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NOTES ON APPLYING
FOIk I.M.S. MEMDBERSHIP

- The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Matlh-
ematics Teachers Association.

- The current subscription fees are given below.

Institutional member IRL50.00
Ordinary member IRL10.00
Student member IRL4.00
LM.T.A. reciprocity member IRL5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in
the Irish Republic, a Eurocheque, or an international money-
order.

. The subscription fee for ordinary menmbership can also be

paid in a currency other than Irish pounds using a clieque
drawn on a foreign bank according to ih- {ollowing schedule-
& 5 &

If paid in United States currency then the subscription fee is
US§18.00.

If paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the su bseription fee is the
amount in that currency equivalent to USS18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates,

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US%$10.00.
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. Subscriptions normally fall due on 1 February each year.

- Cheques should be made payable to the Irish Malhematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

- Any application for membership must be presented to the
Committee of the .M.S. before it can be accepted. This
Committee meets twice each year.

. Please send the completed application form with one year’s
subscription fee to

The Treasurer, I.M.S,
Department of Mathematics
University College

Dublin

Freland

EDITORIAL

The 1991 issues of the Bulletin did not appear until 1992; we
apologize for this, and we assure readers that we intend to get
back on schedule as soon as we can.

We therefore invite the submission of articles for publication.
As is stated inside the front cover, we seek articles of general
mathematical interest, written in expository style. We particu-
larly welcome surveys of areas in pure or applied mathematics,
notes presenting viewpoints or proofs of interest to those teach-
ing mathematics at undergraduate or postgraduate level, articles
concerned with mathematical education at all tevels, and articles
on any aspect of the history of mathematics. We also invite the
submission of research announcements and we expect that the
abstracts of Irish Ph.D, theses will be of interest to readers.

The jobs of the editor and associate editor have been made
much easier by the appointment of a production manager, Those
contributors who are able to do so can make the production man-
ager’s job easier by submitting articles in TEX. They (and others)
will be interested in the article in issue number 27 by the present
production manager, Micheal O Searcéld, in which he describes
two files; the first is a format file enabling contributors to see
what their articles will look like in the Bulletin and the second is
a macro file which can be used to compile lists of references for
Papers appearing in this and other journals. Information on how
to obtain copies of these packages is given in the instructions to
authors inside the back cover,




CONSTITUTION OF THE
IRISH MATHEMATICAL SOCIETY
as amended by the Ordinary Meeting
Leld on 21 December 1984

- The Irish Mathematical Society shall consist of Ordinary and

Honorary Members.

. Any person may apply to the Treasurer for membership by

paying one year’s membership fee. His admission to member-
ship must then be confirmed by the Committee of the Society.
Candidates for honorary membership may be nominated by
the Committee only, following a proposal of at least three
members of the Society. Nominations for honorary member-
ship wmust be made at one Ordinary Mecting of the Society
and voted upon at the next, a simple majority of tiie members
present being necessary for election.

- Every Ordinary member shall pay subscription to the funds

of the Society at the times and of the amounts specified in
the Rules.

. The Office-Bearcrs shall consist of a President, a Vice

President, a Secretary, a Treasurer. The Office of President,
or Vice-President may be held in conjunction with any of the
other offices.

. The Committee shall consist of the President, the Vice-

.

President, the Secretary, the Treasurer, and eiglit additional
members. No person shall serve as an additional member for
more than three terms consecutively.

There shall normally be at least two Ordinary Meetings in a
session.

Constitution of the IMS 3

7.

Notice of a motion to repeal or alter part of the Constitu-
tion shall be given at one Ordinary Meeting. Written notice
of one month shalt be given to all members before the next
Ordinary Meeting at which the molion shall be voted upon,
being carried if it receives the consent of two-thirds of the
members present.

One month’s written notice of a motion to repeal or alter a
Rule, or to enact a new Rule, shall be given to all members
before the Meeting at which it is to be voted upon, the motion
being carried if it receives the consent of a simple majority of
the members present.

- All questions not otherwise provided for in the Constitution

and Rules shall be decided by a simple majority of members
present at a Meeting. Eleven Ordinary members shall form
a quorum for such business.

RULES
as amended by the Ordinary Meeting
held on 16 April 1992

These rules shall be subject to the over-riding au-

thority of thie Constitution.

SUBSCRIPTIONS:

Every Ordinary Member shall pay, on election to membership
and during January in each succeeding session, an annual
subscription to be determined by the Committee. A change
in the annual subscription shall be ratified by a Meeting of
the Society.

- Ordinary Members whose subscriptions are more than eight-

een months in arrears shall be deemed to have resigned from
the Society.
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OFFICERS AND COMMITTEE

. The election of the Office-Bearers and the additional mem-

bers of the Committee shall take place at the last Ordinary
Meeting of each session.

The term of office of the Office-Bearers and the Committee
shall be lwo sessions starting on the first day of January that
foliows the Ordinary Meeting at which they were elected. The
President and the Vice-President may not continue in oliice
for more than two consecutive terms.

On alternate years elections for the following positions will
take place :

(a) President, Vice-President, and half of the additional
members of the Committee.

(b) Secretary, Treasurer, and one half of the additional mem-
bers of the Commitiee.

- Each session shall commience on the st day of January and

last until the following 31st day of December.

. The Committee shall meet a least twice during cach session,

the President to be convener. Five shall form a quorum.

. The Secretary shall keep minutes of the Meetings of the Soci-

ety and of the Committee and shall issue notice of meetings
to members resident in Ireland.

. A Financial Statement for cach session shall be written by the

Treasurer holding office in that session, shall be duly audited
by two persons appointed by the Committee, and shall e
submitted to the First Ordinary Meeting that follows that
session.

IMPORTANT MESSAGE
TO MEMBERS USING BANK STANDING ORDERS

Il you use a bank standing order to pay vour subscriplion fee to
the Society then you should contact your bank and make sure that

(i) the current subscription fee of IR.L10.00 is being paid,
(ii} payment is made annually and not monthly,

(ili) payment is made into the correct bank account,

(iv) any previous order in favour of the Sociely has been can-

celled.

The Society changed its bank early in 1990. The account into
which subscription fees should be paid is

The Irish Mathematical Society
Bank of Ireland

U.C.D. Branch, Belfield

Dubiin 4

The account number is 17063243; the bank code number is either

90-13-86 or 90-13-51.

Several members are still using a bank standing order completed
lefore the Society changed both its subscription fee and its bank.
Not only are these members now al least one subscription fee
in arrears but their subscription fees are being paid, in the first
instance, into a bank account that has been closed for over two
years.

Some banks have made mistakes when processing a current stand-
ing order. T cannot correct these mistakes myself since I cannot, of
course, give instructions about someone else’s bank account. Any
member who discovers such a mistake in processing his standing

5
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order should ask his bank to correct it. This can always be done
without extra cost to either the member or the Society.

I do not wish to discourage members who can do so from paying
their subscription fees by means of a standing order; most standing
orders are correctly processed and each such one lowers the cost
of collecting subscriptions and helps the Scciety’s cash flow. But
I do ask any member using a standing order to be carcful.

Any member who wants to complete a new standing order to pay
his subscription fees should ask me to send him the appropriate
form.

David Tipple, Hon. Treasurer

Minutes of Mecetings
of the Irish Mathematical Society

Ordinary Meeting

20 December 1991

The Irish Mathematical Soclety held an Ordinary Meeting at 12.15
pm on Friday 20th December 1991 in the DIAS, 10 Burlington
Road.

Fifteen members were present. The President, R. Timoney,
was in the chair.

1. The minutes of the meeting of 28th March 1991 were ap-
proved and signed.

2. Matters arising: D. O’Donovan’s survey of TCD graduates
has been published in the Bulletin. R. Timoney urged other
tnstitutions to conduct a similar survey.

3. President’s Report: The main activities for the year were

¢ European Mathematical Society., The IMS became
an institutional member of the EMS this year and IMS
members were offered the opportunity of becoming indi-
vidual members. Only 11 availed of this opportunity, but
I hope more will do so for 1992.
The EMS has produced two issues of its Newsletter {plans
are to produce it quarterly from now on) and the most
recent issue contained an article on the IMS written by
me.
Plans for the European Congress {to be held in Paris on
July 6-10, 1992) are advanced and consideration of the
focation for 1996 has begun.
Brendan Goldsmith is our representative for EMS affairs
and he has been dealing with things with his usual enthu-
siasm and efficiency. He is also “Irish correspondent” for
the EMS Bulletin and would welcome items for inclusion
(his email address is bgoldsmith@dit.ie}. He would also

7
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welcome subscriptions for EMS individual inembership in
1992 (cheques for L11 payable to the IMS).

e RIA. Brendan Goldsmith has been extremely attentive as

" IMS representative on the National Committee for Math-
ematics and he has just been nominated for a further 4
years.

e Points for Leaving Cert Maths. This issue was de-
bated at length at the Christmas 1990 and Easter 1991
Ordinary Meeting.

¢ September Mecting. The 1991 meeting was success-
fully organized at UCG by Ray Ryan and Graham Ellis.
The 1992 meeting will be the first at an RTC — Water-
ford.

¢ Bulletin. Thaoks to the efforts of Fergus Gaines, two
issues of the Bulletin have been issued in 1991. Unfomtuv
nately we have not really succeeded in making significant
progress in catching up on the schedule. This must be
a priority for 1992. The Committee is trying to install
mechanisms which will enable the technical prinfing side
of producing the Bulletin to be separated from tle editor’s
domain. The new editor is James Ward of UCG, but he
will be getling significant help from Rex Dark in the short
term.

4. September Meeting: The next annual mathematical meet-

ing of the Society will be held in Waterford RTC on Thursd ay

3rd and Friday 4th September 1992. The Organizers, P, Barry

and B. McCann, would welcome suggestions for speakers. It
is envisaged that the meeting will have a slightly a.pphed bent.

. European Mathematical Society:

a) At the 1992 Paris Congress there will be a round-table
discussion on mathematical collaboration with developing
countries. B. Goldsmith would like details of any such
Irish collaboration.

b) There will also be round-table discussions on: (i) ex-
change of students and harmonization; (ii) women math-
ematicians.

¢} R. Timoney announced the results of a survey he carried

Minutes of IMS meetings 9

out for the round-table discussion on women. Only 5%
of the perinanent mathemaltical stafl of Irish universities
arc women. None of the nine full professors are women.
Lasl, year two women and one man were awarded PhD’s.
About 30% of honours mathematics students are women.
No shift in the proportion of women mathematics students
has been detected.

6. Rule change: A motion to change the rules of the Society

regarding the financial year was deflerced to the Easter meet-
tng. This is to allow members three months notice of the
proposed change

. BElections: The [ollowing were elected, unopposed, to the

committee

(* denotes re-clection):

Committee member Proposer Seconder

G. Ellis* (Secretary) R. O. Waisen T. Lafley

E. Gath G. Ellis T. Lafley
D. Hurley M. O Searcéid  R. Timoney
P. Mellon B. Goldsmith A, O’Farrell
(. Nash A. O’Farrell D. Simms
D). Tipple* {Treasurer) M. O Searcéid S. Dineen

The following have one more year of office:
R. Timoney (President), B. Goldsmith (Vice-President),
F. Gaines, F. Holland, B. McCann, M. O Searcéid.

The following have left the committee:
G. Enrnight, A. O’Farrell, D. Simms, R. 0. Watson.

. AOB:

a) R. Timoney urged individual members of the Society to
support a campaign about human rights in South Africa.

k) S. Smale will talk to TCD Mathematics Society at 8 pm
on 13th January in Room 2041b of the TCD Arts Block.

c) The deadline for applications for Eolas funding of basic
research is 31st January 1992. Tt was felt that the amount
of money awarded to any discipline is proportional to the
number of applications for research in that discipline.

) Members are urged to wrile/solicit articies for the Bul-
letin. Articles should preferably be in TEX.
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There is to be a Research Announcement section in the
Bulletin, along the lines of that in the Bulletin of the AMS.
Research announcements must be backed up by a preprint.
R. Dark will act as editor of the Bulletin until Octaber
1992.

M. O Searcéid has agreed to help with the typesetting.

Graham Ellis,
University College,
Galway.

