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state to another is found. Instability is studied as a function of
various parameters. For a certain perturbation behaviour similar
to that predicted by Deininger (1981) was found.

William M. O’Brien,
University of Limerick,
Limerick.

DERIVATIONS AND
COMPLETELY BOUNDED MAPS
ON C*-ALGEBRAS

A Survey

Martin Mathieu

The present paper summarises a series of lectures delivered at
the Department of Mathematics of University College Cork in
early spring 1990 which were supported by the ERASMUS pro-
gramme. Aimed at the non-specialist, we intend to provide a gen-
eral survey of the theory of completely bounded linear operators
on C*-algebras with a closer view of their relations to derivations.
Most of the details we have omitted can be found in Paulsen’s
fine treatise [26], in fact the reader may use this paper as a guide
to [26] under the particular aspect of applications to derivations
on C*-algebras. A more comprehensive state-of-the-art overview
on completely bounded operators is given in the recent paper by
Christensen and Sinclair [7], while Effros’ address to the ICM 86
[11] emphasises the connections with cohomology theory of oper-
ator algebras.

Since the mid 1970’s it emerged that the classes of completely
bounded and completely positive operators are among the most
important classes of (multi-)linear mappings on C*-algebras, as
they are intimately related to a number of structural properties,
and several open questions can be phrased in terms of these op-
erators. Here, we shall mainly concentrate on how the problem
of innerness of derivations naturally leads to consider completely
bounded maps. On the way we will also add some remarks on
the role these operators play in the operator algebraic approach
to quantum theory. Occasionally, proofs are outlined in order to
illustrate the typical techniques.
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1. Prerequisites on C*-algebras

This section is of a preparatory nature; we will compile several
facts from C*-algebra theory that will be needed in the sequel.

Throughout H, K denote Hilbert spaces over the complex
field € and L(H,K) is the Banach space of all bounded lin-
ear operators from H into K endowed with the operator norm,
\T|| = sup{l|T¢|l | £ € H, llé]l < 1}. The Banach algebra
L(H) = L(H, H) carries a natural involution, T' — T where T
is the adjoint of 7', and the algebraic and the metric structures
are related by the important identity ||T*T|| = 1712

A C*-algebra A is a closed "-subalgebra of L(H). Due to the
work of Gelfand and Naimark, which was completed by several
other mathematicians, there is the following abstract character-
isation of C*-algebras: every Banach algebra with an involution *
(i.e. an anti-multiplicative conjugate-linear bijection of order two)
satisfying ||z*z|| = ||z||* for all z is (isometrically *-isomorphic
to) a C*-algebra. To have both pictures of a C*-algebra is ad-
vantageous: often C*-algebras arise without specification of an
a priori Hilbert space, but to realise immediately a C*-algebra
given concretely as operators facilitates many arguments. If a
C*-algebra A is non-unital, i.e. does not contain a multiplicat-
ive identity 1, we can embed A as a closed ideal into the unital
C*-algebra A= {a+ A1 | a € 4, ) € €} where A C L(H).

Here are some of the basic examples of C*-algebras:

M, = L(C™), the complex n X n-matrices, provides the
simplest non-commutative C*-algebra (for n > 1) and will play
an extraordinary role in the following;

K(H), the compact operators on an infinite dimensional Hil-
bert space H, is a simple non-unital C*-algebra;

C(H) = L(H)/K(H), the Calkin algebra, closely related to
Fredholm operators;

Co(X), the continuous complex-valued functions on a locally
compact Hausdorff space X vanishing at infinity. This is the pro-
totype of a commutative C*-algebra, as, by the Gelfand-Naimark
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theore'm from 1941, every commutative C*-algebra 4 is isometric-
ally *-isomorphic to Co(A), A being the set of all homomorphisms
from A onto € with the weak* topology.

Of course, there are many other fundamental examples and
a number of methods to obtain new C*-algebras from given ones.
The following is the most important for our purposes.

