100 YEARS OF DIXON’S IDENTITY

James Ward

Although Queen’s College, Galway cannot boast of such a world-
class mathematician as Boole (Queen’s College, Cork), neverthe-
less if one considers the size of Galway, the relative poverty of the
hinterland and the remoteness of Galway from other centres of
learning, mathematicians such as Allman, Dixon and Bromwich
who each held the chair of mathematics at QCG were of a very
high calibre indeed.

Perhaps the most distinguished of this trio was Dixon (though
Bromwich would have his admirers too) who was appointed to the
Chair in Mathematics at Queen’s College, Galway in 1893 and to
the Chair in Mathematics at Queen’s College, Belfast in 1901,
where he remained until his retirement in 1930. A broad account
of Dixon’s life and work can be found in the obituary written by
E. T. Whittaker [6] from which the following biographical inform-
ation has been extracted.

Alfred Cardew Dixon was born on the 23rd May, 1865 at
Northallerton, Yorkshire, went up to Trinity College, Cambridge
as a major scholar and in the Tripos of 1886 (“an exceptionally
strong year” — Whittaker [6]) graduated as Senior Wrangler. He
was awarded a Smith’s Prize in 1888 and elected a fellow of Trin-
ity College in the same year. In [6] Whittaker notes that in his
early years Dixon had produced comparatively little work of real
distinction, but that from 1893 (the year he was elected to the
Chair in Mathematics at Queen’s College, Galway) “he became a
most productive original worker”.

Dixon produced important memoirs on ordinary and partial
differential equations, Abelian integrals, automorphic functions,
F:edholm theory and functional equations. He was elected to
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Fellowship of the Royal Society in 1904 and was President of the
London Mathematical Society in 1931-33 following his retirement
from Queen’s University, Belfast. Dixon died on 4th May 1936 and
had been predeceased by his wife in 1926; they had no children.

1991 marks the 100th anniversary of the appearance of a note
by Dixon [1] proving the combinatorial identity

= {m ifn=2m

(/) (=D’ = (m1)3

k=0 .
0 otherwise.

In t'he lit‘erature on combinatorial theory this identity or the fol-
lowing slight generalisation due to Fjeldsted [3] (see also Dixon
[2]) now bears Dixon’s name:

= () () (1) - Cxbee

for integers a, b, ¢ > 0 and the permitted range of the integer k
(which is finite).

There are several proofs of Dixon’s identity and I wish to
present three such proofs, namely Dixon’s original proof, a second
using the Lagrange inversion formula as described in [4] and a
third using WZ pairs [7, p.126]. These illustrate the rich diversity
of techniques in Combinatorics, but I would also like to draw
atiention to the fine mathematical heritage of Queen’s (now Uni-

versity) College, Galway as represented in the work of Allman,
Bromwich, Dixon and others.

First Proof (Dixon [1])

For n a positive integer, and writing (1 + z)” as
anz” + an_12” 1+ . 4+ arz+ao
(here the a; are the binomial coefficients "C’,') it follows that

(*%) ag—aj+aj— ... —a}
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is zero if n is odd, s an arbitrary positive integer ("C; = "Ca-i),
so the question is to find a closed form for such a sum (**) when
n is even. When n is even, say n = 2m, and s = 3, we denote
by S the alternating sum (*x) so obtained, and in this case S is
the left hand side of the formula (x). Now S is the coefficient of
y¥™ 24 in (1 — y?)?™(1 — 22)?™(1 — y?2%)®™, which is the term
independent of y and z in

=y )™z — 2Pz -y~

Making the trigonometric substitutions y = cos@ + isiné and
z = cos ¢ +isin¢g, S becomes the absolute term in

(—4)>™ sin®™ 8 sin®™ ¢ sin®™ (6 + ¢)

when expanded in cosines of multiples and sums of multiples of §

and ¢, so (1)
2n p2m
(-1)™473"4n%S = / : / sin®™ 0 sin®™ ¢ sin?™ (0 + ¢) d6 d¢.
0 0

The Binomial Theorem is used to expand sin®™(f + ¢) via
(sinf@cos ¢ + cosfsin ¢)®™, every second term in the integral
vanishes and the right hand side of (1) reduces to

L

m 2 2w
E ™ok / sin2(™+E) g cos?(m=K) g 40 . / sin?®™ 78 ¢ cos”* ¢ do.
o]

k=0 0

Each integral is 4 times the integral over 0 to 7/2. A further
substitution of z = sin® 8, y = sin? ¢ results in an integral of the
type

1 1
/ "1 — )Pt d:c-/ Y1 —-y)*tdy
0 0

L(a)T(8) T(1T(E)
T(a+p8) T(v+9)
Using I'(a) = (e—1)I'(a—1), and T'(1/2) = /7, and some diligent
calculations, the 42 term in the left hand side of (1) cancels and
we are left with :

which is a product of Beta integrals, equal to
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(2m)!

