C*.-DYNAMICAL SYSTEMS AND
COVARIANCE ALGEBRAS
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The last two decades have seen extraordinar.y progress in the the-
ory of operator algebras and an enormous increase in the range
and power of its applications. Ig this paper We‘shall look at that
part of the theory which deals w%th the interaction of C*-algebras
and groups of their automprpl}lsms. From.the p.urely tbeoreb
ical point of view, the motivation fgr stud)flng this area is that
it enables the construction of new interesting C*-algebras from
old. Further motivation is provided by the sheer depth a?xnd eleg-
ance of the ideas of the theory, Which‘in‘volve a beautiful interplay
of C*-algebras and harmonic analysis, and concern some of the
deepest (and hardest) results Qf @he theory of operator algebras.
Historically, however, the main 1mpetu§ to the devglopment_ of
the subject came from its applications in mathema_t;ce?} physgs.
For this reason we shall occasionally motivate a point by a brief

reference to quantum physics.

§1. Simple and primitive C*uglgebrgs, |

We begin by reviewing some basic terminology. \Le'o A.be an ‘ai~
gebra (all vector spaces and algebras are complex). An mvoiutjoz:
on A is a conjugate-linear map, a — a*, such that (ab)* = b.a'
and a** = a (a,b € A). A (C*-algebra is an af{gebr; endowed with
an involution and a complete norm such that |labl} < llal| Hb[] arid
lla*all = llall? (a,b € A)- Obviously the complex field C is a C*-
algebra. Less trivially, if Q is a locally compa‘ct Hausdorﬁj space,
then the set Co(§2) of all complex-valued contmuqns functions on
) vanishing at infinity is a C"-algebra (the operations are defined
pointwise and the norm is given by ||fllcc = sup,eqn |f(w)]). By
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the Gelfand representation, every commutative C*-algebra is of
this form, up to isomorphism.

If H is a Hilbert space, let B(H) denote the set of (bounded
linear) operators on H. This is a C*-algebra with the operator
norm and the involution defined by the usual adjoint. If A4 is
a norm-closed subalgebra of B(H) such that T* € A whenever
T € A, then it is a C*-algebra. The Gelfand-Naimark theorem
asserts that every C*-algebra is of this form (up to isomorphism).

A fundamental technique used in analysing a C*-algebra A
is to represent it on various Hilbert spaces. A representation of
A'is defined to be a pair (H, ¢), where H is a Hilbert space and
¢ : A — B(H) is a *-homomorphism, that is, a linear map pre-
serving multiplication and involution. We say that (H, ¢) is non-
degenerate if H is the closed linear span of all elements ¢(a)n
(a € A, n € H); and we say that (H, ) is irreducible if the only
closed vector spaces K of H such that ¢(a)K C K (a € A) are
K=0and K=H.

There are two classes of C*-algebras that play the role of
“building blocks” in the theory—the simple and the primitive C*-
algebras (their description as building blocks has to be taken cum
grano salis). A primitive C*-algebra is one which admits an ir-
reducible representation (H,¢) with ¢ injective. For example,
B(H) is primitive, but Co(Q) is not, unless Q is a single point
(in which case Co(Q2) = C). A C*-algebra A is simple if its only
closed ideals are the trivial ones, 0 and A. Simple C*-algebras are
primitive, but not conversely. For instance, B(H) is simple only
when H is finite-dimensional. The ideal of compact operators is
always simple.

In general it is a non-trivial task to exhibit examples of simple
and primitive C*-algebras. The covariance algebras that we in-
troduce in the next section play a vital role in the construction of
many such examples.

§2. C*-dynamical systems and covariance algebras.

An automorphism of a C*-algebra A is a bijective *-homomorph-
ism from A onto itself. We denote by Aut A the group of auto-
morphisms of A.
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A C*-dynamical system is a triple (A, G,a), where A is a
C*-algebra, G is a locally compact group, and the map o : G —
Aut A, ¢ — «g, is a homomorphism that is continuous in the
sense that the map G — A, =z +— a,(a), is continuous for each
a € A.

The terminology derives from the applications. In quantum
physics the observables are non-commuting operators on a Hil-
bert space. In some models they “form” a C*-algebra A (more
precisely, they form its self-adjoint part A, = {a € 4| a* = a}).
Time evolution and spatial translation of the observables are then
described by a C*-dynamical system.

