PERFECT COMPACT T3 SPACES

E. Coleman

Abstract: In a previous note in this bulletin, M, O Searcéid [6] proved
several Interesting results on perfect sets. In this article we prove some
results on the existence of largish perfect sets (§1), use an Erdés-Rado
partition relation to bound cardinalities (§2) and complete the cardin-
ality picture in the final section,

studied in this section 1s the following: X is a perfect space if
and only if every closed set is g Gs. Examples are the reals, any
metric space, any discrete Space. . .; indeed for any topology 7" on
X there is a smallest topology 77 5 7T in which X is a perfect
space. The main result of §1 says that if X is an uncountable

cardinality [X], and X — P ig countable. In other words, there is
a Cantor-Bendixson theorem for perfect Lindeloef T1 spaces too.
Definition. For 4 ¢ X, A ={zecd forall y ENJ]ANN| >
1} where N is the family of open neighbourhoods of 7. For each
ordinal o define X0 := x yeo+l._ (X%) and X@ .= Np<caX? if
@ is a limit ordinal. We uge ‘w for the (cardinality of) the set of
natural numbers.

Lemma 1. For all o < w1, (the first uncountable cardinal) if
X Is uncountable perfect Lindeloef Ty, then (1) X — xoat+i ;o
countable; (2) | X¢| = X[ (3) X — xo jg countable.
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Proof. X is perfect Lindeldoef Ty, so X* is also (since X is
closed in X). Prove (1), (2) and (3) by induction on a. For
a=0:X - X'is a discrete subset of X, X" is closed in X, so
X' = NnewGhr, Gn open, and so X — X’/ = Une.an., F, closed.
If |[X = X'| > w, then for some n|Fu| > w; Fy, is Lindeloef and
discrete—a contradiction. Thus (1), (2) and (3) hold. For o =
B+ 1: from (1); (2) and (3) of the inductive hypgthesw fqr. B,
[X*| = |XP| = |X|, so X* inherits the uncountability condition
too, and (as for o = 0) | X« - x+1| < w, | X -X = |U7Sﬁ)g7~'
X" < 1B w < w. For o a limit ordinal: X* := Mg X*? so
X=X = |UpcaXP ~XP+!| < |a]-w = w: hence |Xe| = ;lxl and
again X * inherits all the conditions on X and so [Xo—Xotl| < g,

Lemma 2. There exists & < w; such that X — X+t

Proof. Suppose not. Then for each o and z € X* — X+l tlllere
exists V(z) an open neighbourhood of z with Viz)Nn X°“"1 =
¢ X = NaewX* is closed so X — X1 — Uaguw, X& ~ X+l =
Uﬂewlf;? ,liqniosf,d‘X“ — X! can be enumerated as (z(n,a) :
n € w). Thus Upe, Fy, = {x(n,a) fa<wn < w}, so for some
m, some B C wy, B cofinal (unbounded) in wy, and Co, @ € B,
¢ # Cy C w one has:

F, = {x(n,a):ozEB,neCa}‘

Now {V(x(n,a)) NFn:a€B,né€Cy}isan open cover of
Fin (closed hence Lindeloef), so for some countable A4 B, and
Do C Cofa € A)

Fr, gU{V(m(n,a)) ta €A n€ Dy} (*)

But supA < w; since 4 is a countable set of countable ordinals.
So one can find 8 € B - (sup A + 1). Consider :c(.r, B) for any
r€Cp:z(r,pB) e U{V(:c(n,a)) ‘o €A n € Dy} since z(rB) €
Xt and V(z(n,0)) N X =g forall w € 4 and n € D,. Of
course z(r, §) € Fr,—contradicting (*).

Therefore there exists o < wy with X = xo+1
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Theorem 3. X contains a perfect subset P of cardinality | X|,
and X — P is countable.

Proof. Choose the first « < w; such that X® = Xe+! Then
P := X% is required.

