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consideration. We illustrate their potential in characterizing and,
where possible, identifying certain minimal structures. Further,
while these methods are introduced in a purely topological setting,
we show that they have a strong order-theoretic appeal. Their to-
pological significance has a direct order-theoretic translation when
we regard the space as a partially-ordered set.
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Let F be a field and let M, (F) be the algebra of n x n matrices
over F. Let A,B € M,(F) with AB = BA and let A be the
algebra generated by A and B over F'. A theorem of Gerstenhaber
[Ann. Math. 73: 324-348 (1961)] states that the dimension of A
is at most n. Gerstenhaber’s proof uses the methods of algebraic
geometry. In Chapter I of this thesis, we obtain a purely matrix—
theoretic proof of the result, constructing in the process a basis for
the algebra, A. We also examine when equality occurs. The case
where F is algebraically closed and A4 is indecomposable (under
similarity) holds the key to the general situation. In this case,
we obtain a Cayley—Hamilton-like theorem expressing B* as a
polynomial in I, B,..., B¥~1 with coefficients in F[A], where k
denotes the number of blocks in the Jordan form of A. If all
Jordan blocks of A have the same size, we say A is homogeneous.
In this case we obtain a nonderogatory-like condition on B which
is equivalent to dimp.4 = n. We also show that in this case,
dimp A = n is equivalent to the maximality of A as a commutative
subalgebra of M, (F).

In Chapter II we examine the dimensions of three-generated
commutative subalgebras of M,(F). Let A, B and C € M,(F)
be pairwise commutative, and let A be the algebra generated by
A, B and C over F. It is an open question whether or not the
dimension of A is bounded above by n. Again, the case where
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F is algebraically closed and A is indecomposable holds the key
concepts. If A, say, has r Jordan blocks, with the biggest Jordan
block of size k x k, then it is shown that generally dimpA <
{nk kr(r + 1)/2}. In the homogeneous case, it is shown that
dimp.A < n3/2, and if A has fewer than four Jordan blocks, then
dimp A g n. Further if the exponent of the algebra A is also k (i.e.
A¥ = 0), then it is shown that for n < 30, dimpA < n. In case A
is homogeneous, then each matrix in A can be considered as an
element of M, (F[J]) (where A=J & - @ J, r blocks of J = J,
the k x k Jordan block with associated eigenvalue zero). It is shown
that if B is a Wasow matrix over the local commutative ring F/[J],
i.e., B is similar over F[J] to a matrix in rational canonical form,
then again in this case the dimension of A cannot exceed n.

Let A be a commutative subalgebra of M, (F), and say the
centralizer of A, C(A), is contained in A. Then A is said to
be a maximal commutative subalgebra of M, (F'). We define the
exponent of A to be the smallest positive integer k such that
z1...xx = 0 for all z1,...2x in the radical of A. In Chapter II1
we study the dimensions of maximal commutative subalgebras of
M,(F). A classical result of Schur states that dimpA < [1+
n2/4], where [ ] denotes the greatest integer function. Courter
[Duke Math. J. 32:225-232 (1965)] proved if A has exponent two
then dimp.A > n. Laffey [Linear Alg. Appl. 71:199-212 (1985)]
showed that generally dimpA < (2n)?/3—1, and if A has exponent
three then the best possible lower bound is [3n%/2 — 4]. We create
a sequence of maximal commutative subalgebras Apn, each with
exponent four, with dimgA, of the order of n2/3 — pl/3 in the
limit. On the other hand, if the exponent of A is greater than or
equal to n— 3, and the characteristic of F' does not divide n!, then
we show that dimp.A is either n, n+ 1 or n+ 2.
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PREDUALS OF SPACES
OF HOLOMORPHIC FUNCTIONS

Christopher Boyd

For U an open subset of a locally convex space E we denote by
H(U) the space of C—valued holomorphic functions on U. In infin-
ite dimensional holomorphy we consider three natural topologies
on H(U). 7, is the compact-open topology of convergence on com-
pact subset of U. We say a semi—norm p is ported by the compact
subset K of U if for each open set V, K C V C U, we can find
¢(V) > 0 such that p(f) < e(V)||fllv for every f in H(U). 7o
is the topology generated by all semi~norms ported by compact
subsets of U. Finally say that a semi—norm p is 75 continuous if for
each countable increasing open cover {Un}, of U there is C > 0
and n, € N such that p(f) < C||f|lv,, for every f € H(U). 75 is
the topology on H(U) generated by all 75 continuous semi—norms.
We always have

To S Tw S 75

on H(U). P("E) denotes the space of n-homogeneous polynomials
on E. We note that 7, and 75 agree on P(®E) for every integer
n. For K a compact subset of E we let #(K) denote the space of
holomorphic germs on K. The 7,(resp. 7,) topology on H(K) is
defined by (H(K),7,) = indgcv(H(V), ) (resp. (H(K),m,) =
indgcv (H(V), 7))-

Given a locally convex space E we let E! = indy B}, where
the inductive limit is taken over all neighbourhoods V of 0 in F,
and let E] denote the dual of E equipped with the topology of
uniform convergence on bounded subsets of E.

In [3] Mujica and Nachbin shows there is a complete locally
convex space G(U) with the property that G(U); = (H(U),7s)-
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