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th‘e ste’ps. by c-omputer, and thus prove identity (}). In particular,
Dixon’s identity in the generalization of Fjelsted:

Do () (1)) - e

k

is proved firstly by taking

(c+1—k)(b+1—k)
2(n+k)(n+b+c+1)

t?ms G(n, k) = R(n, k)F(n, k—1), and secondly by verifying equa-
tions (5) and (6) — for which laborious exercise it would be ad-
visable to avail oneself of Macsyma say.

In general there are few known identities involving sums of
products of several binomial coefficients. A spectacular general-
ization of Dixon’s beautiful identity is given by equation 5.31 on
p.171 of [5] which must surely be the non plus ulira of the species.

R(n, k) =
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SOME GROUPS OF EXPONENT p

J. D. Reid

§1 Introduction.

By the ezponent of a (finite) group G is meant the least com-
mon multiple of the orders of the elements of G. It is a well known
elementary exercise that groups of exponent 2 are abelian; and all
groups of order p?, p a prime, are abelian. On the other hand
there are examples of non-abelian groups of exponent p (p>2)
and order p3, or p%, that go back to Burnside, at least (e.g. 1.
Taking a direct product of a non-abelian group of order p?, for
example, with an elementary abelian p-group of order p™ will, of
course, give an example of a non-abelian group of exponent p and
of arbitrarily large finite cardinality. However as an example of
a non-abelian group of exponent p such a group offers little more
than its non-abelian direct factor.

Our interest in examples of such groups was stimulated by
questions of W. W. Comfort. We present here a simple construc-
tion of an infinite class of non-trivial (i.e. non-abelian and in-
decomposable) groups of exponent. p, p > 2.

Observe that to say that a group G is abelian is to say that
it is equal to its centre, z(G), so that the larger the centre of
G the more abelian, in a sense, is G. Similarly G is abelian if
and only if its derived group G’ is trivial so that the smaller the
derived group, the more abelian is G. It may happen that z(G) is
contained in G’ in which case G has no hope of being abelian: the
larger the centre in G the larger the derived group, the smaller the
derived group the smaller the centre. Hopes for commutativity are
frustrated just in proportion to their strength. For the purposes
of this discussion we encapsulate this idea in the
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Definition 1.1 A group G is inherently non-abelian if its
centre is contained in its derived group.

Note that if G is a direct product of its subgroups K and M
then G is inherently non-abelian if and only if both K and M are
inherently non-abelian, so that the indecomposable ones are the
ones of interest. We observe also that the group consisting of the
identity element alone is the only abelian inherently non-abelian
group.

Our object is to prove the following

Theorem 1.2. For each odd prime p and every integer s > 0

there exists an indecomposable inherently non-abelian group G of
exponent p and order p*(®=1)+1,

There are several ways to go about this. We have chosen what
seems to us a fairly natural and conceptual one: For another more

elementary but perhaps slightly ad hoc approach, see the remarks
at the end of the paper.

§2 Finite Fields.
We recall some facts about finite fields. Let L be a field of car-
dinality p® and let F' be the extension of L of degree p. Then F is
a Galois extension of L with cyclic Galois group which we denote
by I'. Let o be a generator of T

We will frequently think of elements of T' as being simply
linear transformations in F' as vector space over L, so that we
may add them together as well as multiply them. For example, in
the polynomial ring L[t], ¢ an indeterminate, we have

A=) +t+ -+ ) =1-tP = (1—t)P = (1 —1)(1—2t)P"!

so that 14+ --+¢7~1 = (1—¢)?~1. Hence for the automorphism
o,1+0+---+0P~1 = (1—0)P~! and therefore the trace map of
F over L is given by (1 — ¢)P~!. Since the trace map has image
L, we have

L=(1-0)'F.

We write H for the set of elements of trace 0. This is an
L subspace of F of codimension 1 and is mapped onto itself by

i
,?1
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e automorphisms in I'. Our formula for the trace map shows
1'glla.t (1- 0')1% C H since (1—-0)f =1—-0" = ’(‘) On the other
hand the trace map itself is not zero so (1 — c;) llS non-zero for
all k, 0 < k < p— 1. It follows that (1 — o) +.F is contained
properly in (1 — o)*F forall k, 0 < k.s p—1. Sm;e there are p
such subspaces of F and F has dimension p over L,'lt follows that
(1—0)¥+1 F has codimension 1 in (1—0o)¥ F. In particular (1——0.‘)F
has codimension 1 in F and the inclusions (1—-0)F C H C F yield

H:(l—O')F. (1)

This is a special case of a general fact about cyclic extensions.
See for example [2].

