of It
The proof involves K-theoretic computations which use the fact
that ordered groups are dimension groups, and therefore may be
written as direct imits of simplicial groups. Actually, rather more
1s proved, and the interested reader is referred to [12] for details.

References

B. Blackadar, K-Theory for Operator Algebras, (MSRI publications
no. 5). Springer-Verlag: New York, 1986.

A. Devinatz, Toeplitz operators on H?-spaces, Trans. Amer. Math. Soc.
112 (1964), 304-317.

R. G. Douglas, On the C*algebra of a one-parameter semigroup of
isometries, Acta Math. 128 (1$72), 143-152.

E. G. Effros, Dimensions and C*-algebras, (CBMS Regional Conf.
Series in Math. no. 46). Amer. Math. Soc.: Providence, Rhode Island,
1981.

K. R. Goodearl, Notes on Real and Complex C*-algchras. Shiva Puls-
lishing: Nantwich, 1982.

K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation,
(AMS Mathematical Surveys and Monographs no. 20). Amer. Matl.
Soc.: Providence, Rhode Island, 1986.

F. Levi, Ordered groups, Proc. Indian Acad. Sci. 16 (1942}, 256-G3.

G. J. Murphy, Ordered groups and Toeplitz algebras, 1. Operator
Theory 18 (1987), 303-326.

G. I. Murphy, C*-algebras and Operator Theory., Academic Press:
New York, 1990.

[10]
(1]

¥} Partially Ordered Groups 19

G. J. Murphy, Spectral and index theory for Toeplitz operators, Proc.
Royal Trish Acad. 91A (1991}, 1-G.

G. J. Murphy, Toeplitz operators and algebras, Math. Zeil. 208
(1991), 355-G2.

G. J. Murphy, Afmost-invertible Toeplitz operators and K-theary, J.
tntegral Equations and Operator Theory 15 (1992), 72-81.

W. Rudin, Fc_mrier Analysis on Groups. Intersience: New York, Lon-
don, 1962.

Gerard J. Murphy,
Department of Mathematics,
University College,

Cork.