§2 Partition relations and the power of perfect Lindeloef
T} spaces.
Question: if from a palette of u colours one assigns a colour to
each n element subset of a set X, can one be sure of finding a
large subset H C X which is monochromatic: every n element
subset of H receives the same colour? It depends. The study
of this kind of problem by F. P. Ramsey and later by P. Erdds
and co-workers initiated the partition calculus [2], whose many
applications include a proof of a famous theorem of Arhangel’skil
that every first countable compact (or even Lindeloef) Hausdorff
space has power at most continuum (also in [2]).

Some notation: [X]" := {A C X : |A| = n}; for cardinals
K, A gtk — (A)7 read: “k arrows A super n sub 41"} abbreviates
the statement: for every set X of power &, for every function
f 1 [X]* — p, there exist H C X and o < g such that ) |H|=2A
(ii) for every A € [H]", f(A) = o. Intuitively speaking, the
partition relation k¥ — (A)% holds if for every colouring f of xpy
by u colours, there is a monochrematic (homogeneous) H C X of
power A.

For orientation, here are some partition relations which are
theorems of ZFC (Zermelo-Fraenkel set theory with the axiom of
choice). (k% is the next cardinal after K.)

Theorem. ([2], [4], [1])

(1) w— (W)} n, k €w (Ramsey)

(2) (expa(A) T — M)+ (Erdés-Rado)
where expg(A 1 A, exp, 1 (A) i= exp,(2*);

(3) 2% 4 (A*)3 (Sierpiriski)

where /+ means that the relation is false.

(2)F — (w1)2. (*x)

We’ll need only the special case A = w, n = 1 of [2]
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Theorem 4. [7]: If X is perfect Lindeloef Ty, then X has power
at most 2.

The proof of Theorem 4 illustrates very well how partition
relations bound cardinality:

Lemma 5. If X is a topological space in which every singleton
subset is a G5 and if X has no uncountable discrete subsets, then
X has power at most 2%.

Proof: For z € X, {z} = ﬂnEwG(n,x),A G(n,z) open. Set
U(n,z) = Nm<nG(m,z) so that U(n,z) is open, U(m,zr). 2
U(nz,z) for ny < ny and MueoU(n,z) = {z}. z #y € X im-
plies that there exists k € w such that:

zeUk,z) ygUlk )
e\ yeUlky) zgUky)

Define f : [X]? — w by f({:c,y}) := the least & such that ()
holds. .

Suppose now that |X| > (2¥)*. Then by (%) there exist
H C X and ko € w such that

(1) |H| = wi
and
(i1) for e #y€ Hf({z,y}) = ko.

H is discrete, for if y # = € H, then by (ii) y € U(ko, z) so that
HnNU(kg,z) = {z}. .
To finish the proof of Theorem 4, one employs the simple

Lemma 6. If X is perfect Lindeloef T}, then every discrete subset
of X is countable.

Proof. Let Y C X be discrete. Put FF:={z € X : forall N €
N Y N N|> 1}. It’s easy to check that
(i) F is closed in X and
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(YNF=0,YCX-FandVis closed in X — F. From (1)
and (ii) Y is an F, in X,say YV = Unew Fn, F, closed in X. Since
Y is discrete and X is Lindeloef, F, is discrete and Lindeloef,
hence countable. So Y] < donew | Frl <w-w=w.

Proof of Theorem 4. Every singleton subset is closed in a T3

space; apply lemmas 5 and 6.

Remarks:

(1) Lemma 6 and Theorem 4 are from [7]; Lemma 5 comes from
[3].