k
><1-3~5~--(2m-+—2k—1)-1-3~5~~(2m-—2k-—1)
2:4-6---4m
185 (4m—2%-1)-1-3-5-. (2k—1)
2:4.6---4m
on the right hand side of (1), which simplifies (!} to
(4m)! 2m+1
Bmlmh2(2m)l | dm— 1

m(m — 1) (2m + 1)(2m + 3)
2 (dm — 1)(4m — 3)

+ - (m4+1 terms)} (2)
Dixon now refers to Wolstenholme’s Problems 2nd edition #303

wherein

(m—1) a{a—1)

1—~m2+m

b 2! b(b— 1)
m(m — 1)(m — 2) afa — 1)(a — 2)
3 b(b——l)(b——2)+.“ (m + 1 terms)

1s equal to

a a a a

1—=§ (1~ —_—— Y 1=
(1-5) (-525) (-5%) - (- 5=)

and (2) falls into this pattern on putting a = —m — 1/2 and

b = 2m — 1/2 which finally results in (*).
Perhaps this clever proof justifies Whittaker’s remark [6] “if
the method was possible Dixon would make it work”.

Second Proof (Goulden—Jackson [4, p.23-4])

This requires some preliminary notation. We denote by RJ[[t]] the
ring of formal power series in a variable ¢ over a commutative ring
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R, s0 an element f of R[[t]]is of the form f = 3, axt®, ax € R.
If we allow finitely many negative powers of ¢, we have the ring
of (formal) Laurent series R((t)). A polynomial is an element of

R[[t]] with only finitely many non-zero ax. Two important subsets
of R[[t]] are

R[[tlo = {f € R[[t]]|a0o =0} and
R[[t) = {f € B[[t]] | a5 exists };
in this latter case f has an inverse in R[[t]] (long division!). We let

f' denote the formal derivative of f which is 3, o(k + 1)ar41t*,
and define the “coefficient operator” [t*]f to pick out the coeffi-

cient of t* in f, thus [t¥]f = ax and [t*]f = (k + 1)ax41. Finally
if fi € R((t)), the valuation of f; is defined to be
val(f,) = {k if fi() = (1), 9(t) € R[4

oo otherwise.

Now we can state Lagrange’s Inversion Formula. Let ¢(t) €
R[[t]]i- Then there exists a unique formal power series w(t) €

R[[t]]o such that w(t) = té(w(t)). Moreover if f(z) € R((z)
(Laurent series) then (a)

1y i e .
[t"1f(w) = { 2T @) ié for n # 0, n > val(f)

[=°1f(2) + [=711f"(=) log(¢(=)¢(0) ")  for n =0
[exp(z) = Z fjl— € R[[z]], and log(exp(z)) = z].
izo 7
If F(z) € R[[«]] then (b)
Z cat™ = F(w){l1 —t¢'(w)}™' where ¢, = [z"]{F(z)¢(z)"}.

n>0

Example
Suppose we want to invert w(t) = te", ie to express w as a power
series in ¢, we have ¢(t) = €, f(w) = w, and val(f) = 1; so by (a)

[t°]w(t) = [z°)f(2) + [7"]1 -log(e” - 1) = 0
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n 1 n=—1 ne n-— (nx)k
and  [Jwft) = [ L) =
k>0
_ 1 n™~ 1 _ nn—l
Tam-1)1T
hence w(t) = 3 ,5; (n"~ 1/n') t", note that w(t) € R[[t]]o.

Lagrange’s formula will also give power series expansions for
wi(t) (f(w) = wl) or w2(t) (f(w) = w™?) etc. W
There is a multivariate version of the Lagrange formula [4,
p.21] and the multivariate version of (b) reads: If

F(x), ¢1(x), ..., ¢m(x) € R[[x]] where x = (21, ... ,Zm),
and if

w; = t;¢i(w) for 1 <i<m where w= (w1, ..., wn),
then
F(w) e P gk
det( tadn(w)/awj) Zt [ ]{F( )4’( ) }

w=w(t) k>0

where k = (k1, ..., km).
For instance suppose we have X; = Z}":l a;;z; and we want

to find the coefficient of x* in XX, ie the coefficient of z¥* ... zkm
in X¥' ... Xkm. We apply the above with F(x) = 1, ¢i(x) =
ai1z1 + ... + @;mT, so the ¢; are linear functions, to get that

the coefficient of x* in X¥ is equal to the coefficient of x¥ in
|I — z;a;;|~! where I is the m x m identity matrix. If we put
A = (a;;) and X = diag(zi, ... ,%m) the formula reads as the
coefficient of z%* ... zkm in |I — XA|~'. This specific result for
linear ¢; is the so-called MacMahon Master Theorem. To apply
this to Dixon’s problem of evaluating S (**) we note that

(1-2)(-9"(-2)
= 3 (R1)HHCIC Cra TR

0<i jk<n
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The term independent of z,y,z is when ¢ = j = k, which is S.