Partially Ordercd Groups

Gerard J. Murphy

1. Introduction

Ordered algebraic structures, such as ordered fields and ordered
veclor spaces, have long been studied in mathematics, both for
their own intrinsic interest, and for their applications. In re-
cent years partially ordered groups have became important in
connection with the theory of operator algebras, particularly C*-
algebras. The most important way in which a connection is mani-
fested is by means of K-theory. For example, if A is an AF-algebra,
then Ky(A} is a partially ordered group, and this group can be
used to analyse and classify A, We discuss this in Section 3. In
another direction, if a partially ordered group is given, one can as-
sociate to it a certain universal C*-algebra. In the good cases, this
algebra turns out to be the C'*-algebra generated by the Toeplitz
operators with continuous symbols on the dual group. The theory
of these algebras and operators has been developed by the author
and by others, and we discuss some of its aspects both in the
following section and inn Section 3.

A partially ordered group is a pair (G, <) consisting of a
discrete abelian group G, and a partial order < on & which is
iranslation-invariant, that is, if ¢ < y, then z + 2 < y +
(#,y,2 € G), and the positive cone Gt = {z € G | 0 < =z}
generates (7 {that is, G = Gt — GT).

Although this definition is a purely algebraic one, we observe
that the theory of partially ordered groups has been strongly in-
fluenced by functional analysis—specifically, by the theory of par-
tially ordered vector spaces. Also, as indicated above, the applic-
ations to operator algebras have largely determined the direction
of recent research in this area.

11




12 IMS Bulletin 28, 1992 B

If G is an abelian group, a cone of G is a subset €' such that
C+CCC ON(-C)={0},and G = C —C. Given a cone C,
one can define a partial order on G by setting <yify—zec(C.
This partial order is the unique one making & a partially ordered
group whose positive cone is C.

Clearly, if G is a partially ordered group, then GF is a cone
of (.

If G is a subgroup of R, it is a partially ordered group, with
positive cone Gt = GNRY. We shall always understand the order
on subgroups of R to be this one. The group Z" is a partially
ordered group, where the positive cone is N™. Such a group, and
any partially ordered group isomorphic to it (as a partially ordered
groun), is called a simplicial group.

A large class of examples of partially ordered groups is ob-
tained by considering the self-adjoint part of a C*-algebra. Since
these algebras feature prominently in the sequel, we recall their
definition. A C *-algebra is a Banach algebra endowed with an
mvolution operation a v+ a” such that |ja"al| = llall* for all ele-
ments a. Every such algebra has a faithful representation as a
norm-closed self-adjoint algebra of operators on a Hilbert space.
This class of algebras has a very well developed theory, and a vast
range of important applications to other areas of mathematics,
such as algebraic topology and differential geometry, and to the
scicnces, in particular, to quantum mechanics. For an introduce
tion to C*-algebras, see [9]. I A,, is the set of hermitian elements
(o™ = a) of a C*-algebra A, then it is a partially ordered group,
where the positive cone is the set of all squares a2 (a € Ayp).

An important way in which partially ordered groups arise nat-
urally is given by the process of deriving a group from a semigroup,
the Grothendieck construction. Let C be an abelian cancellative
sermigroup with zero element. An equivalence relation is defined
on C'x C by setting (z,y) ~ (z,y'), when 241 = 2"+ y. If [2, ]
denotes the equivalence class of (z, y), and G is the set of equival-
ence classes, then G is an abelian group under the addition opera-
tion [, y]+[+', ¥'] = [x +2’, y+4/]. The zero is [0,0] = [z, 2], and
the additive inverse of [x,y] is [y, z]. The semigroup € can be em-
bedded in G by means of the injective homomorphism a v [z, 0],

X Partially Ordercd Groups 13

and then & = C — C. The group  is the cnveloping group of C,
and has the universal properiy that every homomorphism from ¢
imto an abelian group extends uniquely to a homomorphism of G
into the group. The prototypical example, of course, is given by
C — N, and & = Z. The Grothendieck construction is important
in a number of situations, as for instance in the Kp-theory of unital
C*-algebras. Partial order comes into this because, although there
are advantages in replacing a semigroup by its enveloping group,
in some cases we also need to keep the original semigroup in mind
as well {an example is given below, in connection with stable iso-
morphism of AF-algebras). If C has the property that z +y =0
implies that 2 = y = 0 (x,y € C), then C is a cone of G. Thus,
in this case, (G is a partially ordered group in a natural way. In
this fashion, Kg(A) is a partially ordered group, if 4 is a unital
AF-algebra. (Note that Ky(A) is not always a partially ordered
group for arbitrary C*-algebras.)

‘We shall give more examples as we proceed.

Amongst partially ordered groups, three subclasses are par-
ticularly important, namely, archimedean groups, totally ordered
groups, and dimension groups. In the following section we shall
confine our discussion to totally ordered groups and archimedean
groups. We defer discussion of the much larger class of dimension
groups to Section 3.

2. Ordered groups

A (totally) ordered group is a partially ordered group {(G,<) in
which every pair of elements is comparable, that is, for all z, y € G,
either z < y or y < x. Of course, the subgroups of R are ordered
groups, but the simplicial group Z™ is not, unless n = 1,

If G and H are ordered groups, we can endow the product
group (7 x H with a natural order making it an ordered group.
Define (z,y) < (2',y') to mean that either z < z’, or r = 2’
and y < y'. This order is called the lericographic order, and
when endowed with it, G x H is called the lexicographic product.
In a similar manner, one can define the lexicographic product of
ordered groups Gfi,...,Gy, or indeed, or of an infinite sequence
(Gn)Z, of ordered groups.
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The same group may admit different total orders. For in-
stance, Z° has the lexicographic order, and also, if @ is an irra-
tional number, it has another order, namely the one whose cone
is the set of all elements (m, n} such that m + én > 0.

Note that an ordered group is necessarily torsion free. Also
it is not hard to show that a torsion-free partially ordered groupj
G is an ordered group if and ealy if Gt is a maximal cone. In
fact, any torsion-free abelian group can be made into an ordered
group, and we are therefore assured of a large supply of examples
of ordered groups. {This result is due to Levi (71)

Let & be a discrete abelian group, and denote by G its Pontry-
agin dual group. I x is a non-zero element of 7 of finite order, the
set {y(z) |~ € (7} is finite, and not a singleton, so it is disconnec-
ted. Hence, (7 is disconnected. Conversely, if & is disconnected
one can show that G admits a non-zero element of finite orde£
{[13], p47). Thus, G is torsion free if and only if ¢ is connected.
This turns out to be important in the theory of Toeplitz operators
defined relative to ordered groups, which we now discuss bricfiv.

If G is an ordered group, the Hardy space H*G) is the
L? norm closed linear subspace of L*(() consisting of all func-
tions f whose Fourier transform f is supported in G+, { G = 7,
one gets the classical Hardy space on the circle group T. Much of
the original H? space theory has been extended to the more gen-
eral situation by Helson and Lowdenslager—for a detailed account
sce Rudin [13].

Let P denote the orthogonal projection of L¥HG) onto H2G).

If v is a complex-valued continuous function on G, then the
bounded linear operator

H¥(G) = H*(G), [+ Plef),

is denoted by T,,, and called the Toeplitz operator with symbol .
Using the fact that (¥ is connected, the author gave a new proof of
a result of Widom and Devinatz which asserts that the spectrum
Qf 1."‘;. 1s connected [10]. An important question concerning T, is
its invertibility. In the classical case (G = Z) it is well known that
invertibility of 7y, s equivalent to the existence of a continuous

B Partially Ordered Groups 15

logarithm for . The author extended this result to the general
case {10], and here again the proof uses the connectivity of G

Denote by A(G) the C*-algebra of operators on H*(() gen-
erated by the Toephitz operators. This algebra, and certain of its
subalgebras, turn out to be interesting from the point of view of
(*_algebra theory. For instance, one gets a new class of simple
C* subalgebras (a C*-algebra is simple if it has no non-trivial
closed ideals—it is important to have examples of such algebras,
but they are not always easy to obtain). The K-groups of these
algebras are difficult to compute and have received much atten-
tion recently. For subgroups of the reals, the K-theory has been
completely computed, and for general ordered groups some im-
portant partial information has been obtained. We shall return
to this topic later, 1n connection with dimension groups.

An archimedean group is an ordered group G such that for
every pair ¢,y > 0 there exists a positive integer n such that = <
ny. The subgroups of Ik are clearly archimedean, and in fact these
are all the archimedean groups, up to ordered group isomorphism
(for a proof see [13]). If &7 ts an archimedean group, then the
commutator ideal of A(G) 1s simple, a result due to Douglas [3].
(The commutator ideal is the smallest closed ideal containing all
of the additive commutators ab—ba.) The author showed that the
converse is also true—if A (G} has simple commutator ideal, then
(7 is archimedean. Thus, order properties of the group are strongly
reflected in algebraic properties of its associated C*-algebra, and
conversely.

In analysing the C*-algebras A{(G), the author discovered the
following result concerning ordered groups, which may be new:
A finitely-generated ordered group Is a lexicographic product of
a finite number of archirnedean groups. This does not, by any
means, reduce the study of the algebras A((G) to the case where
(7 is a subgroup of R, but it is a usefu] result in the theory of
these algebras (see [11]).

3. Dimension groups

The groups of the title of this section form a class of partially
ordered groups which arise in the study of certain C*-algebras,




16 IMS Bulletin 28, 1992 %)

namely AF-algebras. They have been the subject of intensive
study, and now have a fairly well-developed theory. For a com-
prehensive treatment, see Goodearl’s recent AMS manograph [6].
Dimension groups are also covered in [1], [4] and [5].

An AF-algebra is a C*-algebra A having an lcreasing se-
quence of finite-dimensional C*-subalgebras A4, whose union
UnA, is dense in A. An example of such an algebra is the set
of all compact operators on a separable Ililbert space. On the
other hand, the C*-algebra of all bounded operators is not an
AF-algebra, unless the Hilbert space is finite-dimensional. The
class of AF-algebras is sufficiently close to that of the finite-
dimensional C*-algebras to be tractable, but it is nevertheless a
highly non-trivial class and exhibits typical C*-algebra behaviour.
Some C*-algebras which are important in the theory of quantum
mechanics belong to this class.

For the sake of simplicity, we shall only consider unital
ATF-algebras,

If Ais a finite-dimensional C* algebra, il is easy to see that
for some n, its K-group Ko(A) is equal to a simplicial group Z™.
It now A is assumed to be an AF-algebra, then by definition,
it is a direct limit of finite-dimensional C*-algebras, and there
fore by continuity of the functor Ky, the partially ordered group
Ky(A) is the direct limit of a sequence of sirnplicial groups. These
groups, direct limits of simplicial groups, are called dimension
groups. (The positive cone of a Kg-group is thouglit of as the
set of “dimensions” of the projections of the algebra, and of its
matrix algebras.)

It 1s a remarkable, and very important, result of this theory
that dimension groups have been given a very nice abstract and
usable characterization:

Theorem 3.1 A countable partially ordered group G is a «imen-
sion group if and only if the following conditions are satisfied:

(1) ' nz > 0 and n > 0, then z > 0:

(2) H oy < gy for i, = 1,2, then there exists z € (¢ such that
<z <y,

Condition (2) is calied the Ries: interpolation property. The
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theorem is due to . Effros, D. Handelman, and C.-L. Shen. For
a prool sce [5].

A dimension group closely reflects the structure of its corres-
ponding AF-algebra. For instance, the closed ideals of the aigebra
correspond to certain subgroups of the dimension group, called its
“ideals.” Thus, if the dimension group is simple, that is, has no
non-trivial ideals, the AF-algebra is simple.

If one wants to construct an AF-algebra with cerlain unusual
properties, one may bhe able to do this by interpreting the proper-
{les in terms of the dimension group, and trying to construct the
latter. In an important instance where this approach has been
taken, and has paid off very well, B. Blackadar obtained a cer-
tain AF-algebra with unusual properties, fromn which he in turn
constructed a C*-algebra which is simple, yet has no non-trivial
projections (self-adjoint idempotent elements). This solved a dif-
ficult problem which had been open for many years.