3 Basic Properties. N
%Ve define G to be the semi-direct product of the additive group H
and the multiplicative group I', noting that' elements of T' induce
automorphisms on H. Thus G is the cartesian product of H and
T with multiplication defined by

(z,p)(v,7) = (z +p(v),p7), 2,y € H;p,T ETL.

The identity element of G is (0,1) and inverses are given by
(z,p)"t = (—p(z),p7!). We have

(z,p) (v, 7)(z, p) "t = (L= ")z + p(y), 7) (2)
and
(:c,p)(y, T)(z,p)"l(y, T)—l = ((1 - T)I: - (1 - p)yr 1) (3)

forz,y€ H and p, 7 €T.

Observe that {(z,1) : = € H} is a normal gubgroup of G,
that contains G’ by (3) above, and 1s i.somo_rphlc to H under
the map z — (z,1). We will frequeqtly identify H and its sub-
groups with this subgroup of G and its subgroups. For example
I will be identified with the subgroup {(z,1) : z € L} ch G.
Similarly, {(0,p) : p € T} is a subgroup of G isomorphic to
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T and will occasionally be denoted by T as well. This should
cause no confusion, but can be useful. For example the subgroup
{(z,p):z€ L,p € T'} of G is isomorphic to the direct product of
L and T, since I’ acts trivially on L, and by our conventions we
would denote it by L x T, or LT'.

i, p}é ;f:’raightforward induction yields a power formula: for z €

m-—1
(z,0)" = (Z P (x), ™).
j=0

Sir'xce T has exponent p and H consists of elements of trace 0
this formula shows that (z,p)? = (0,1) if p # 1, while (z,1)? =
(pz,1) = (0, 1) since we are in characteristic p. Hence

Corollary 3.1. G has exponent p.

In the proposi.tion below we use the convention of identifying
subgroups of H with certain subgroups of G. Thus by (1 —o)H
here we mean {((1 — 0)z,1):z € H}.

Proposition 3.2. The derived group, G', of G equals (1 —o)H.
Proof: For any p,7 €l and z € H, we have

(1-7)=,1) = (2,0)(0,7)(z, )7 (0, 7) (4)

and by (3)
(2, 0) (7)), 7) = (1= ) — (1= p)v. 1)
=((1- )z, D((1- )Y, ]-)‘—1
<o that the elements ((1—7)z,1),z € H,7 €T, gener
y 4 ’ ) ate G/. A
r € T has the form o for suitable k, 0 < k< p,gso Y
1—-r=1-0 :(1—0’)(1+0’+--~+0k—1).

It folows that (1= 7)a,1) € (1= ), 1) - w € ) =
SOthatG’g(l_o‘)H‘ ) {(( (T)'w, )'wEH}—-(l——a)H

On the other hand, it is clear from (4) that (1 —o)H CG".
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Corollary 3.3. G’ is abelian.

The following simple fact is obvious but we state it expli-
citly for emphasis since its corollary lies at the heart of the non-
commutativity of G.

Proposition 3.4. The set H of elements of trace 0 in the exten-
sion F of L has cardinality ptle ).

Proof: F has cardinality pP* and the image, L, of the trace map
has cardinality p’. Hence the kernel, H, of the trace map has
3

cardinality = =p'-1.

Corollary 3.5. H and L are equal if and only if p=2.

§4 Main Results.

We now restrict p to be an odd prime. By the Corollary
above, L is then a proper subset of H and since F has degree p
over L, we see that H contains a generator of F out of L. As 2
consequence, the only automorphism of F over L that leaves H
clementwise fixed 1s the identity map. This fact plays a large role
in what follows. For example

Proposition 4.1. The centre, z(G), of G is{(z,1):z € L}.

Proof: From (2), (%, p) € z(G) if and only if ((1—-7‘):c+p(y), Ty =
(y, ) for alye H, 7€ T. Taking 7 =1, we obtain p(y) = y for
all y in H. Hence p = 1. Now taking y =0 and r arbitrary in T
we have z = 7(z) for all rsoz €L as required. Conversely it 1s
clear from (2) that (z, 1) € z(G) for allz € L.

Theorem 4.2. The group G is inherently non-abelian,
ie z(G) € G.