If A is abelian, we can write A = Co(Q). In this case, the
analysis of (4, G, @) relates to ergodic theory, since we get a cor-
responding action of G on 2 by a group of homeomorphisms af,,
where the map «af, : Q — Q is determined by the equation

(az f(w) = flabi(w)) (z€G,weQ, feA).

When G = R, Z or T (the circle group), the study of (Co(2), G, &)
is in essence classical topological dynamics. The motivation to
work with A non-abelian came from the quantum physicists, who
have to deal with non-commutating observables.

A unitary representatioh of G is a pair (H,U), where H is a
Hilbert space, the map

U:G— B(H), z—U,,

is a homomorphism into the group of unitary operators on H,
and U is continuous in the sense that for arbitrary 5,7 € H the
function

G—C, z+ (Uyn,7),

is continuous.

The analogous object to a representation of a C*-algebra A
is a covariant representation of a C*-dynamical system (4, G, a).
This is a triple (H,¢,U), where (H, ) is a representation of A,
the pair (H,U) is a unitary representation of G, and ¢, U interact
via the condition

plaz(a)) = Usp(a)U; (e €A, z€G).
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We can now introduce the covariance algebra of (4,G,a).
The connection of this C*-algebra with (4, G, «) is that there

“is a natural one-one correspondence between its non-degenerate

representations and the covariant representations of (4, G, ), so
that, at least to some extent, the theory of covariant representa-
tions is reduced to that of ordinary representations.

Let m and A denote the left Haar measure and the modular
function of G respectively. Denote by K(G, A) the vector space
of continuous maps from G to A having compact support. We
endow K (G, A) with a (convolution-type) multiplication and an
involution defined by

(F+9W) = [ f@)as(o(z™3) dm(z)
() = @) as(f)"

for f, g € K(G,A) and z,y € G.

By rather indirect means, one also equips K (G, A) with a
suitable norm making it almost a C*-algebra—the only require-
ment that is not satisfied is completeness. This defect is remedied
simply by completing K(G, A) and extending its operations by
continuity to get a C*-algebra, denoted by C*(A,G,a) or A X, G
and called the covariance algebra of (4,G, @), or the crossed
product of A with G (under the action «).

A primary motivation for this construction is that C*(4, G, )
can be made simple or primitive by imposing suitable conditions
on (A,G,«). Examples of simple and primitive C*-algebras are
important not only for theoretical reasons, but also for applica-
tions. The algebras occurring in physics are often of this type—
as D. Kastler remarks, nature does not have ideals. In physics
the algebra of quantum observables is frequently obtained from
the commutative algebra of the classical observables by taking
something like the crossed product with the group generated by
a set of “conjugate” variables of the classical variables.

A particular case of the crossed product construction is of
great importance in the theory of unitary representations of loc-
ally compact groups. If G is one of these groups, we get a C*-
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dynamical system (C, G, ) by letting G act trivially on C. The
covariance C*-algebra C x o G is denoted by C*(G) and called the
group C*-algebra of G. The theory of the unitary representations
of G then becomes a part of the representation theory of C*-
algebras, since they correspond to the representations of C*(G)
(for details, see [2]). If G is abelian, then C*(G) = Cy(G), where
G is the Pontryagin dual group of G, but in the non-abelian case
the analysis of C*(G) can be very difficult.

Another class of C*-algebras that arise from the crossed
product construction is the class of the irrational rotation algeb-
ras. These have been extensively studied. One reason for their
importance is that they are motivating examples for the non-
commutative differential geometry being developed by the Fields
medalist Alain Connes.

Let A= C(T) and let v : T — C be the inclusion function (u
generates A). If we fix an irrational number @ in [0,1], then there
is a unique automorphism «; of A such that ai(u) = 2™y,
Setting o, = af, we get a C*-dynamical system (A, Z, o) whose
covariance C*-algebra is denoted by As and called an irrational
rotation algebra. The action of Z on T corresponding to « on
C(T) is given by rotation through the irrational angle 6, hence
the name. We shall return to these algebras in the next section.

§3. Ergodicty and simplicity.