Since simple dimension groups are particularly important, we
give some examples to illustrate the possibilities.

Every countable subgroup of R is a simple dimension group.

Let G = Q" and define the positive cone to be

Gt ={{ze,....2za) |21, .., 2e > 0 U{{0,...,0)}.

The corresponding partial order on G is called the strict order. It
is easy to see that (¢ is a simple dimension group. .

If ¢ = Q2% where the positive cone is G* = {(z,y}) | = >
0} U {(G,0}}, then ¢ is a simple dimension group.

If A and B are AF-algebras, under what conditions on their
dimension groups are they isomorphic? The answer, due to G. El-
liott, is easy to state, but the proof is difficult. A necessary and
sufficient condition for A and B to be isomorphic is that there is an
order isomorphism of the corresponding dimension groups, which
is unital in the sense that the Kj-classes of the units of A and
I3 correspond. If the dimension groups are only order isomorphic
(with no assumption that the isomorphism is unital), then the
algebras are stably isomorphic, which may be loosely asserted to
mean they have the same representation theory.
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We finish up by returning brielly to the theory of Toepliiz
operators. Let G be an ordered group. If ¢ = {i4;) is a square
matrix of order n whose entries are continuous complex-valued
functions on' &, define the Toeplitz operator Ti, to be the matrix
{Z,;) (as an operator this acts on the orthogonal direct sum of
n copies of H*(G}). It is shown by the author in [12] that if To
15 invertible, then ¢ is inverlible and its class {ils “topological in-
dex”) in the K-group K1 (C((5)) is the zero element. This extends
a result known for Z, and more generally, for subgroups of It
The proof involves K-theoretic computations which use the fact
that ordered groups are dimension groups, and therefore may be
written as direct imits of simplicial groups. Actually, rather more
1s proved, and the interested reader is referred to [12] for details.
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HOW TO COMPOSE A PROBLEM FOR THE
INTERNATIONAL
MATHEMATICAL OLYMPIAD?

Fergus Gaines

A difficult task for the organizers of any national team for par-
ticipation in the International Mathematical Olympiad (IMO) is
to fulfill the request of the host nation to submit original prob-
lems for consideration by the jury for inclusion in the Olympiad.
To compose such problems requires considerable skill and even
mathematicians of a high calibre can find the task difficnlt be-
cause many of the techniques of the professional mathematician
are excluded by the requiremert that the problems have “element-
ary” solutions. Arthur Engel has written a very interesting article
[2] describing his thought processes in composing IMQ problems.
Since the author is actively involved in the preparation and train-
ing of the Irish IMO team he has felt it incumbent on himself

to compose suitable problems. This article describes some of Lis
attempts.

In this article four avenues of approach to the task of com-
posing IMO problems are considered. They are:
§1. Use a known result in some area of mathematics that might
reasonably be assumed to be outside the knowledge of the con-
testants.
§2. Do a variation on a known elementary, but tricky, result.
§3. Compose a problem from a topic being currently taught by
the composer.

84. Use someone else’s problem!

§1. In past Olympiads some of the problems which appeared were
direct applications of a piece of mathematics which is well-known
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to mathemalicians, e.g. the pigeon-hole principle or the concept
of an cigenvalue. But nowadays it 1s taken for granted that such
problems would be deemed too trivial, because of the training that
many of the contestants recelve. The first idea the author had for
constructing an Olympiad problem was to take a known result in
some area of mathematics that might be reasonably assumed to
be outside the knowledge of the contestants and to vary it a little.
Thus, on page 3 of Jacobson’s book {3] on Jordan algebras is the
following result of Hua Loo Keng:

Theorem. Let ¢ be an additive mapping of a division ring A
into a division ring A" which preserves inverses. Then o is either
a homomorphism or an antihomomorphism.

The question we ask is: does this give a non-trivial problem for
the real numbers? As an answer we have

Problem 1. Let f be a function from the real numbers to the
real numbers such that f(1) =1, f(a +8) = f(a} + f(b) for all a
and b and f(a)f{1/a) = 1 for all @ # 0. Prove that f(z) = z for
all x.

Proof. Tt is easy to prove that the properties f{(1) = 1 and
fla+b) = fla) + f(b) for all ¢ and b imply f(z) = = for all
rational numbers 2. It is also not difficult to prove that f is
injective and that f(—z) = —f(x) for all 2.

Next we note that, if f(a) # f(a?),

1/{fta) = 1) = 1/|f (a1 - a))]
= f[1/at 1/(1 - a)]
= 1/[f(e) - f(a)?].

Thus f{a?) = f(a)? here and this resuit is still true when f(a) =
f(a®). Thus f(z) > 0if 2 > 0. So @ > b implies f(a) > f{b).

Finally, if z is any real number there exist two sequences {a,}
and {b,} of rational nurabers such that z is the only real number
satisfying the condition e, < z < b, for all natural numbers n.
Then a, = f(a,) < f(z) < f(bn) = b, holds for all » and hence
f(z) = z for all real numbers 2.
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This problem was submitted to the 30th IMO in Germany in
1989 but was not shortlisted. Perhaps it was not suitable because
a characterization of the real numbers might not he known to
some contestants.

Another, more recent, result that it was felt might yield a
suitable problem is the following result of Leep and Shapiro [5]:

Theorem. Let G be a subgroup of index 3 of the multiplicative
group of a field F. Then every element of F is expressible in the
form g+h where g and b are elements of (7, except when | F| = 4,
7, 13 or 186.

Replacing £ by the rational numbers doesn’t seem to make
the theorem any easier and, in any case, one shouldn’t expect too
many of the IMO contestants to know much about groups. But
the theorem is the motivating idea for the following problem.
Problem 2. Let Q denote the set of rational numbers. Let S be
a nonerpty subset of Q with the properties:

Q) 0gs;

(ii) if sy, s2 € S then s1/s2 € S,

(it} there exists ¢ € Q with g # 0 such that every nonzero
rational number not in S is of the form gs for some 5 £ S.

Prove that if € 5 then there exist y, z € § such that 7 — Y+ z.

This problem is too easy for an IMO but it was included in
the 1991 Irish Mathematical Olympiad and gave a lot of difficulty
to the contestants because of the group theory concepts involved.

§2. Another idea for composing a problem is to take a known
elementary, but tricky, result and do a variation of it. Ior example,
the following is a well-known, difficult result in plane geometry.

The Steiner-Lehmus Theorem. {1]. If the bisectors of two
angles of a triangle are equal in length then the triangle is isosceles.

The following variation suggested itself.

Problem 3. Let ABC be a triangle with L a line through ¢
parallel to the side AB. Let the internal bisector of the angle at
A meet BC at D and L at E, and let the internal bisector of the
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angle at 55 meet AC al J" and L at G. If DE = F@ prove that
CA=CR.

Proof. Let BC =a, CA = b, AB=cand 4 = 20, B = 28.
Obviously
CF a ab be
—_— = = = B C_D = R
FA ¢’ ¢l a+te b+e¢
Suppose @ > b, Then a > 3, sina > sin g and sin 2a > sin24. In
the triangle CFG

GF  CF
sin2a  sinf

and thus _
absin2a

FPe=
¢ (a+c}sin 3
In the triangle CDE

cD ED

sina  sin28

and thus .
absin 23

ED = (b4 e)sina’

Since GF = ED we get
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(b + c)sinersin 2o = (@ + ¢) sin Fsin 2.

: a b
Using t >t that = — $
sing the fact tha snla  smo we ge
sine _ {a+c)b  ab+be

stnfd  (b+cle  ab+ac

since @ > b, This implies sina < sin 3, which coutradicts ihe
assumption a > b. It follows that @ < b. In the same way, a > b.
Thus a = b.

Proofs of this result using Euclidean geometry and coordinate
geometry have also been found.

This problem made it to the short list at the 31st IMO in
Beijing in 1990 but did not feature in the final Jury discussions.

§3. Another area of inspiration for composing IMO problems is
whatever the composer is teaching at the time! Thus, in teaching
a course on complex analysis the author felt that the topic of
Mabius transformations should yield a tricky problem. Aud, sure
enough, we have
Problem 4. Let P be the set of positive rational numbers and
let the function f from P to itself have the properties
() F(z)+ f(1/z) = 1 and
(i) f(2z)=2f(f(2)) forall z € P.
Determine, with proof, a formula for f(x).
. 1
Proof. Let x = 1in (i) to get f(1) = 3
1
Then (ii) yields f(2) = 2f (§> and, putting z = 2, (i) gives
1 1 2 .
f(i) =3 and f(2) = 3 Trying a few more values of 2 leads -
one to suspect that f(z) = z ] forallz € P. If 2 € P then =
can be written as — where m and n are relatively prime natural

n
numbers and we shall assume that all the rational numbers we
deal with are expressed in this reduced form. Let h{z) =m+n

B How to compose a problem for the IMO?7 25

mo.. . £
where z = — s in reduced form. We prove that f(z) = by
n z41

induction on h{z).

It 1s clear that

- satisfics properties (i) and {i1) of the
X
problem.

1
Next, h(x} = 2 forces z = 1 and h{z) = 3 forces 2 = = or 2.
Thus we have already verified the formula for f{z) when h(z) < 3.
Solet z € P with h(x) > 3 and assume the formula for f(y) holds
for all y & P with Ay} < h{z).
Let x = — be in reduced form and suppose m and n are both

Fi3
odd. Suppose also, without loss of gencrality, that m < n. Since

h( m )—n<m+n:h,(a:)

n—1m

m m
(=)=
n—im n
There exists a natural number d such that n — m = 2d4. Thus
m
()
n—1in
1 2m
- §f (n - m)
1 m
=3/ (3)
m
2{m + d)

we have

flz)

by the induction hypothesis, since

m 1
h (F) =m+ i(n — )
= TT—HE < h(x).
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Hence
m z
flz) = = )
() m+n r+1

Thus the formula holds if m and n are both odd.

Now 1
suppose one of m and n, m say, is even. Then m = 2¢,

for some integer & > 1 and some odd integer r. Then we get

nﬂ:f(%@
o)

9k-1,.
=2 _
f <2k‘1r+ n)

1 (@)

and we note that

(o) =1

Letting m) = m and n; = n we have proved that there exist
natural numbers my and no, with mq even and ns odd, so that
flmi/ny) = Qkf(ng/mg) and h{my/ny) = h(ms/ns). ,\/Ve then
have f{m;/ny) = 281 — f(ma/ns)]. Repeating this process we
get a sequence of positive rationals my/n; with m; even and n;
odd, f(mi/”_i) = 281 - flmig1/nig1)], where k; is the highesz
powerlof 2 dividing m; and h(m;/n;) = hiz) for i = 1,2,...
Since there are only finitely many rationals satisfying the
last. condition there exist natural numbers r and s with r < g
so that m./n, = m;/n,. Then there exist integers p and ¢ so
that f(m./n.) = p+ qf(m./n,) and ¢ = +2¢ for some natural

|
|
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number ¢ Hence we get the unique value p/{1 — q} for f{m,/n,).
'Fhus we get a unique value for f{z). Since only properties (i) and

{ii) were used in deriving this value of fiz}, and T satisfies
I

these properties, uniqueness implies that f(z) = P So the
x
result is true by induction.

I is probably clear how this problem was composed: write

down a few properties of the function and try to recover

the original function from these properties.

This problem was also included in the 1991 Irish Mathemat-
ical Olympiad. It was intended originally to submit the problem
for consideration by the IMO jury in Sweden in 1991 but, owing
to an error in the author’s original solution, the problem was con-
sidered too easy. T. J. Laffey supplied the crucial argument for

. L, ™ ) _
dealing with — when m 13 even and n is odd.

n

It can happen with IMO-type problems that a very elegant
solution can be produced which the composer did not envisage
(The author would welcome such a solution to Problem 4 above!).
At the 30th IMO in Braunschweig the following problem was ac-
companied by a very complicated solution and was rated A++ by
the jury:

Problem 5. A permutation {(z;,zs,...,r3,) of the set {1,
2,...,2n}, where n is a positive integer, 15 said to have prop-
erty P if |#; — 2;41] = n for at least one ¢ in {1,2,...,2n — 1}.
Show that, for each n, there are more permutations with property
P than without.