Thus | n
s=e{(-5)(6-2) (-9
= [e"y" 2"y — 2)(z —y)(z — 2)}"

Nowm=3,¢1=2—Yy, ¢2=2—2,¢3=y—x, and

0 -1 1
A= 1 0 -1|= (a¢>,~>
-1 1 0 Oz;

where (z1,22,23) = (2,,2). Then S = [z"y"z"] {|I — XA|~!}.
Now

1 =z -z
H-XAl=|-y 1 vy |=14yz+zy+azyz—zyz+zz
z -z 11

=14zy+yz+ zz,

s08 = [z"y"2")(1 + zy + yz + zz) 7!

!
=y 3 (B ey
@,8,720 e

Therefore we must have a+y=a+f=fF+v=nora=0=
v = n/2. However «, 3, are integers, which fact forces n = 2m
(=)™ (3m)!

say,and a+f+y=3m. So S = )?

as required.

Third Proof

This uses the method of WZ pairs [7, p.120ff]. The idea of a W2
pair is as follows: To prove the identity

zk:A(n,k) = f(n) say,forn=0,1,2,... 1)
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(where the range of k may be from —oo to 00) is equivalent to
showing

Aln, k) _ or m =
; ) =1 f 0,1,2,... (3)

or letting F(n, k) = A(n, k)/ f(n) we can write (3) as
S F(n k) =1,
k

which is now independent of n. Replacing n by n + 1, it follows
that
S {F(n+1,k)—F(n,k)} =0 forn>0. (4)
k

Suppose there exists a “nice” function G(n, k) with the prop-
erty that

F(n+1,k)— F(n, k)= G(n,k+1) - G(n, k), (5)

then the series in (4) results in the telescoping of G(n, k), to wit

+M +M
S {F(n+1,k)=F(n,k)} = Y {G(n,k+1) = G(n,k)}
k=-L k=—L

=G(n,M +1) - G(n,—L).
Let us further require

lim G(n,k) =0, (6)

k300

then the identity (1) 5, A(n, k) = f(n) is proved.

It transpires that for a wide class of identities there are such
“nice” functions G(n, k) of the form R(n,k)F(n,k — 1) — where
R(n, k) is a rational function of n and k — and (f) is proved by
exhibiting F and R. The F and G obtained thus are referred to
as a WZ pair if the conditions (5) and (6) hold. This procedure
enables one to use symbolic manipulation packages to carry out
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th‘e ste’ps. by c-omputer, and thus prove identity (}). In particular,
Dixon’s identity in the generalization of Fjelsted:

Do () (1)) - e

k

is proved firstly by taking

(c+1—k)(b+1—k)
2(n+k)(n+b+c+1)

t?ms G(n, k) = R(n, k)F(n, k—1), and secondly by verifying equa-
tions (5) and (6) — for which laborious exercise it would be ad-
visable to avail oneself of Macsyma say.

In general there are few known identities involving sums of
products of several binomial coefficients. A spectacular general-
ization of Dixon’s beautiful identity is given by equation 5.31 on
p.171 of [5] which must surely be the non plus ulira of the species.

R(n, k) =
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SOME GROUPS OF EXPONENT p

J. D. Reid

§1 Introduction.

By the ezponent of a (finite) group G is meant the least com-
mon multiple of the orders of the elements of G. It is a well known
elementary exercise that groups of exponent 2 are abelian; and all
groups of order p?, p a prime, are abelian. On the other hand
there are examples of non-abelian groups of exponent p (p>2)
and order p3, or p%, that go back to Burnside, at least (e.g. 1.
Taking a direct product of a non-abelian group of order p?, for
example, with an elementary abelian p-group of order p™ will, of
course, give an example of a non-abelian group of exponent p and
of arbitrarily large finite cardinality. However as an example of
a non-abelian group of exponent p such a group offers little more
than its non-abelian direct factor.

Our interest in examples of such groups was stimulated by
questions of W. W. Comfort. We present here a simple construc-
tion of an infinite class of non-trivial (i.e. non-abelian and in-
decomposable) groups of exponent. p, p > 2.

Observe that to say that a group G is abelian is to say that
it is equal to its centre, z(G), so that the larger the centre of
G the more abelian, in a sense, is G. Similarly G is abelian if
and only if its derived group G’ is trivial so that the smaller the
derived group, the more abelian is G. It may happen that z(G) is
contained in G’ in which case G has no hope of being abelian: the
larger the centre in G the larger the derived group, the smaller the
derived group the smaller the centre. Hopes for commutativity are
frustrated just in proportion to their strength. For the purposes
of this discussion we encapsulate this idea in the
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