Definition 1.1. Let A C L(H) be a C*-algebra. For each
n € IN the set M, (A) of all n x n-matrices with entries from 4 is
a *-subalgebra of L(H™) under the canonical operations and thus
can be normed with the operator norm. From

1;{.13!;1”0@3‘” <@l < - lasll

i,j=1

for all (a;;) € Mn(A) we see that M,(A) is complete, hence a
C*-algebra on H". If we change the faithful representation of A
we obtain an isometrically *-isomorphic matrix algebra over A,
thus M,(A) can be considered as an abstract C*-algebra, too.

Examples. Mq(K(H)) = K(H"), Mp(Co(X)) = Co(X, Ma).

We can also view M,(A) as a tensor product. If {u;; | 1 <
i,7 < n} denotes the canonical matrix units in My, the mapping

(aij) — Z uij @ aij, Mp(A) = M, ®A
7,j=1

is a *-isomorphism. Let « be any C*-cross norm on M, ® A and
M, ®4 A be its completion. Since every *-isomorphism between
C*-algebras is an isometry it follows that M, (A) and M, ® A
are isometrically *-isomorphic, in particular, M, ® A = Mp ®a
A. (This argument shows in addition that all C*-cross norms on
M, ® A coincide, i.e. M, is nuclear, see Section 4.)

The process of iterating matrix algebras is simplified by the
canonical shuffle. If n,m € IN, then, as a consequence of associ-
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ativity and commutativity of tensor products, we have that

M (Mn(A)) = My ® (Mn @ A)
= M (M (4))

which amounts to a permutation of the entries (cf. [26]).

Let A be a C*-algebra. Decomposing = € A into its real and
imaginary parts shows that A is the topological direct sum of 4,,
and tA,q where A, = {¢ € A |z = z*} is the real Banach space
of all self-adjoint elements in A. The latter becomes an ordered
Banach space by putting

c<y if y—zeA, (2,9 € Asa)

where A, = {z € A,.| all spectral values of z are non-negative}
is the proper closed generating cone of positive elements in A.
By the Fukamiya-Kaplansky-Kelley-Vaught theorem, there is the
following important intimate interrelation between the order and
the algebraic structure: Ay = {z*z |z € A}. If A is unital, the
identity 1 also serves as an order unit and thus A,, will be an
order unit space. As a consequence, the unit ball A1 of A can be
described as 41 = {z € A |zz* < 1}.

This last observation can be used to derive the following cri-
terion for positivity of certain 2 x 2 - matrices which will turn out
to be crucial in the sequel.

Lemma 1.2. Let a be an element in a unital C*-algebra A.
Then ||a|| < 1 if and only if (L ¢) > 0.

a* 1

Proof. 1If |la]| < 1 then 1 — aa* > 0. Take z € A,, such that
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z2 =1 - aa*. Then

proving the “only if’-paft.

Conversely, if (. ) = =2 is positive and A C L(H), then,
for all §,n € H, we have

|(ag [ m)I?

= [I&l? 11l

which implies that ||a|| < 1. [
Finally we introduce the order preserving mappings.

Definition 1.3. Let A and B be C*-algebras. A linear map
$¢: A — B is called positive if #(Ay) C By, n-positive if id @
¢ M, QA — M,QB is positive, and completely positive if ¢ is n-
positive for all n € IN. The convex cone of all completely positive
maps from A into B will be denoted by CP(A, B).
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Under the identification M, ® A — My (A), the mapping 1d® ¢
becomes

(id® ¢) (Z uij @ ag;) = Z uij @ ¢(aij) — (45(‘“1'))19,3‘51:'

%)

The mapping (ai;) — (#(aij)), Ma(A) — Mn(B) is denoted by
Pn.

Note that, by a simple application of the uniform bounded-
ness principle, every positive linear map is automatically bounded.
For some more grounding on completely positive maps and C*-
algebras we refer to [35].

2. Derivations and homomorphisms of C*-algebras

In this section some of the basic properties of derivations of
C*-algebras as well as their relations to homomorphisms will be
studied, and one of the fundamental problems on derivations is
phrased.