Although the crossed product is the most powerful device for get-
ting new C*-algebras, the process is very elusive and a great deal
of effort has been required to give general conditions which imply
it is simple or primitive. In this and the next section we discuss
some of these conditions (there are others which are not suitable
for inclusion here due to their complexity).

‘We shall make the following assumption:

In this and the next section, (A, G, &) is a C*-dynamical sys-
tem for which A is separable and G is countable, discrete and
abelian.

Moreover, in this section only, we further assume that A Is
abelian.
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Thus, we may write A = Co(Q). If w € Q, its orbit is the
set of all points a(w) (z € G). We say that « is ergodic if every
orbit is dense in . We write f < g in A to mean f(w) < g(w)
for all w € 2 and f # g. We define o to be free if for all non-
zero elements £ € G and all elements f > 0 in A, there exists an
element g > 0 in A such that ¢ < f and a.(g9) # g.

The following important result is due to E. Effros and F. Hahn.

Theorem [4]. If (4, G, a) Is as assumed above, and the action «
is ergodic and free, then the crossed product A x G Is simple.

Despite the considerable restrictions imposed, this is still a
very useful result. We illustrate it by applying it to the C*-
dynamical system (C(T),Z, a) associated to the irrational rota-
tion algebra Ag: As is well known, the only closed subgroups of T
are the finite ones and T itself. The irrationality of § implies that
the set {€*2™% | n € Z} is infinite, and therefore the closed sub-
group generated by 2™ ig equal to T. It follows that every orbit
is dense in T, that is, « is ergodic. If f is an element of C(T') such
that a,(f) = f for some non-zero integer n, then ama(f) = f for
all m € Z. Hence, f(e!?™™"%) = f(1), and therefore, by density
of the set {e*2™™"¢ | m € Z} in T, the function f is constant.
This easily implies that o is free. Since all the conditions of the
Effros-Hahn theorem hold, we conclude that Ay is simple.

§4. The Olesen-Pedersen spectral theory.
A subset S of A is said to be G-invariant if a,(S) = S (z € G).
If A is abelian, the ergodicity condition defined in the preceding
section means that the only G-invariant closed ideals of A are the
trivialideals 0 and A. When A is not (necessarily) abelian, we use
the term G-simple for this reformulated condition. We say that
A is G-prime if every pair of non-zero G-invariant closed ideals of
A have a non-zero intersection. X

The Arveson spectrum Sp(a) of « is the set of all ¥ € G such
that there exists a sequence of unit vectors a, in A for which

lim [loe(an) = 7(z)an| =0 (2 €G).
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(The y(z) are “joint approximate eigenvalues” of a..) The ap-
propriate spectral object for C*-dynamical systems is not this
spectrum, however, but rather another spectrum derived from it
which we now describe. If B is a G-invariant C*-subalgebra of 4,
we get a new C*-dynamical system (B, G, a|B) by restriction of
« to B. The Connes spectrum of « is

I(a) = NpSp(a|B),

where B runs over all non-zero G-invariant hereditary C*-subal-
gebras of A (B is hereditary if BAB C B). The computation of
I'(a) is helped by the fact that it is a closed subgroup of G, but
nevertheless its calculation is in general a non-trivial task.

The following result is due to Olesen and Pedersen.

Theorem [7] ,[8]. If(A,G,a) satisfies the assumption in section
3 the following conditions are equivalent:

(a) A X G is primitive (respectively, simple);

(b) A is G-prime (respectively, G-simple) and T'(a) = G.

This is a difficult result, involving a beautiful duality theory
for C"-dynamical systems due to Takesaki and Takai that is a
sort of C*-analogue of the Pontryagin duality theory for locally
compact groups. We do not attempt a statement of what thig

duality involves, as it would require a disproportionate amount of
detail.

§5. Crossed products by semigroups.
A question that is begged by the theory we have outlined above is
what kind of results hold if we replace groups by semigroups. This
situation has been analysed by a number of mathematicians in
recent years. We shall briefly outline here some results of a theory
developed by the author [5], [6]. Surprisingly (or perhaps not),
the situation turns out to be radically different, but nevertheless
we get new examples of primitive C*-algebras and, indirectly, of
simple C*-algebras.