My colleague Michedl O Searcdid came up with this elegant
proof of a mere general result:

We say that the permutation (zi, g, ..., z2,) has an an ad-
jacent pair if and only if |#; ~ z;41] = n for some 7 with 1 <
i< 2n — 1. Let § be the set of those permutations with eractly
one adjacent pair and let 7" be the set of permutations with no
adjacent pairs. We shall prove that |S| > |T']. This 1s clear if
n=1 Soletn > 1. Let f:7T — S such that f(zrq,...29.) =
(2,23, .., Tj1, &1, L), ..., T2a) Where [z, — z;| = n. Then fis




28 TMS Bulletin 28, 1992 i

well-defined and injective. Tt is not surjective since, for example,
the permutation (1,n+ 1,2,3,.. n,n+2,.. .2n) is in S but not
in T Hence |5| > |T'|. This more general result now implics the
proof of problem 5.

§4. One final way of getting a problem for the IMO is to use
someone else’s! The other “Irish” problem shortlisted for the IMO
in Beijing is the creation of Charles Johnson of the College of
William and Mary in Virginia. It is:

Problem 6. An eccentric mathematician has a ladder with
n rungs which he ascends and descends in the following way:
whenever he ascends each step he takes covers a rungs of the lad-
der and whenever he descends each step he takes covers b rungs
of the ladder. By a sequence of ascending and descending steps
he can climb from ground level to the top rung of the ladder and
climb down to ground level again. Find, with proof, the smallest
value of n, expressed in terms of @ and b.

Solution. The smallest value of n is a + & — (a, b} where {a, b} is
the greatest common divisor of @ and b. This is obvious if alb or
bla.

Suppose that {z,b) = 1. Suppose also that a > b {there is
no loss of generality since the problem is symmetric with respect
to ascending or descending the ladder). Then there exist natural
numbers 7y, 81 so that

a=0bs +r
where 0 < r; < b. In general, given the remainder ri_1, there exist

integers r; and s; so that a+rj_; = bsj+r;, where 0 <r; < b1,
forj=123,.... Sincee =r; (mod b) we get rj = jr1 [(mod b),

for j = 1, 2,.... Since {r,b) = I the integers vy, ra,..., 1 are
distinct and thus are equal 10 0, 1, 2,...,5 — 1 in some order.
We must have r, = 0, since r; = 0, for some 7 < b, implies

that r;1; = 71, which is a contradiction. I the mathematician
1s standing on rung r;, (counted from the bottom) of the ladder
and a + r; < n then, by ascending by a rungs and descending hy

i
i
¢
I
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bs;4y rungs, he can get Lo rung rj41. So, il a+b—1 = n, we have
a+r; <nforj=1,2,...,0and, since b =1 = r; for some j,
he can clearly get to tung r; for each j =1, 2,...,b and thus he
can climb to the top rung of the ladder and back to ground level
again. { n < a+ & — 1 he can ot reach tung r; for some j < b
and thus he can not reach “rung” rs, t.e. ground level, and thus
he can not ascend and descend the ladder in the required way. So
the smallest value of nis a+8~1. Finally,if {a,b) = £ > 1 replace
a and & in the above discussion by a/k and &/k, respectively, and
then scale all integers up by & to get a + & — {a, b} as the smallest
value of n.
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THE USE OF THE COMPUTER
IN MATHEMATICS TEACHING
PAST HISTORY - FUTURE PROSPECTS

D. J. Evans

Initially, the digital computer was created to facilitate the solution
of problems that required numerical computations which were for

. Dlgital computers first made tl1efp appearance on college and
umverS{ty campuses in the late 19505 At that time virtually all
computing was done in batch mode and programmine using a sci-
entific programming language such as FORTRAN ;r pos.;’ibllv a
Iocgl dialect. Under these conditions, the time from submission
t? Job return would be not less than 45 minutes. The forlid-
ding nature of FORTRAN syntax and the complexity of its .inputw
output statementg required that a more “uscr friendly” language
be created. As a result, alternative languages such as UBASIC{J asz
WATFOR were created and extensively used by students.

?he next major development, jn computing which affected
teaching use was INTERACTIVE COMPUTING. Under this
mode of operation, a user could be connected to a mainframe
from a remote location, enter a program, and execute it. As a
regu]t the “turnaround” time between Jobs became Jass .tha:ll 5
minutes, - L

New applications of the computer to nstruction and teaching
also became possible soon after, Perhaps the major new develg -
ment of coneern to g today was COMPUTER AIDED INSTR-UCI;
TION {CAT) which quickly became a foca) point of concern for
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education researchers. The output from most of the programs at
that tinc was still numerical or perhaps consisted of “computer
graphics”. Some instructors, however, began to use GRAPHICS
terminals and their impact was immediately fels.

With the introduction of the MICROCOMPUTER in the
late 1970s, graphics became widely available. More importantly,
the microcomputer changed the locus of control from the cam.
pus computer center running large mainframes in a multiuser en-
vironment to a deparimental computer laboratory controlled by
the local teaching stall. With the introduction of the IBM per-
sonal computer and the Apple Macintosh processor, bit mapped
screens soon became available for sophisticated graphics use as the
amount of random access memory increased from 48K to 519K or
more and the processors operated very much faster. The declining
price for computers also made it possible for most high schools to
have computers available for their students.

The developments T have outlined are of ever changing tech-
nology driven primarily by non-instructional needs. Neverthe-
less, as technology changes the instructional applications will also
change. As we look to the future, the one thing we can be certain
of is thal the technology will continue to advance, and that com-
puters will continue to decline in price. Thus we have today an
environment in which our students arrive at college knowing how
to use a computer and able to purchase a microcomputer for ap-
proximately £200 with a capability greater than many of the early
mainframes. In addition, hand held calculators are now readily
available with a programming and graphics capability equivalent
to the early microcomputers. There can be no doubt that this
technology will affect both the way we teach UNDERGRADU-
ATE MATHEMATICS and the COURSE CONTENT.

As we look to the future, we see an ever changing technology
which will continue to provide opportunities for teaching innova-
tion. The advanced workstations of today will become the com-
monplace equipment of tomorrow. These machines will be linked
by networks which will access fileservers, high quality printers,
and gateways to external resources such as remote data bases and
libraries. So instead of focusing on the use of computers to im-
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prove the te_aching of current mathematicat topics, we can begin
to explore simulated learning environments which will enablcgous
to teach subject material previously thought to be too al_;stract. ]
complex for undergraduates. | ”

Computer Impact on Mathematics

In Mat?ematics computers first made their impact on Numerical
Analysis and during the period 1956-75 the subject developed
greatly, both in stature and discipline. Statistics, also bein]z“ a
numerate topic, quickly followed the same fate. It ’has only b:en
recently, since the introduction of the more powerful supercom-
puter and parallel computers that we have seen a similar impact
on Algebra, to be followed shortly with improved graphics and
visualization technology on {eometry. .

Discrete Mathematics

plscrete mathematics is what computers actually do. Therefore
it should be compulsory to all our students if they are to achiew:
some proﬁc_iency and affinity with computers. It is the malhem:
atics of finite and countable sets, and it includes topics taught
thrc_)ugl.lout the standard secondary and college curricula Thzsej
Foptcs inctude logic, set theory, combinatorics, discrete p.robabi}—
ity, _functif)ns and relations on discrete structures induction, re-
curston, difference equations, graph theory, trees ;}crebraic qt:ruc—
tures, and linear algebra. s ‘-

Finite Differences

T.he computer age has given new impetus to the method of finite
differences, which treats problems of time evolution posed in dis-
crete rather than continucus form. This is an old subject studield
by Boole in the 19th century.

‘ A discrete mathematics centered on difference equations is
timely, not only because of the increased usage of computers bu&
because of the known shortcomings in the Infinitesimal Calc‘ulu‘;

The Calculus of Newton and Leibniz was designed to cir)c.un‘l—.

vent the difficulties of dealing with the discrete by the passage
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to continuous limits. Sums became integrals, differences became
differentials, and the computational labour of repeated additions
and subtractions avoided by the power of the Infinitesimal Cal-
culus. Anocther difficulty with traditional calculus is that many
modern problems resist continuous meihods. Even the student
who succeeds with calculus needs to appreciate discrete approxim-
ation schemes which can be implemented on the computer. Such
schemes are increasingly important for the solution of the analytic-
ally intractable differential equations arising in many applications
in the real world.

Discrete mathematics also creates a link between ideas and
techniques of computer science and important and useful math-
ematical notions. An elementary course on the subject can even
bring students into contact with active research in mathematics,
physics, chemistry, and other areas.

Lincar Algebra

The topic which has been most affected by present day computers
is Linear Algebra. What then may the main topics in a Linear Al-
gebra course of the future become? Surely the elementary theory
concerning the concepts ol linear independence, span, basis, and
dimension will remain fundamental, and properties of the algebra
of matrices and linear transformations will not lose their import-
ance. Also the geometry of vecters will continue to provide im-
portant insights and examples. The analysis of linear systems
of equations and the investigation of eigenvectors and eigenvalues
will require added emphasis, since the computer software allows us
to ask so many more interesting questions mvolving these objects.

However, reduction methods and echelon forms will need a
different approach, since the software and algorithms which carry
out the necessary computation are often quite different from those
now taught. Without doubt, reduction to upper triangular form,
possibly using partial pivoting (and followed by back substitution
if there is an equation to be solved) should be the main hand
computation approach, as this is similar to the LU-decomposition
that a good Linear Algebra software package uses.

Methods for computing matrix inverses and detailed discus-
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sions of determinants probably require less attention. Since ap-
plications rarely require {he cormnputation of a matrix inverse it is
always better to solve the related linear system. Also determin-
ants have decreased in importance since modern algorithms for
approximating eigenvalues and eigenvectors make no use of them.
Furthermore, two other applications of the determinant, Cramer’s
Rule and the adjoint formula for the matrix inverse have become
even more superfluous since the computation is done by software
which makes no use of them.

There should also be a subtle alteration in emphasis through-
out the course. Instead of paying close attention to the elements of
a matrix, a point of view that is reinforced by hand computation,
the properties of the matrix as an entity should be stressed.

Finally, the major addition to the Linear Algebra course
should be the study of applications. Interesting applications that
lead to linear systems of equations should be studied, i.e. tem-
perature distributions found by approximating values at discrete
grid points, input-output models in economics, electrical circuit
analysis, least-squares approximation, balancing chemical reac-
tions, and network analysis. Applications that involve locating
eigenvalues and eigenvectors include: Markov chains, biological
population models, and models of genetic inheritance. If there is
tirne to study first-order linear systems of differential equations,
many more applications become within reach.

Numerical Sclution of Systems of Equations

Methods of solving systems of eguations are divided into (i) dir-
ect and (ii} indirect, or iterative, methods. For linear equaticns
the direct methods include the well known Gaussian elimination
process, the indirect methods include the Gauss-Seidel method.
The direct methods have the advantages (a) that they will
always produce the solution provided that it exists, is unique and
that sufficient accuracy is retained af each and every stage, and
(b) that the solution is found after a known number of opera-
tions. They have the disadvantage that very sparse systems of
equations, such as those which arise in finite difference /element
approximations to differential equations, may become rapidly less
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sparse as the elimination process proceeds so raising the stor?.xge
requirement {rom a multiple of n (for n equations) to something
like n?.

The iterative methods, on the other hand, may fail te con-
verge to a solution and if they do converge it is not ol?vious how
many operations they will require to produce the desired accur-
acy. They have however, the very considerable advantage tl}at
they are very well suited to computers and presecve the sparsity
of the coeffictent matrix throughout.

Direct methods for the numerical solution of non-finear sys-
tems are rarely available; there is, after all, no direct methoc! for
solving the general polynomial of even the fifth degr§e and so iter-
ative methods are generally used. As in the case of linear sy-stems,
convergence may not always occur, though condit10n§ sufficient to
ensure convergence are usually known; and although in some cases
the number of iteration necessary to proditce convergence to a spe-
cified accuracy may not be easily predicted, it is frequeqtly not a
matter of great importance. However accelerating techniques can
often be used if time is limited.