A linear map &: A — A where A is a C*-algebra is called a
derivation of A if

6(ab) = a(6b) + (5%)1) (a,be A).

A derivation is automatically continuous, by a result due to
Sakai, and only non-commutative C*-algebras allow non-zero de-
rivations, which is an observation of I. Singer. For each z € A the
derivation

adz:a— az — za

is described as an inner derivation, and all non-inner derivations
are called outer. There is a temptation to concentrate on inner de-
rivations since they are given concretely and therefore their prop-
erties, e.g. their spectra, can be described more easily. However, if
for instance A = K (H) and p is an infinite dimensional projection
on H, then the restriction of adp to K(H) will be outer. It is
therefore important to know under which conditions derivations
become inner.
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Here are two well known and important answers to this ques-
tion (see [31]: every derivation of a W*-algebra and every deriv-
ation of a simple unital C*-algebra is inner. Recall that a W*
algebra is a C*-algebra which is isometrically isomorphic to the
dual of another Banach space which yields an additional weak*
topology and thus many nice structural properties. Some neces-
sary and sufficient conditions for derivations to be inner can be
found in [27].

Before we proceed to a more general question, let us see where
derivations arise in the applications.

In the operator algebraic approach to quantum theory one
uses the self-adjoint part A,, of a (suitable) C*-algebra A for the
collection of all observables of a specific physical system, and the
state space S(A) (the set of all normalised positive linear function-
als on A) for the set of all physical states of the system. In the
more traditional theory, A was L(H) and the states were iden-
tified with unit vectors in H (vector states). The dynamics of
the system is then given by a continuous one-parameter group
of unitary operators u(t), t € IR, on H: while time passes from
t = 0 tot = tg, the system evolves from the state ¢ into the
state u(to) . Of special interest is the infinitesimal generator h
of {u(t) | t € R} which is a self-adjoint operator (it corresponds
to the energy). The identity u(t) = eith yields the Schrodinger
equation

%u(t)<p:ihu(t)$0 (p € H).

In the Heisenberg picture, the dynamics is on the observables
rather than on the states and thus given by the one-parameter
group of *-automorphisms = — u(t)* zu(t), = € L(H), t e R,
whose generator is the inner derivation z — i(zh — hz).

As it emerged that the algebra L(H) is not always appropri-
ate for the physical model one had to choose more general C*-
algebras. In many cases there is no a prior: specified Hilbert
space, whence the use of the Heisenberg picture and a one-para-
meter group of *-automorphisms U(t) on A is more convenient;
the generator of {U(t) | t € IR} will again be a derivation §. Of
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course, the Schrédinger picture still exists and is equivalent: the
adjoint of U(t) will map S(A) onto S(4). In fact, since U(t) is
* _preserving, § is a *-derivation, i.e. 6450 C Agq. (We are some-
what sloppy about the domain of definition of ¢ which depends
on the continuity of ¢ — U(t). To be precise, we have to assume
uniform continuity throughout.) Conversely, given a *-derivation
§ of A, one defines a one-parameter group of *.automorphisms on
Aby U(t)=¢", t€R.

Now, if U(t) is of the form U(t) & = u(t)* z u(t) for a group of
unitaries u(t) in A, then one has observability of the energy. And
if 6 is inner, § = adih, then U(¢) will be inner with u(t) = eith,
another reason for the interest in inner derivations. For example,
Olesen proved in 1974 that every norm continuous group of *-
automorphisms of A is inner in A** (the enveloping W*-algebra
of A).

While groups of *-automorphisms are sufficient to describe
reversible evolutions of quantum systems, irreversible evolutions
may be described by semigroups of completely positive contract-
ive operators. There are a lot of good reasons for the choice of
completely positive contractions, both mathematical and physical
ones. First of all, the adjoint operators have to fix the state space;
thus they must be positive, hence the original ones also have to
be. Secondly, an invertible completely positive contraction whose
inverse is a completely positive contraction is a *_automorphism;
this fails for general positive maps. And even more important
is the fact that two interacting systems are usually described by
the tensor product of the corresponding C*-algebras whence the
tensor product of the dynamical operators should give the joint
dynamics. Complete positivity ensures this, while mere positivity
doesn’t.