(2) Similarly it is easy to show: if X is a perfect k*-compact 7
space, then X has power at most 27,

(3) Recall that X has the Souslin property (the countable chain
condition) if and only if there is no uncountable family of
pairwise disjoint non-empty open subsets of X, Using (*+)
one can prove that if X is a first countable Hausdorff space
with the Souslin property, then X has power at most 2v,

§3Uncountable perfect compact 7] spaces have power 2%,
Theorem 4 says that uncountable perfect compact T} spaces have
power at most 2¥. In fact any such space has power exactly 2+,

Lemma 7. If AC X is a closed uncountable set, then it is pos-

sible to find disjoint closed sets B, C, B C A with AN B, AnC
both uncountable,

Proof. Choose a € 4 such that A N G is uncountable whenever
Ga is open. (a exists, since otherwise for all ¢ € 4 there exists
G(a) open, a € G(a) and G(a) N A4 is countable: 4 is compact
and so 4 C (G(a;) U Gla) U --- U G(an)) N A giving [4] < w
contradiction.)

{a} = NnewGhn, Gp open since X is perfect 7.

-6,
new

so for some n, A4 — G is uncountable. ¢ € G, implies that ANG,

is uncountable; also G, = Umew Fr, Fyy closed, so for some m,

a Fp, is uncountable. Now B — AN(X -Gp) and € := ANE,

are as required.

= ’AL
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Corollary 8. If P C X is perfect uncountable, then there exist
Py, Py disjoint uncountable perfect subsets of P.

Proof Split P to find B, C as in Lemma 7; by Theorem 3 there
are o C B and P, C C perfect, |Pj| = |B|, |P.] = |C| and
P1 n Pz = @

Theorem 9. Suppose that X is a perfect compact T space. If
X is uncountable then X has power 2¥.

Proof By Theorem 3, X contains a perfect subset P, |P|=|X]|.
It’s enough to show |P| = 2v. ,
Define by induction on <*2 (finite sequences of 0’s and 1’s)
a family of sets P, for s € <¥2 as follows: .
P¢s = P (<> is the empty sequence in <“2); if s € <¥9 and P,
is defined so that P, is uncountable and perfect, choose P, P,
disjoint uncountable perfect subsets of P, (by.COrolIary 8).
Now define for f € “2 (functions form w into {0,1}

Pf = m Pfln

new

where f[n is the restriction of f to n giving the finite sequences
(£(0), F(1), ..., f(n— 1)) in <v2,
For m € w, ﬂ Pfin # 0, so by compactness, P £ 0.
< o
Thus {P; : ; _Em“’2} si a family of pairwise disjoint non-empty
subsets of P. So 2¥ < |P| = |X| < 2¥ (By Theorem 4).

Remarks o ‘

(1) Some representability condition is necessary, as evidenced by
the space wy + 1 with 2¥ > w;; similarly a discrete space of
power wy with 2* > w; indicates the necessity of some degree
of compactness.

(2) Theorem 9 resembles the classical theorem that a first count-
able compact Hausdorff space is either countable or has power
2¢,

(3) It turns out that Theorem 9 is true under the weaker assump-
tion: if X is compact 7} and every point of X is a G, then
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ieit}[ga]r |X] <w or |X| =2 Some of the proof can be found
n [5].
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Reviewed by Donal O’Regan

The book of Hubbard and West provides roughly about one third
of a year’s undergraduate course in ordinary differential equa-
tions for senior undergraduate mathematics students. The au-
thors give a very nice up to date treatment of first order (one di-
mensional) ordinary differential equations in normal form, namely
z' = f(t, z); their own software package MacMath is used and re-
ferred to throughout the text to compliment the material.

The book consists of five chapters. Chapter 1 is devoted
to qualitative description of solutions; Hubbard and West begin
with a discussion of such standard topics as direction fields and
computer graphics. However the major part of the chapter is
devoted to the introduction of the terms fences, funnels and an-
tifunnels. The authors motivate and illustrate very convincingly
how these concepts can be used to examine the behaviour of solu-
tions. Chapter 2 discusses standard methods for solving differen-
tial equations analytically; here Hubbard and West provide some
lovely insights into some very well known problems. Numerical
solutions of differential equations are examined in chapter 3. Here
the standard one step methods are discussed and again a very nice
treatment is given. Chapter 4 is devoted to the study of existence
and uniqueness of solutions. In addition the error bounds stated
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