The revival of interest in iterative methods brought about by
the use of computers has led to significant advances in the Stud3{ of
functions which are iteratively defined, e.g. by a nonlinear relation
of the type

Zn1 = F(Zy)

where Zj is a given complex number and the function F(Z) may
contain one or more parameters. Some simple functions of this
type are the quadratic equation

az? bz 4+c=0 (1)

By rearranging terms and a change of variable we can express this
in quadratic iteration form, i.e.

Zasr = 2, FC, (2)

from which there are 3 possibilities:
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1. The sequence Z,, converges to a limit o which is the solution
of (1).

2. The sequence Z,, does not converge but the points Z,, remain
bounded.

3. The points Z,, eventually move outside any bounded regian.

In general all 3 cases can occur. Moreover, the complex values of
{ for which the sequence starting with Zy = 0 is either of type 1
or of type 2 form the well known Mandelbrot set, which has been
the topic of much research recently.

Algorithms

An algorithm is simply a procedure for solving a specific problem
or class of problems. The idea of an algorithm has been around
for over 2000 years (e.g. the Euclidean Algorithm for finding the
highest common factor of two integers) but it has attracted much
greater interest in recent years following the introduction of com-
puters and their application not conly in mathematics but also to
problems arising in technology, automation, business, commerce,
economics, social sciences, ete.

Computer algorithms have been developed for many com-
monly occurring types of problem. In some cases several al-
gorithins have been produced to solve the same problem, e.g. to
sort a file of names into alphabetical order or to invert a matrix,
and in such cases people who wish to use an algorithm will not
only want to be sure that the algorithm will do what it is sup-
posed to do, but also which of the several algorithms available
is, in some sense, the “best” for their purposes. An algorithm
which economizes on processor time may be extravagant in its
use of storage space or vice-versa and the need to find algorithms
which are optimal, or at least efficient, with respect to cne or more
parameters has led to the development of Complexity Theory. For
instance the Fast Fourier Transform has reduced the time com-
plexity from order n? to order nlogn, which is of considerable
practical importance for large values of n.

An important aim in algorithm design is to ensure that the
algorithm is “robust” 1.e is guaranteed to produce the required
answer under as wide a variety of conditions as possible.
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However, the interest is still (and always has been) on reli-
able methods which always converge. For instance the quadratic
cquation (1) when a, b and ¢ are real can be solved in many ways.
However from the Theory of Equations we have the roots g, g
are given by

b ¢
) tay=—— and ooy =~
a a

which when written in iterative form

(nty _ b (m) (nt1l) _ €
oy == 2} and oy = aa(ln"H) (3)

where agu) 1s given, give a convergent algorithm and is preferable
to the quadratic iteration form (2).

The direct methods too should be reconsidered in the de-
manding circumstances of present day software requirements. A
simple program just using the formula

—b 4 /b?% — 4ac
2a

will just not do. A robust software package should check its input
for validity as well as all the possible variations of the formula, i.e.
when the roots are complex, etc. Also it must generate sufficient
€ITor messages so as to leave no doubt in the user’s mind. Thus
a complete flow diagram for the direct solution of the quadratic
equation (1} is shown in Fig. 1.

Another area of great importance is the acceleration of the
convergence of iterafive processes especially for the large systems
of linear equations which occur in scientific problems.

Given the trivial (2 x 2) system Az = b where A4 is symmetric
and positive definite, i.e.




QUADRATIC EQUATION ar?+bx+c=0

Unseen wput ¢, b, a —
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DIRECT METHOD

o soluiions |

Inconsistent

equation

Single root
r=-cfb

2 complex roots

Y

bt < dae Y

212 = (b ividac—b7)/2a

2 real roots
z1 = (—b— Vb% —4dac)/2a
29 = —2¢/(—b—Vb? — 4a)

¥

[£? - dac [HY

%)

‘ 2 real roots

Tyy = (—b +hE — tiac)/?cr

FIGURE 1

then the well known Gauss-Seidel method
:nng) = a:c(zk) + b
1) = (k1)
is known to give acceptable convergence unless ¢ = 1. Tt is usual
to apply the successive overrelaxation (SOR) method, i.e.

:l.’(lk+1) = .‘E(lk) + W (ar(;) + by - I(lk))

$2k+1) = :z:gk) 4wy (aa:(lkH) + by — 1'(3“)
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where the overrelaxation parameter wi is chosen from the formula

2
L4 V1 —a?

w; =

to obtain an extremely rapid convergence when a is very close to

1.

An even more rapid convergence is abtained when A is skew

symmetric, 1.e.
1 @
a=(2 1)

Now the successive underrelaxation (SUR) method becomes

r(lk'H) = ;c(lk} + wa (——a:cgk) + b — :r:(Lk))

r(zk'H) = J.'gc) + wo (ax(lkﬂ) + bg — a:gk))

where the optimal acceleration parameter ws is now given by

2
14+ 1+ a?

Wwg =
A comparison of the results for the 3 methods is given in Table 1,
where N is the number of iterations required to achieve an accur-
acy of 1075,

u Gauss-Seidel SOR SUR.
w=1 N w1 N wa N
0.8090 1 33 | 1.2596 |11 | 0.8748 ) 7
0.9969 1 2,238 | 1.8545 | 88 | 0.8292 | 8
0.9988 1 5,732 | 1.9065 | 141 | 0.8288 | 8

TABLE 1: A comparison of the convergence rates of

the Gauss-Seidel, SOR and SUR methods.
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Recursive Algorithuns

Algorithm design is an important topic which we should teach to
our students — especially how to construct a recursive algorithm
and in the following we show the details of a recursive parallel
algorithm design.

in the numerical solution of partial differential equations by
the implicit methods there occurs the problem of repeatedly solv-
g linear systems involving tridiagonal matrices possessing diag-
onal dominance. Current algorithmic solution methods involve a
Gaussian elimination of the matrix equation to upper triangular
form with unit diagonal entries, from which tle solution vector can
be easily obtained by a back substitution process. In algorithmic
form, we calculate the quantities

c ; .

T T T S S
b bi ~ asgiy
d di —ahi_y | (4a)

hi= —, h= , =23, 0.0 n,
by by ~ Gigin1

and the solution is given by
2n = Ay, o= hi— g, t=n—1,n-2 .91 (48)

However, it is well known that sucly back substitution processes
{4b} are more ideally suited for serial computers and nowadays
with the ever increasing usage of parallelism in algorithrus it is
necessary to investigate whether a more efficient parallel algorithm
based on the Gauss-Jordan method can be formulated.

We now consider the (n x n) tridiagonal system given by

bl [55] . Ty d]_
ag bz Co 0 Lo dg
= (5)
0 s T Cpoy :
Iy bn L dn
and since b; > a; +¢;, i = 1,2, ..., n then we are assured that no

pivoling is required in any ensuing elimination process and hence
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the tridiagonal matrix structure will be maintained in successive

ehminations. . _ .
Initially the first equation is normalized by setting

d
g= hig= ot (6)
1

Then, the coeflicient of z; in the second equatio_n is elimnated by
multiplying the first equation by —a, and adding to the second
equation, 1.e.

h‘l a
1 91 x .
0 ba—asg oo 0 T2 | dy —aghy g -
as bz c3 = :
0

which is then normalized by setting

2 ; do —aghi o
=, fhag= =7
g2 bs — azgn °7 b — g

From now on the Gauss-Jordan elimination proceeds differently
and eliminates coefficients both below and above the diagonal as
fouov';sl'ie coeflicient of zs in the third equation i?‘ eliminated lby
multiplying the second equation by —ag and adding to th.e th_lrd
equation, and the coefficient of z4 In t_he first equation 1s_ehm—
inated by multiplying the second equation by —g; and adding to
the first equation, i.e.

h =g ha o
Ty 1,0 -
é [1} _?292 0 2 jl‘?-Oh
by —azgs ca a1 _ ds = (_]3 20 (8)
aq by Cq B ] :
0]

which is similarly normalized by setting

g3 = i“—. fz p = w, and by =hyo—gihago
bs — asgs ' ba —azg
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A further step of elimination Ulustra 2
th_e _algorlthm. The coefficient of T3 tﬁf tf!l:::t?;
eliminated by mu]tiplying the third eqlmtion‘b
to Ll_ne fourth equation, the coeflicient of d
1s eliminated by multiplying the third eq
to the second equation, the coeflicient o
eliminated by multiplying the third eq
to the first equation, e,

urth equation s
: —a4 and adding
23 W the second cqualion
valion by — gy and adding
fa:; in the first equation i:
uation by g, g, and adding

L0 0 ggg, Ty fr ) + figahis g
L0 —g,g 0 T3 N2 — gohy g
I , g3 T3 hea o
4 = G403 Cy Ty = d.} ‘(I4’1,35 o
G ag 65 Cs ( )

which ig similarly tormalized by setting

_ Cyg dy —

5= \ g = BT ahs,
\ 4~ daq3 bs — aygy {10)
1,2 = h ¢

, L1+ @gahe g, and hay = hy, = g2ha g

By continuing j imi
E 18 a similar manner ; i
for the rows 3.4, .. 21, 1t can

b '] i
e verified that ultimately the system (5) is transformed Lo t)e

form
1 x

I fey

1 0 2 faj’: .

0 i : M1y

L Ty hn_,D

. . N -
Cf)om ]wiu]ch We can see that the original tridiagonal system is now
wpletely decoupled ang the solution i« immediat‘ely avaiiable

IJ]HS t S5 € tl e IU() S We ¢ {
E Q lJIIllIlaIJZ 12 4 rit im
S 1C Droce
o p S, .ﬂl Ulﬂtc t!lC

&

rothe pattern of
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Ci

i = T -:21 Yoy _1 2
g b.'_aiﬂi’—l ' 3 " (I )
hig = di T dikiz10 i=23, .. .n

b,' — aigi—1

Then,fori:3,4,...,n—l,k:iﬁ‘z,z’u&...,2,1,

. F=i-2
Akt = hgjog_g+ (1)1 H gihi_y .
i=k
Finally, the solution vector z is given by
J.T,‘:h,',n_{, i:1,2,...,n.

Thus, by using column sweep techntques which can be completed
in parallel as the algorithm proceeds we are able to eliminate the
recursive back substitution process completely from the computa-
tion.

The application of this direct method to the numerical solu-
tion of matrix equations arising from finite difference approxim-
ations to elliptic partial differential equalions in two and higher
dimensions can be made in the following manner. For two dimen-
sional problems, these finite difference approximations produce
matrix equations of the form AX = D, where the matrix 4 has
the form

81 Cl
Ag BZ C‘? 0

4 T (13)
0 o Oy

AN By

ilere, the square submatrices Bj are of order n;, where ‘n; corres-
ponds to the number of mesh points on the jth horizontal mesh
line of the discrete problem. The direct inversion method (12) can
be immediately generalized so as to apply to AX = D. Indeed, if
the vectors X and D are partitioned relative to the matrix A of
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(13), then we define
Gv=DB7"Cr, Hyo=n'p,,

G = (B - 4G L, i= 2,3, .. N -1 (14)
Hio=(B: — AiGioy)y YD, - Aidlioie), =23 .. N
Then, fori=34, . ,nﬁl,k:i—Q,ikB, o1
j=i—2
Hrictor =Mooy + (21U T Goar,
1=k

and the vector components X; of the solution are given by

X = Hin i i= 1,2,3, ... . n

Parallel Algorithms

More recently the problem of designing algorithms whick can he
efficiently run on several processors working in parallel has atlrac-
ted considerable interest. Algorithms which are ideal on a single
processor may be highly wefficient, or even fail entirely on parallel
processors and the design of sujtable parallel algorithms for even
the commonest problems is a matter for present day research.

Conclusions
The power of computers has given us the tollowing opportunitios:

1) to make new discoveries in Mathematics;
1) in the teaching of Mathematics 1tself;
lii} to develop new methods (algorithms} which are efficient on
computers for the solution of a wide range of problems and
particularly so on parallel computers.

D. 1. Evans,

Paralle] Algorithms Research Centre,
University of Technology,
Loughborough,

Leicestershire LE1 3T,

England.