One of the strategies to understand irreversible evolutions
(open guantum systems) has been to try to ‘embed’ them into
larger reversible systems (Hamiltonian systems). This is known
as dilation theory (see e.g. [13], [20]).

The generators of norm continuous semigroups of completely
positive operators can be described precisely: let L: A — A be
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a self-adjoint bounded linear operator (i.e. L A;q C Asq). Then
T(t) = e'L, t > 0, defines a semigroup of completely positive op-
erators if and only if L is conditionally completely positive (see
[13]). For a large class of von Neumann algebras (weakly closed
unital *-subalgebras of L(H)) a more detailed description of con-
ditionally completely positive maps is possible; they can be viewed
as perturbations. of completely positive maps by generalised inner

derivations of a certain type. It is expedient to extend the notion
of a derivation as follows.

Definition 2.1. Let A be a C*-algebra and E be a Banach
A-bimodule (i.e. E is a Banach space and an A-bimodule with
continuous module multiplications). A linear map é: A — E sat-
1sfying

5(adb) = a(6b) + (6a)b (a,be A)

is called an E-valued derivation of A. Every such derivation is a
bounded operator as proved by Ringrose [29]. Again, § is said to
be (E-)inner if § = adz for some z € E. A linear map d: A — E
is said to be a generalised inner derivation if d(a) = az -+ ya for
some z,y € E and all a € A. In this case, we write d = d, y. Note
that, if A is unital, dg 4 is nothing but an additive perturbation
of ad z by left multiplication with z + y.

The following situation often arises. A derivation of a C™-
algebra A is not inner in A but will become inner when A is
regarded as a C*-subalgebra of another C*-algebra B and B is
viewed as an A-bimodule. For example, we observed above that
a derivation of a simple C*-algebra A need not be inner in A, but
it will be inner in the multiplier algebra M(A) (another result
by Sakai [32]). As, by the Gelfand-Naimark theorem, each C*-
algebra A can be considered as a C*-subalgebra of some L(H),
the following question naturally arises.

Problem 2.2. Let AC L(H). Is every derivation 6: A — L(H)

inner?

This problem can be considered as the major open question in
the theory of (bounded) derivations of C*-algebras. So far a num-
ber of important contributions have been made, and it is widely

s

B
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conjectured that, at least for von Neumann algebras, the answer
is always yes. An affirmative answer for type I and for hyper-
finite von Neumann algebras was given by Johnson and Ringrose
in 1972, and for the properly infinite case by Christensen in [4].
Problem 2.2 also serves as the motivation for our exposition of the
interrelations between derivations and completely bounded maps.
Our final purpose is to present Christensen’s equivalent formula-
tion of Problem 2.2 in terms of completely bounded maps, and
to relate it to a number of other important structural properties
and questions (see below and Chapter 8 of [26]). Note that it is
tantamount to ask whether every derivation §: A — L(H) can be
extended to a derivation on L(H).

One of these applications is to a canonical decomposition of
conditionally completely positive maps combining results by Lind-
blad from 1976 and Evans from 1977 [13].

Theorem 2.3. The following conditions on a W*-algebra A are
equivalent.

(a) Whenever A is faithfully represented as a von Newmann al-
gebra on a Hilbert space H, then every derivation 6:A —
L(H) is inner.

(b) Whenever A is faithfully rep%’esented as a von Neumann al-
gebra on a Hilbert space H, then every conditionally com-
pletely positive ultraweakly continuous self-adjoint linear map
L:A — L(H) can be decomposed as L = 1 + dp o= with
Y: A — L(H) completely positive and z € L(H).