We redefine a C*-dynamical system to be a triple (4, G, @),
where A is a C*-algebra, G is a cancellative abelian semigroup
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with zero, and the map « : G — Aut A is a homomorphism. To
avoid trivialities we assume that A and G are non-zero. The pre-
vious construction of the crossed product using K (G, A) does not
work in this setting, but this difficulty is surmounted by construct-
ing A X G as something like the solution to a universal mapping
problem (when G is a group, our crossed product is the same as
before). The details are omitted as they are technical.

For G arbitrary, we can get a C*-dynamical system (C, G, o)
by letting G act trivially on C; we then denote C x, G by
C"(G). Observe that C*(Z) = C(T), which is not something
new. However, C*(IN) is 2 much more complicated and inter-
esting C*-algebra. It is called the Toeplitz C*-algebra, as it is
(isomorphic to) the C*-algebra generated by all Toeplitz oper-
ators with continuous symbol on the unit circle T. It plays an
important role in K-theory, as indeed does the algebra A x, N,
for any C*-dynamical system (A4, Z, ) (this algebra is isomorphic
to the generalised Toeplitz algebra of « as defined by Pims-
ner and Voiculescu in [10]). If G is an ordered group, that
is, an abelian group endowed with a total order < such that
e <y=z+z<y+z andif Gt = {£ € G| 0 < z}, then
C*(G™) was shown to be primitive in [5]. A special case of these
algebras was first studied by Douglas in [3], where he showed that
for G a subgroup of R with the induced order, not only is C*(G+)
primitive, but in this case the commutator ideal (the closed ideal
generated by all ab — ba) is simple.

Let (A, G, «) be a C*-dynamical system and suppose that G
is an ordered group. We get a new (non-classical) C*-dynamical
system (A, G*,a) by restricting o to G*. There is a canonical
*-homomorphism from A x4 G to A xo G. We let K(4,G, )
denote its kernel.

The algebra A x o G is never simple, but we can still get new
simple C*-algebras by indirect means from this construction, and
1t seems in some ways to be easier to get primitive C*-algebras
using A X, G7.
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The following theorem is the main result of [6].

Theorem. If (4, G, @) is as above, then

(a) If A is primitive, so is A xo G¥;

(b) If A is simple and G is a subgroup of R with the induced
order, then K(A, G, a) is simple.

A useful feature of this result is that one does not have to
compute a Connes spectrum—this makes the hypothesis easy to
verify.

Concluding remarks.

We have said nothing about the related theory of W*-dynamical
systems. This involves the revolutionary Tomita-Takesaki theory
and the deep results of Connes on factors. The reader wishing to
learn about this vast subject can consult [9], or, for a quick survey
of Tomita-Takesaki theory, Lance’s preface to [1].

References

J. Dixmier, von Neumann Algebras. North-Holland: Amsterdam, 1981.
J. Dixmier, C*-Algebras. North-Holland: Amsterdam, 1982.

R. G. Douglas, On the C*algebra of a one-parameter semigroup of
isometries, Acta Math. 128 (1972), 143-152.

E. Effros and F. Hahn, Locally compact transformation groups and
C*-algebras, Mem. Amer. Math. Soc. 75 (1967), 1-92.

G. J. Murphy, Ordered groups and Toeplitz Algebras, J. Operator The-
ory 18 (1987), 303-326.

G. J. Murphy, Ordered groups and crossed products of C*-algebras,
Pacific J. Math. 148 (1991), 319-349.

D. Olesen and G.K. Pedersen, Applications of the Connes spectrum to
C*-dynamical systems, Jour. Funct. Anal. 30 (1978), 179-197.

D. Olesen and G.K. Pedersen, Applications of the Connes spectrum to
C*-dynamical systems II, Jour. Funct. Anal. 36 (1980), 18-32.

G. K. Pedersen, C*-algebras and their automorphism groups, (LMS
monographs vol. 14). Academic Press: London and New York, 1979.

[10]

=] C*-Dynamical Systems and Covariance Algebras 51

M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-
groups of certain crossed-products of C*-algebras, J. Operator Theory
4 (1980), 93-118.

Gerard Murphy,
Department of Mathematics,
University College,

Cork.