CAUCHY'’S MATRIX,TRIX
Al
THE VANDERMONDE M
AND POLYNOMIAL INTERPRETATION

R. Gow
Let K be a field and let oy, ..., @n be elements of K. The n xn
matrix V = V(ai,..., an), where
1 1 1
oy oy o
V = - 3
of 7t ey ap!

. . of
is called a Vandermonde matrix. It is an exanlglof iet;yiei o
for example, Chaptler 3
' ix known as an allernant. See, : ‘ f
I[?]atr’?he Vandermonde matrix plays an important r{)le_ in z;toig-
lJ .s concerning polynomials, symmetric polynomials ﬁﬁp <
flr;r The determinant of V is well known to be the differen

(@i —ay)
i>i -

d thus V is invertible precisely when the o; are aél dl.ﬁ"err(lanis.
A f that det V has the form stated above may be give :
onn[ﬁg. Row operations show that det V equai§ th‘i dletetr::;l‘llagy
of the n x n matrix obtained from V by replacing its las

product

the row

{fler) flaz) ... flon)),
where f is any monic polynomial in K[z] of degree n — 1. We

choose f to equal

(z— ). (2 —an_1).

45
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Then we have f(o;) =0 for i £ n and
flon) = (a, — ar}.. Aon — Qn_1}

If W is the n x n matrix obtained from V for this cloice of f, we
casily see that

det V' =det W = f(ay, ) det Viay, ... on 1)

and the result follows easily by induction. Occasionally, evalu-
ations of det V' in the literature seem to be unnecessarily complic-
atfed, as they refer to facts about homogeneous polynomials. The
orlginfﬂ evaluation of the determinant is due to Cauchy {Journal
de L’Ecole Polytechnique, X VI, 1815).

‘ Let P denote the n-—dimensional vector subspace of K[z] con-
sisting of all polynomials of degree at most n—1. The polynomials
1, z, ..., " ! form the standard basis of P. Let Ply-.., pn ben
polynomials in 7. Then we may write

kt3

L k-1
Pi = é AT 7,

k=1

where the a;r are elements of K. If we evaluate the p; ab Lhe
points oy, ..., &, we obtain the matrix relation

P =AYV,

where P is the n x n matrix whaose (¢,7) entry is p;(a;). Suppose
that the a; are all different, so that V is invertible. We choose Lhe
i to be the_Lagrange interpolation polyromials for the points oy,
-+ .y &n, Which are defined by the formulae
D= __F where p =
i P’(O‘i)(ﬂl"‘a’i) Pﬁ(xﬁa’l)---(l’_au)

ff” 1 <2< n. Then we find that p;(«;) = 1 and pileg) = 000
i # j. Thus the matrix relation above becomes

I, = AV
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and the matrix A is the inverse of the Vandermonde matrix. We
gee that the coeflicients of the interpolation polynomials enable us
to find the mverse of V. :

Suppose now thal we have n additional different elements 3y,
...y Pn owith a; # 8; lor all £ and j. The n x n matrix

1 1 1
o= ay -3, T ay—fFn

1 1 1
an—51 an—Bz 7 an-fa

is called a Cauchy matrix. The Cauchy matrix 1s an example of a
bialternant or double alternant, as discussed in Chapter X1 of [5].
It was introduced by Cauchy in a work [1, pp 151-159] published
in 1841, where its determinant is calculated. The Cauchy matrix
also appears briefly in Frobenius’s development of the irreducible
characters of the symmetric group [3, p.153]. In this connection,
see also, for example, exercise 6, p.38, of [4]. We shall denote this
Cauchy matrix, whose (4, j) entry is (@; ~ 3;)7!, by C(e, B). The
author has been intrigued with the problem of finding a suitable
setting for the Cauchy matrix, analogous to the role of the Van-
dermonde matrix in polynomial theory. The purpose of this paper
is to relate C(a, 8) to the Vandermonde matrix and show how its
determinant and inverse may be evaluated. Since starting this
work, we have found that our formula for the inverse is given, in
an older formulation, in Section 353 of {5]. The referee of this pa-
per has also pointed out that M. J. Newell has given an approach
to the Cauchy matrix on p. 347 of [6] that is rather similar to our
presentation in this paper. Thus our findings are certainly not
new, but we hope that this subject may be of interest to those
who are not specialists in symmetric functions.

We continue to use the interpolation polynomials p;, based
on the polnts a1, ..., an, and introduce a corresponding family
of interpolation polynomials ¢;, based on the points 81, ..., .
Thus

._m___q_uﬂw ere g = (x — I .
qt_q'{a’,‘)(ilf—,@i) hete ¢ = (& — B1}.. . (z — Bn)
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Since {q,.. ., u } is a basis for P, there exist elements e;x of I
with
Pi = Z Cikifx
k=1

for1 <i<n. Evaluating the polynomials on eacl, side of the
equation above at 4;, we obtain eij = pi(f;). Recalling the defin-
ition of p;, we see that

—r(5;)
Plaij(o: ~ 3;)
Consequently, if E = (ei;), we have the relation
D(als' "IQR)E: %C(QJ!G)P(ﬁll"'rﬁﬂ)t

where D_(al, —an) and P(A, .. -2 By} are the diagonal matrices
whose diagonal entries are pleg), oL, P'(az) and p(g,), . o
(B ), respectively. Expressing the polynomials p: and g; in terms
of powers of 2, we have, say,

n

pi = E gzt

k=1

¢ = ibz‘krk"l
k=1

for 1 <4 < n. Our discussion earlier shows that if A = {ai;) and

B = (bij); then

and

A= Vier,...,a0)"!, B = Vg, ....8.0)" %
However, we clearly have A = E77 and we obtain the relation
V(a')_l = _‘D(a'la .- ~:er)_lcr(a)f8)P(,Bl: RS ﬁn)v(ﬁ)—fv

where we have written V{a) and V{8) in place of Vie, ... o)
and V(B1,...,8.). Thus we have proved the following result.
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Theorem 1. Let o), ..., o, be n different elements in K and
let p be the polynomial

(z—a1).. (z—a,)

in K[z]. Let 81, ..., B, be a further n different elements in K with
a; # B; for all i and j. Let C{a, B) be the n x n Cauchy matrix
whose (1, j) entry is (a; — B;)~'. Then we have the equation

Cle, 8y = —D(avy, .. ., &n)V(C}:)_IV(ﬂ}P-(ﬂl, e Pa)

Here V(a) = V(ay,...,a,) and V(B) = V(B1,...,08n) are ihe
Vandermonde matrices based on the o; and B;, respectively, and
D(ay,...,an) and P(f,, .. -+ Bn) are the n x n diagonal matrices
whose diagonal entries are plar), ..., p'(x,) and p(B), ...,
p(fn), respectively.

Corollary 1. The determinant of the Cauchy matrix is

(—1)rin=1)/2 il — o) [Tis;(8: - 85)
Hi,j(ai — %) ’

Proof. We may assume that the o; and the B; are all different,
since otherwise the determinant is clearly 0 and the formula holds
in this case. Theorem 1 shiows that we have

2 i P [Tis (8 = 55)
iy p(8) [T (0s — o)

However, it is easy to verify that

det C(ar, B) = (1)

n

HEGE (1) =02 [T — ay)?
i=1 i>j
and

IT2(3) = (=1" T(e: - 8;)
i=l i
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and the regut follows.

It is easy to find the inver ase
that itg determinant is on~zero. In Theorem 1, we write V{a),

V{g); D(a} and P3) in place of Viay, S}, V(ﬁl,..,,ﬁn),

Diay, . ) and P, .. A, respectively. Tliep Thecrem 1
gives

se of (he Cauchy matrix i Lhe

Cla, ) = “D(OJV(QJ‘IV(H)PW)_I-

Interchanging the roles of the ¥ and 3 we have
Cl.2) =~y (5 V(e)Q(a),

where E(8) and Q{a) are ihe n x n dia,
diagonal entries are ¢'(3;) and q{a;)
Assuming that Cla, ) is invertible,

Cla, g)~1 = PEE(B) o, *)Q(e) D(ar)=,

We also observe that C(8,a) = ~Ca, gy,

the prime denotiug
transpose. We have therefore pro

ved the fol]owing result,

Theorem 2. Let @1 .., o, and 51, oy By be 2n different
elements jn and let p ang q be the polynomials

(;caal)..‘(;r:-—an) and(xnﬁl)...(.r‘f)’,l),

respectively, Then we have the relation

C(Qs ﬁ)_l = —ALC(Q’,ﬁ)’AQ,

where Ay and Az are the diagonal matrices wioge ~th o

entries are p(ﬁ,—)/q’(ﬁ;) and q(a,-)/p’(a,-)
far, the (, 7} entry of Cq, A s

agonal
r fespectively. In particy.

P(Bi)y(ey) .
(8 — )P (2 )/ ()
As an example of the usge o

f this formul
that o; = ; _ Iand 5. =

4, We consider the case
=t for ] < < n. The corresponding

(1]
[2]
(3]

(4]

i - Cauchy’s Matrix 51

Caucly matrix based on these values g

1 1
L3 3
o i
5 3 4
Lo

n n+1 n4-2

This matrix is usually called a Hilbert matrix. The polynomials
pand ¢ for this matrix are

z(z—l)...(x—n—i—l) and (x+1)(z+2)...(.r+n).

Theorem 2 shows that the (4, 7} entry of the inverse of the Hilbert
matrix is

(-D)* (44— DYn+j- 1) |
(i4+7 - )= 1) = 1P (n —41{n — !

which equals

o i—1 n4j-—1 i+7-2\7
(—1)‘+J(i+j—1)(n:_j )( n—i )( i-1 )

as shown in [2, p.304].
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SOME QUESTIONS CONCERNING
THE VALENCE OF ANALYTIC FUNCTIONS

J. B. Twomey

In this short note we discuss, and illustrate by means of some ex-
amples, certain questions concerning the valence of analytic func-
tions of one complex variable, that is, the number of times such
functions take their values. We present a theorem which asserts
the existence of certain constants relating to the valence of anal-
ytic functions in the unit disc, and conclude the note by raising
some questions regarding these constants for the reader.

We begin with a definition. Suppose a function f is analytic
in a domain D in the complex plane. We say that [ is p-velent in
D, p a positive integer, if (1) f takes no value more than p times
in D, and (i1) f takes at least one value exactly p times in D. If
p = 1 we have, of course, a univalent (or one-to-onej} function. The
following result for univalent functions is elementary and known:
(1) If f is analytic in the unit disc U = {z : {z| < 1} and univalent
in the annulus

A(§) = {z:48 < jz{ < 1},

where 0 < & < 1, then f is univalent in the full disc U.

This result is an easy consequence of Darboux’s theorem [1, p.
115]: If f is analytic on and inside a simple closed curve v, and f
takes no value more than once on <, then f is univalent inside .

It is natural to attempt to generalize {1) and to ask whether
there is an analogous result for p-valent functions when p > 1.
(This question was first posed by A. W. Goodman in a seminar in
Tampa many years ago and this author’s interest in these problems
dates — albeit discontinuously — from that occasion.) We note
immediately that the direct analogue of (1}, namely
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{2) [ analytic in U and p-valent in A(8), 0 < § < 1 and p>1
‘ = [ is p-valent in U,

i5 false for every p > |. We illustrate this here for the casc p=12
with an example which shows that, given any & in {0, 1}, there

exists a polynomial which is 2-valent in A{4), but which is not
2-valent in /.

Eﬂxarnple 1. Let Po(z) = z(2? - o), where o, = 1 — 1/4n?,
Then, for n > 2, P, is 2-valent in the annulus A{2) and 3-valent
in U. "

To gnderstand this example — simple as it is — it is helpful
to examine the image of the unit circle C = {z : || = 1} under
the mapping w = P, (z}.