Completely positive maps not only are important in the ap-
plications to mathematical physics but also play a central role
in the theory of tensor products of C*-algebras (see Section 4),
non-commutative harmonic analysis, and non-commutative prob-
ability theory where they serve as transition operators of non-
commutative stochastic processes.

In addition to the relation between derivations and homo-
morphisms given by exponentiation, § — e?, there is a more al-
gebraic connection which has also been known for a long time.

£
8
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Suppose that A is a C*-subalgebra of a C*-algebra B and
let 6: A — B be a derivation. Define a homomorphism p: 4 —

M3(B) by
: _[a &)
=[5 °W),  eea.

a

If A is unital, then p will be unital, but p need not be a *-
homomorphism if § is a *-derivation. Actually, the following is
easily obtained [26].

Proposition 2.4. Let A C L(H) be a C*-algebra. The deriva-
tion 6: A — L(H) is inner if and only if the canonically associated
homomorphism p: A — L(H?) constructed above is similar to a *-
homomorphism, i.e. there is an invertible operator S € L(H?)
such that a— S~1p(a) S defines a *-homomorphism.

This result turns out to play a key role in an attack to
solve Problem 2.2 (see the following section). The question
how different homomorphisms of C*-algebras can be from *-
homomorphisms has been investigated by many authors. For ex-
ample, a result due to Gardner [31] stating that two C*-algebras
which are isomorphic as algebras are in fact *-isomorphic yields a
factorisation of an isomorphism p: A — B between C*-algebras A
and B into a product of a *-isomorphism and an automorphism
of the form e®, § a derivation of A.

3. The similarity problem

In 1955 Kadison raised the question when a given homomorphism
from a C*-algebra A into L(H) is similar to a *-homomorphism
[19]. This was preceded by a related question whether a bounded
representation of a topological group is similar to a unitary rep-
resentation. The latter is certainly true for finite groups which
is a classical result, and Dixmier [10] gave an affirmative answer
for amenable groups. However, the result fails in general as was
shown by Kunze and Stein in 1960. Kadison’s question is still
open, and in the present section we will develop the terminology
to state a partial, but important answer due to Haagerup [16].
(In [16] the reader may find additional comments on the history
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of this problem.) From Haagerup’s theorem a characterisation of
inner derivations first given by Christensen in [5] is immediate
(Theorerm 3.3 below).

Let p: A — L(H) be a homomorphism. If there is a similarity
S € L(H) such that 7(a) = S~ p(a) S defines a *-homomorphism,
then, since 7 is a contraction, p has to be bounded by |5~ IS]].
Whether or not every homomorphism from a C*-algebra is neces-
sarily bounded was an open question since the beginning of the
theory of C*-algebras in the 1940’s. Even in the commutative
case the answer wasn’t clear for many years, and had been one
of the main stimuli in automatic continuity theory. One of the
early answers is Gelfand’s result stating that every homomorph-
ism from a C*-algebra into a semi-simple commutative Banach
algebra is bounded, but it took some time until the assumption of
semi-simplicity could be dropped (which was done by Laursen in
1987 for epimorphisms). The question for the case A = C(X) was
finally answered by Esterle in 1978. A good up-to-date account
of this topic is given in Dales’ paper [9].

If we extend p to p,: Mp(A) — L(H™), then p((ay;)) =
Sn mn((aij)) S;1 where S, denotes the n-fold direct sum of S.
Since 7, is a contraction and ISall = IISIL 1S3 = 1S™Y| for
all n € IN, we still get that |||, < ||S=2||||S]|. This stronger
boundedness property motivates the following definition.

Definition 3.1. Let A and B be C*-algebras, and for a lin-
ear map ¢: A — B let ¢n: M,(A) — M,(B) be its extension as
defined in Definition 1.3. Then ¢ is said to be completely bounded
if sup ||¢n|| < oo, and in this case ||¢||c, = sup ||#n]] is called the

n
completely bounded norm of . Moreover, ¢ is called completely
contractive, respectively completely isometric, if |6llee < 1, re-
spectively ¢, is an isometry for all n € IN.