Proof: We have determined both the centre and the derived
group. Each is a subgroup of H, identified with its canonical
image in G. We have already observed that (1 — o)~'F = L.
Hence we have

2G)=L= (1—optFc(l- o)) F=(1-0)H = G’
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by Proposition 4.1, Proposition 3.2 and (1). Note that this inclu-
sion uses again the fact that p > 3, ie. p—1> 2.

Another qualitative indication of the lack of commutativity
of G is the fact that the centralizer of each element is as small as
can be—i.e. elements of G commute only with the obvious, such
as their own powers, elements of the centre, etc. It is not hard
to identify these centralizers (as we did in our original proof) but
we only need the following to complete our discussion. We are
indebted to the referee for the elegant treatment of case (iii).

Proposition 4.3. If g ¢ z(G) then the centralizer of g in G is
abelian.

Proof: The non-central elements of G have the form g = (z, p),
with z & L or p # 1. We consider three cases.

(i) = € L, p = 1. Here g is in H which is a commutative
maximal subgroup of the non-commutative group G, so Ceal(g) =
H in this case. )

(i) =0, p# 1. By (2), (y,7) € Cs(g) if and only if

(y: T) = (0,p)(y, T)(O)p)_l = (p(y),T).

Thus Ca(g) = {(y,7) : p(y) = y} = {(v,7) : v € L} since p # 1
and I' has p as generator. Here then Cg(g) is the direct product
of L and T.

(iii) It remains to deal with the case = # 0,p # 1. The map
a: G — G defined by

k-1
,A")* = (y+ D _F(2), /"), (y € H k> 0)
j=0

preserves the multiplication in G, hence is an automorphism. Put-

ting b = (0, p), we have Cg(g) = Cg(h*) = Cg(h)®, which is
abelian by (ii).

To complete the discussion, we have
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Theorem 4.4. G is indecomposable.

Proof: Suppose that G = K x M, direct product. Then M
is contained in the centralizer of each element of K, and. K 1.:
contained in the centralizer of each elemfznt of M. If K is no
contained in z(G), then M is commutative by Proposition 43.
Similarly for M. Hence we may assume that K, say, is contained
in the centre of G. . '
" Now z(G) = z(K) x z(M) = K x z(M) since K 1s comm.ut-
ative. We also have G/ = K’ x M’ = M’ since K is commutatlvta.
But t.his gives K C 2(G) C G’ = M' C M, and since KN M is
trivial, K is trivial.

Our main result has now been established. T he group G is
an indecomposable, inherently non-abelian group of exponent p
and has order p*®~1+1,

§5 Remarks. As another approach to this subject one cogld vaiew
a p-dimensional vector space V over the field L.of cax:dmahty p* as
an L[t] module via the linear transformation given, in some basis,

by the matrix

1100 0

110 0
e

0000 1

i i discussion,
Then V would play the role of F' in our previous
the kernel of ZA7 that of H, and in place of o one would use A.

The groups constructed above ha.ve many special pro.pertt-les,
perhaps even enough that they admit an easy 'characte;fzatm 10nf:
We do not pursue that question here th‘ough it might be of in fzrest
to point out that the subgroup H \.Nhl(?h plays such a pron?l:nle?zr
role has a group-theoretic characterization, at least for p > 3.

such p, H = Ca(G').
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Book Review

Mathematics and its History
(Undergraduate Texts in Mathematics)

J. Stilwell
Springer-Verlag, 1989,
ISBN 3 540 96981 0.

Reviewed by James Ward

John Stilwell, in addition to his original contributions in math-
ematics, is the translator of Serre’s Trees (Springer-Verlag), and
the author of Classical Topology and Combinatorial Group The-
ory. His experience as a writer on mathematics shows to good
advantage in the volume under review.

Proceeding from the observation (probably all too true in
many universities) that students are taught Algebra, Calculus,
Group Theory, Topology, Measure Theory etc, and are taught
little of the connexions between these areas, the author’s aim is
to combine the ingredients of Mathematics, using History as a
leavening agent; the result is very appetizing indeed!

This perspective differs from that of well known books on
the subject, such as the works of Boyer and Struik — to name
but two — who are more concerned with tracing the evolution
of mathematical ideas; also they aspire to produce a complete
account of the history of the subject (Struik being telegraphic in
style but, given its length, remarkably complete; Boyer is very
comprehensive).

In Stilwell’s book, the presentation of material in each chapter
is followed by a section of Biographical Notes, which in most
cases includes illustrations of the mathematicians mentioned in
the chapter. This is very useful for a lecturer seeking last-minute
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