A
N

Fig. 1 P.(C) Fig. 2 P(C)

~

See T'ig. 1. Now if # is any point inside the bounded component
Op of B, = C\ P,(C) that contains the origin, then

;;Aarg{}jn(:} — B} =3,

where Aarg denotes the net change in the argument as z traverses
€' i the positive sense. Hence, by the argument principle [1, p.
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104}, every such value B is taken exactly three times in UV by
P,. For similar reasons, every value in each of the other four
bounded components of £, is taken exactly once or twice only,
The component O, shrinks to the empty set as n. — oo (see Fig.2
for 7{CY, where P(2) = 23—z = lihy00 Falz)), and, as £,(0) =
0, it is clear that, for each n > 2, there is a disc D, centred at
the origin with radius g, (decreasing o zero as n — 00) such that
Pu{Dy) D On. But then P, can take no value more than {wice
in &'\ D, and {assuming that [/ \ D, contains the two non-zero
zeros of P,) is thus 2-valent in the annulus A(e,). We leave it to
the reader to prove that this is so with g, = % forn > 2.

A function f satisfying the conditions in (2} is not necessarily
p-valent in U, therefore, but it is the case {and easy to prove) that
such a function is g-valent in U for some positive integer g. The
value of g can be arbitrarily large, however. Indeed, as our next
example shows, given ¢ > p > 2, there exists an analytic (unction
which is p-valent in A(§), for some 4 in (0, 1), and ¢g-valent in U/

Example 2. Let p and q be integers with ¢ > p > 2 and set
F(z) = exp(qrz). Then F is p-valent in the annulus

4p — 3

{z:/1—{ "

12 < g < 1)

(for instance), and g-valent in U

This example, as the reader will readily verily, is an easy con-
sequence of the standard perlodicity property of the exponential
function.

Example 2 leaves open the possibility that if f is any function
satisfying the conditions in (2}, and ¢ is an integer greater than p,
then f is at most g-valent in ¥/, provided § is small enough. This,
finally, is indeed —— with a qualification — essentially what our
tlieorem asserts.

Theorem 3. Suppose that p,q are integers with p > 2 and ¢ >
2p, and that fis analyviic in U. There exists a (largest) number
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r*{p,q) in (0,1) such that if f is p-valent in an annulus A(S), and
0 < d<r*p q), then [ is at most g-valent in U.

The author’s proof ol this result — whicli is basced on a norinal
family [1, p. 213] argument, as a complex analyst reader might
anticipate — is somewhat technical in detail and sheds no light on
how the questions raised by the theorem miglt be answered, so we
do not include it here. One question which arises ts whether the
theorem is true il we replace the condition ‘g > 2p” with ‘g > p°
but a more fundamental question is :

What is the value of r*(p,q) for cach permissible patr (p,q)?

We conclude by leaving these open questions, unciouded by
any conjectures, for the reader.

T

Reference

R. P. Boas, Invitation to Complex Analysis. Random IHouse, 1987.

J. B. Twomey,
University College,

Cork.

ON A QUESTION
POSED BY GRAHAM HIGMAN

Gerard M. Enright

Consider a function f of the non-negative integers given by the
following rules:

f(3nr) = 4n
fBrn+1)=4n+1
f(3n + 2) is undefined (n=0,1,2,3,...).

Since f(0) = 0 and f(1) = 1, the function may be repeatedly
and indefinitely applied to 0 and 1; that is, for z = 0 and 1, f*(z)
is defined for all & > 0.

Question: Is there any integer z > 2 such that f%{z) is defined
for all £ > 07

This function was introduced by Professor (Graham Higman
[1] during a lecture on explicit embeddings of finitely presented
groups. He posed the question and he conjectured that the answer
was “No”. To be precise, he declared “No” to be his “first best
guess”.

In this paper, we will not prove Higman’s conjecture but we
will produce a good deal of evidence in its favour. Neither will
we discuss the group theoretic context in which the question was
raised. Instead we present an exploration of the problem as an
example of computer-aided mathematics suitable for secondary
school and college level students.

We use elementary programs in BASIC to obtain data on
tlie function and we use this data in further development of the
problem, leading to more efficient programming. Our suggestion
1s that students’ knowledge and understanding of mathematics is
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reinforced by doing mathematics and that a computer is a very
useful tool in this process. We demonstraie the power and scope of
electronic computation. We also slhow its limitations when faced
with a great volume of calculations and with very large numbers,

Let z be a positive teger. The sequence obtained by re-
peated application of the function f, {z:,f(z),fg(z), Flz), .. 3,
will be called the f-string of z. If » ig such thaf f(’”‘l)(z) is
congruent to 2 mod 3 for some m then S™(z) is undefined and
the f-string of z, {z,f(z),fz(z),fa(z), o FETU ) as length
m. Otherwise z hag infinitely long J-string and the question is
whether any such 2 > 2 exists.

The following program may be used to compute f-strings.
10 INPUT S
30 PRINT S, ;

40 IF(S Mop 3)=0 THEN S5=4%5/3:G0TO 30

50 IF(s Mop 3)=1 THEN S=4*((S—1)/3)+1:GUTU 30
60 IF(5 MOD 3)=2 THEN PRINT"STOP"

80 END

Here are two results:

7 9 12 16 21 28 37 49 85 STOP
19 25 33 44 STOP
Here are two more in F-string notation-

{264,352,469,625,833}

{961, 1281, 1708, 2277, 3036, 4048, 9397, 7196} .

Our first objective is to prove that there is no integer =
between 2 and 1,000 for which fk(z) is defined for all £ > g
We do this by computing the -strings of all such -, QOur use
of this method betrays the fact that we expect all f-strings to
be finite, as we are inclined to support, Higman’s conjecture. e
then consider the feasibility of extending our methods to a higher
number range.

The program above may be suitably amended by the follow-
ing additions:

10 FOR T=2 TO 100D
20 S=T
70 NEXT T
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Running on a BBC Master 128 microcomputer all f-strings
are screencd in 51 seconds and transferred to paper on a Sta‘u"
LC-10 dot-matrix printer in 10.6 minutes.. Program line 60 is
not necessary but it is useful, on a large printout of numbers, to

ighligh - -strl Lops.
highlight where each f-string s . ‘

5 Students may be patient enough to wa%t 10.6 mmlutes for a.
listing of the first 1,000 f-strings but it is unlikely that either they
or their teachers will want to extend this method much further. I}E
would take two class periods to list 10,600 and more than a wee
of non-stop running to list all f-strings up to 1 million. Surely we
can do better than that. ‘

All integers in the sequence 2,5, 8,11, 14, ... have’f—strmgs of
length 1 simply because f(3n+2) is undeﬁne.d_ So_ let’s not waste
time checking them. The following program is a little better.

10 FOR T=3 TO 999 STEP 3

20 FOR R=T TO T+1

25 S=R

30 PRINT 3, ;

40 IF(S MOD 3)=0 THEN S=4#$/3:G0TQ 30

50 IF(S MOD 3)=1 THEN S=4*((S-1)/3)+1:GATO 30

60 IF(S MOD 3)=2 THEM PRINT“STOP"

65 NEXT R

70 NEXT T

80 END .

With this program it takes 45 seconds to screen the f-strings
and 7.8 minutes to print them out. ‘

'T'wo sequences of numbers have f-strings of length 2. These
are:

4,13,22,31,40, ...
6,15,24,33,42, ..., o
the sequences {9n +4 :n = 0,1,2,3,...} and {9n+6 : n =

0,1,2,3,...} respectively. - S

We are}prompted to look at the function definition with in-
tegers written in terms of their least residues mod 9 rather than
mod 3. f is undefined on all integers of the form 9n -+ 2, 9n+5
and 9n +8. f* is undefined in two cases since F(On +4) =12n+5
and f(9n + 6) = 12n + 8. Hence, 5 out of every 9 integers have
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f-strings of lengths 1 or 2 and we need culy cxamine the other
4. The revised program screens results in 37 seconds and prints
them in 6.1 minutes.

From the pattern of STOPS indicating f-strings of length 3
we are led to exanune the function definition with integers ex-

pressed in terms of least residues mod 27. The following results
are easily established.

f 1s undefined on all integers of the following forms:
2Tn+ 2, 2Tn+ 5, 2Tn+ 8, 2Tn + 11, 27n + 14,
27n 417, 270+ 20, 2Tn 4 23, 27Tn + 26.
£? is undefined in the following situations:

F(2Tn 4 4) = 3604 5,
f(2Tn +4-8) = 36n + 8,
F(27Tn 4+ 13) = 36n + 17,
F(27n 4 15) = 36n + 20,
F(27n + 22) = 36n + 29,
F(27n + 24) = 36n + 32

f? is undefined in the following situations:

FA2Tn+ 3) = f(36n+ 4) = 48n 5,

J2(2Tn + 10) = f(36n + 13) = 48n 4 17,
FH2Tn + 18} = f(36n + 24) = 48n 1+ 32,
S (2Tn + 25) = f(36n + 33) = 48n + 44.

With this analysis we may confine attention to just 8 out of
every 27 numbers and we know that all excluded integers have
f-strings of length at most 3. The following is our best program
so far.

10 FOR T=7 TO 979 STEP 27

20 FOR R=1 TD 8

30 OGN R GOTO 40,45,50,55,60,65,70,75
40 S=T:GOTO 80

45 5=T+2:G0OTO 80

On a Question Posed by Graham Higman 51

50 S=T+5:GOTO BC

55 S5=T+9:G0OTO BC

60 S=T+12:G0OTO 80

65 S5=T+14:GOTO 80

70 S=T+20:GOTO 80

75 3=T+21

80 PRINT S, ;

90 IF(S MOD 3)=0 THEN $=4#5/3:G0T0 80
100 IF(S MOD 3)=1 THEN S=4#*((S-1)/3)+1:GOTO 80
110 IF(S MOD 3)=2 THEN PRINT"STOP"

120 NEXT R

130 NEXT T

140 END

A screen run takes 30 seconds and printout fime s 4.5
minutes. We have reduced running time by 40% and printing
timie by nearly 60%. It would still take 3 days of non-stop
running to reach our 1 million target.

To continue with this approach, we should now analyse func-
tion behaviour with integers written in terms of least residues
mod 81. We should exclude from testing all integers which have
S-strings of length at most 4. The work involved might be con-
sidered rather cumbersome.

Alternatively, we may further exploit the fact that the only
integers with f-strings of length 4 or more are those of form 27n +
one of {0,1,7,9,12,16,19,21}. The general form of f3{z) may be
calculated in each case. The values are 64n + the corresponding
element of {0, 1, 16,21, 28,37,44,49}. Let us restrict attention to
integers of this latter form. Eliminate all integers congruent to
2 mod 3, all congruent to 4 or 6 mod 9 and all congruent to 3,
10, 18 or 25 mod 27. The f-strings produced, when the revised
program is run through the range 16 = £3(7} to 2369 = f3(1000),
are of length at least 7 but the first 3 elements of each one are
omitted. A screen run takes 12.5 seconds and paper printout takes
1.5 minutes. Extension of this melhod might also be considered
cumbersome. '

The idea of restricting output to the longer f-strings may be
used in a more elegant process. Let us modify the program listed
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above so as to output only those f-strings of length at least 7.
The new listing is as follows:
10 DIM F(7)
20 FOR T=7 TO 979 STEP 27
30 FOR R=1 TO 8
40 ON R GOTO 50,60,70,80,90,100,110, 120
50 5=T:GOTO 130
60 3=T+2:G0TD 130
70 S=T+5:GOTD 130
80 S=T+9:GOTO 130
20 S=T+12:G0T0 130
100 S=T+14:GOTD 130
110 S=T+20:G0TO 130
120 5=T+21
130 F(0)=S
140 FOR I=1 TO 6
150 IF (S MOD 3)=0 THEN $=4%S/3:G0T0 180
160 IF (S MOD 3)=1 THEN S=4#%({S-1)}/3)+1:G0TO 180
170 IF (S MOD 3)=2 THEN 250
180 F(I1)=5
190 NEXT I
200 FOR J=0 TD 6:PRINT F{(J),;:NEXT J
210 IF (S MCD 3)=0 THEN $=4%5/3:PRINT 3,;:G0T0 210
220 IF (S MOD 3)=1 THEN $=4%((S-1)/3)+1:PRINT 5,;:G0TO
210
230 IF (s MOD 3)=2 THEN PRINT "STOpR"
240 PRINT:PRINT
250 NEXT R
260 NEXT T
270 END
On a run of this program, the 88 results are printed in 2.2
minutes. A re-run with the following changes:
10 DIM F(13)
140 FOR I=1 TC 12
200 FOR J=0 TO 12:PRINT F(J),;:NEXT J
vields the 8 integers between 2 and 1,000 which have f-strings
of fength at least 13 in just 18 seconds. The longest S-strings in
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this range are those of 163 and 331. Both of these have lenglh
15 and they end with f1*(163) = 9104 and f14(331) = 18545. We
have a procedure now which we may reasonably hope to apply to
higher numbers. Students might be encouraged to find out how
many integers up to 10,000 have f-strings of length 19 or more
and which of these has the longest f-string. How many integers
up to 100,000 have f-strings of length 25 or more? Which of these
is the longest?
The program is easily amended flor these investigations. kor
example:
10 DIM F(19)
20 FOR T=7 TO 9997 STEP 27
140 FOR I=1 TO 18
200 FOR J=0 TO 18:PRINT F(J),;:NEXT J
A run of this modified program shows that there are just 5
integers up to 10,000 with f-strings of length at least 19. Output
takes 2.8 minutes. The numbers are: 3475, 4633,6177, 8236, 8607.
The first of these, 3475, has the longest f-string. It ends with

F3(2) = 2596901.

The next three f-strings share this endpeint because

F(3475) = 4633, F(4633) = 6177, F(6177) = 8236.

Let us go a step further with the following changes:
10 DIM F(25)
20 FOR T=7 TO 49984 STEP 27
140 FOR I=1 TO 24
200 FOR J=0 TO 24:PRINT F(J),;:NEXT J
A run now takes 14.85 minutes. There are just 5 integers up
to 50,000 with f-strings of length at least 25. The longest is that
of 38,754, which ends with

£77(38754) = 91549952, .

Extending the range to 100,000 yields another 7 integers with
f-strings of length 25 or more. There are 6 such integers between
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100,000 and 200,060 and 6 more between 200,000 and 300,000. So
far then, we have shown that there are just 24 integers z in the
range 2 to 300,000 for which f?#{z) is defined. The integer 38,754
still has one of the longest f-strings at 28 terms, a lenglh equalled
only by 65,610 and not exceeded.

Having reached 300,000 without finding an infinite f-string,
we are inclined to rush onwards but we face two problems. We are
approaching accuracy limits of the computer language (BBC BA-
SIC) and program running times are rather slow (for classworl).

On the question of time, our current program, which is
designed to list f-strings of length 25 or more, takes about 28
minutes for each 100,000 number range. Our 1 millien time es-
timate stands at 4 hours and 40 minutes. We would rather not
sacrifice program simplicity and legibility for minor efficiencies
but one significant improvement would be to change all variables
to integer type. Also integer division is executed faster than
ordinary division. With these alterations, the program runs on a
BBC Master 128 at about 22 minutes for each 100,000.

Schools and colleges will also have other equipment. Com-
parisons may be made of running times of similar programs on
different computers, in different versions of BASIC and in other

languages. The author also used an RM Nimbus X20. This 80186

based 8MHz computer supports BBC BASIC and runs it faster
than the B3C Master Series. It is not necessary to use integer
variables to take advantage of quicker integer calculations. The
Nimbus runs our current program ahout 43% faster. The printer
used in this experiment was an Epson LQ800 but printer speeds
are not very significant now that output volume is considerably
reduced.

Whether or not one is satisfied with this time, roundoff errors
will ruin any attempt to go further. The next integer for which
f*(z) is defined is » = 335167. Either computer will accurately
produce the f-string of z up to

FH (2} = 791783233
but then give 1.05571098 E9 and the message “Too big at line
2407, Now the student can have the satisfaction of doing a few
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simple divisions and multiplications with pen and paper to pro-
duce the rest of the f-string beyond the capability of the machines.
Results are as follows:

F?8(z) = 1055710977
F2%(z) = 1407614636
£2°(2) is not defined.

We might amend the program by inserting brackets to give
division pricrity over multiplication in the calculation of successive
function values in the variable S. This however merely postpones
the inevitable breakdown to z = 491731. The maximum mnteger
which can be handled by BBC BASIC is 2,147,483,647. Larger
real numbers can be stored but tenth and subsequent digits will be
rounded and accuracy lost soon after the maximum integer value.
Again the student who is not afraid of a few long calculations can
go bevond the computer for the rest of the f-string of 491,731. It
ends at a length of 40 terms with

F3%(491731) = 36672278528,

The student who survives that calculation will not want to
give up before reaching the 1 million target. Would you be pre-
pared to omii those program lines which compute the 26th and
subsequent terms of the long f-strings? Let the computer stop at
the 25th term and thus avoid roundoff errors and numbers which
are too big. The Nimbus works at about 13.5 minutes for each
100,000 number range or 2 hours 15 minutes for a million run
and there are a total of 69 integers z between 2 and 1,000,000 for
which f?*(z) is defined.

Since the Nimbus can handle real numbers which are just
a little bigger than the maximum integer. some more help may
be squeezed from the computer. The program can be extended
successfully to give 28 terms of sufficiently long f-strings. There
are just 17 survivers and it seems reascnable to complete that
number of calculations by hand. The results are as follows:

Seven integers less than 1,000,000 have f-strings of length 28:
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38754 65610 563401 595852

725097 972979 988666.
Four integers have f-sirings of length 29:

422551 446889 543823 §27199.
Three integers have f-strings ol length 30:

335167 794422 940402.
The three remaining integers are:

491731 6550611 874188.
The f-strings of these three have the exceptional lengths of 40, 39
and 38 respectively. Allend with the same number 36,672,278 ,528.
In fact, the last two are substrings of the first because

F(491731) = 655641  F(655641) = 874188.

More powerful persoral computers in the 80286 and 80386
ranges may be available to some students. Microsoft (3W BASIC
is normally supplied in the MS-DOS package. Greater accuracy
and faster running times can be achieved. The author transferred
the program to a 256 MHz Morse 486 personal systermn. Double
precision numbers have an accuracy level of 17 digits internally
with up to 16 displayed. The MOQD aperator, however, so uselul
for modulus arithmetic, has an upper limit of 32,767 and must be
replaced by direct computation. A million run can be achieved, in
a time of 24.4 minutes, on the Morse 486, printing full f-strings for
all integers z between 2 and 1,000,000 for which f?#(z) is defined.

It is observed that the hand completed results are all verified
by the machine and it is felt that this is a good point at which to
end the article. The patient reader might, however, like to know
that the f-string of length 40 arising {from 491,731 is not only the
longest of any integer less than 1 million but it is also the longest
f-string of any integer less than 10 million. Socn after that, it is
equalled and then surpassed. The longest f-string of any integer
less than 100 million s that of 95,305,399 which has 47 terms.
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Book Review

QUADRATIC AND HERMITIAN FOILMS
OVER RINGS

Grundlehren der mathematischen Wissenschaften 294

Max-Albert Knus.
Springer-Verlag, 1991,
ISBN 3 540 52117 &

Reviewed by David W. Lewis

"The theory of quadratic forms was traditionally regarded as a part
of number theory until the work of Witt in the 1930%. His work
paved the way for the algebraic theory of quadratic forms over
arbitrary fields, a branch of algebra involving a mixture of linear
algebra, ring theory and field theory. Witt’s work lay more or less
dormant until the 1960°s, when the work of Pfister demonstrated
that there was a rich theory to be explored, and from there the
subject really took ofl. Developments in topology {calculation
of surgery obstruction groups), algebraic K-theory, and algebraic
geometry led some mathematicians in the 1960’s and onwards to
examine quadratic and hermitian forms over various kinds of rings.
Before that, the only work on forms over rings was of a number-
theoretic nature, involving rings of integers.

This boek introduces the reader to the theory of quadratic
forms over commutative rings in a general setting. The author,
M.-A. Knus, has been one of the principal researchers in this area
over the last two decades or more. The book is suitabie for gradu-
ate students, and for mathematicians working in other areas who
wish to learn something of the subject. The reader is assumed to
have a knowledge of the usual basic results in algebra, including
some homological algebra. Unproved theorems are always quoted,
unless they are basic results. For the latter part of the book, a
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familiarity with some algebraic K-theory and algebraic geometry
15 helpful.

Chapter 1 introduces the basic definitions and terminology of
forms, and develops tools which are used later. Chapter 2 deals
with the general theory of forms in categories. There is consid-
erable overlap here with Chapter 7 of the book of Scharlau [1].
Chapter 3 is entitled “Descent theory and cohomology”. 1t intro-
duces the technique of faithfully fiat descent, and the notion of
twisted forms. Chapter 4 lays the foundations of the theory of
Clifford algebras for quadratic forms over rings. The Clifford al-
gebra is used to define the discriminant, the Arfinvariant, and the
Witt invariant of a quadratic space. Chapter 5 describes the clas-
sification of quadratic spaces of low rank {specifically rank < 6}
via invariants such as the above. An interesting and surprising by-
product of the work on forms of rank 6 over arbitrary commutative
rings is a result about involutions of orthogonal type on rank 16
Azumaya algebras. A criterion for the decomposability of such an
involution is obtained, utilizing an invariant called a Pfaffian dis-
criminant. The involution decomposes if and only if the Pfaffian
is trivial. The surprising thing about this result is that it was not
observed at all in the special case of algebras over fields. Thus the
more general seiting of rings can sometimes yield results that have
passed unnoticed for fields. Chapter 6 contains splitting, stability
and canceliation theorems for unitary spaces. These are unitary
versions of theorems of Bass, Serre and Vaserstein in algebraic K-
theory, and are quite technical. Chapter 7 deals with polynomial
rings, and is again fairly technical, utilizing some of the results
of the previous chapter. Finally, Chapter 8 is concerned with the
calculation of Witt groups of real affine curves and surfaces, an
area in which there is currently a lot of research going on.

The book is well organized, clearly written, and seems to
have few typographical errors. It is a welcome addition to the
literature, and T warmly recommend it to those who wish to learn
maore about the general theory of quadratic and hermitian forms
over rings.
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Book Review

CLASSICAL CHARGED PARTICLES
. {Advanced Book Classics)

F. Rohrlich

Addison-Wesley, 1990, 305pp.
ISBN 0 201 51501 6

Reviewed by Ldszld Fehér

This book was originally published in 1965 as part of the Addison-
Wesley Series in Advanced Physics. It is quite a unique text on the
fundamental-theoretical aspects of the classical theory of charged
particles. The author pays special attention to the logical struc-
ture of the subject and to properly placing it in the net of the
bordering physical theories, such as special and general relativity,
classical and quantum mechanics and quantum electrodynamics.
The student, or indeed the researcher, has much to gain from the
lucid exposition of the general structure of physical theory offered
in this book through an example. The historical and philosophical
aspects are also exhibited as an integral part of the theory.

The book consists of nine chapters, the first three of which
deal with the philosophical and historical aspects of its subject
matter and with the foundations of classical mechanics. Chapter
4 gives a detailed exposition of the Maxwell-Lorentz field equa-
tions, their solutions and symmetry properties, which form the
basis for treating the theory of electromagnetic radiation in the
next chapter. The central part of the book is Chapter 6, which
deals with the equation of motion of the charged, classical ele-
mentary particle, given by the Lorentz-Dirac equation together
with the asymptotic conditions. The derivation of the equation
of motion on the basis of the Maxwell-Lorentz equations and the
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conservation laws, its mathematical properties, special solutions
and the questions related to its physical interpretation, as well as
the underlying action principle are treated here in detail. Chapter
7 is devoted to various generalizations of the equation of motion
and the last two chapters explain the theory’s relation with the
other levels of physical theory, and summarize its principles and
structure. There are also two appendices on the space-time of
spectal and general relativity.

As set out in the Preface, in this book the author’s purpose
has been to demonstrate that with modern knowledge it is pos-
sible to complete the works of such men as Lorentz, Abraham,
Poincaré and Dirac on tle classical theory of charged particles
and to show that the resultant structure is consistent and beau-
tiful. His masterly exposition of the subject 1s very enjoyable to
read. The publisher meets public demand by its present reissue
as a volume in the Advanced Book Classics series.

Laszlo Fehér,
Université de Montréal,
Québec,

Canada.
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