The set CB(A, B) of all completely bounded linear maps from
Ainto B is a Banach space under ||-||., but is not complete under
I[1l, in general; e.g. (CB(A, L(H)),|| - |I) is never complete and is
topologically small, i.e. a rare subset, in L(A, L(H)) unless both
A and H are finite dimensional [33].

=
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The surprising result by Haagerup is that the complete bounded-
ness of a homomorphism from a C*-algebra not only is a necessary
but also a sufficient condition for similarity to a *-homomorphism.

Theorem 3.2. (Haagerup 1983) Let A be a unital C*-algebra
and p: A — L(H) be a unital homomorphism. Then p is similar
to a "-homomorphism if and only if p is completely bounded. In
this case, there exists a similarity S such that a — S5~ p(a) S is
@ *-homomorphism and ||p||.s = ||S~1||||S]|-

This result was proved by Haagerup in [16]; a different proof given
by Paulsen will be outlined in Section 5.

Suppose that 6: A — L(H) is a derivation where A C L(H).
Since a derivation annihilates every central projection we may
assume that A is unital whence the canonically associated homo-
morphism p: A — L(H?) is unital. Using the canonical shuffle we
easily obtain that [|6,]] < [|pn|] < ||6a]|+2 foralln € IN, ie. 6 is
completely bounded if and only if p is completely bounded. Com-
bining Theorem 3.2 with Proposition 2.4 thus yields the following
result (cf. [26]).

Theorem 3.3. (Christensen 1982) Let §: 4 — L(H) be a deriv-
ation of a C*-subalgebra A of L(H). Then § is inner if and only
if & is completely bounded.

Christensen’s original proof [5] rests on the ultrastrong continuity
of a derivation defined on a properly infinite von Neumann algebra
[4] as well as on an estimate relating the norm lladz| || and the
distance of x € L(H) to the commutant A’. It follows in particular
that every derivation of an injective von Neumann algebra (for
the terminology see Section 4) and of a C*-algebra with cyclic
vector is inner in L(H). Both the arguments of Christensen and
Haagerup use in some way Pisier’s non-¢ommutative Grothendieck
inequality.

In the remainder of this section we will discuss some examples
of completely bounded maps. The first result is a simple con-

sequence of the fact that an element a in a C*-algebra A is self-
adjoint if (a) € IR for every state ¢ of A.
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Proposition 3.4. The following conditions on a unital homo-
morphism p between unital C*-algebras are equivalent.

(a) p is contractive.
(b) p is completely contractive.
(¢} pis a *-homomorphism.

Together with the *-homomorphisms, the following are the

prototypes of completely bounded maps. Let a,b € L(H,K).
The mapping

Mge p: L(K) — L(H), = — a*zb

is called a two-sided multiplication. Since (Mae p)n = Ma, +s.,,
where ¢, € L(H™, K™) is the n-fold direct sum of ¢ € L(H, K), it
is easily calculated that M, is completely bounded with

1 Ma= 3llco = llaf |Ib]-

In Section 4 we will discuss the representation theorems which
state that every completely bounded (completely positive) linear
map can be decomposed into a *-homomorphism and a (com-
pletely positive) two-sided multiplication. The completely posit-
ive multiplications can be described as follows.

Proposition 3.5. The following conditions are equivalent.
(a) Mgy is positive.

(b) Ma» s is completely positive.

(c) Mgep = Mg for some c € L(H, K).

The proof given in [22] for the case H = K is easily adopted to
cover Proposition 3.5. Note in addition that the following polar-
isation identity holds which is useful in a deduction of Wittstock’s
decomposition theorem (Theorem 4.4 below)

3
(1) Mgep = % Z ¥ My yiray paira-
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Some matrix calculations show that each bounded linear func-
tional ¢ on a C*-algebra is completely bounded with [|¢]| = llllee,
and if ¢ is positive, then it is completely positive. As a resu}t,
bounded respectively positive linear mappings into commutative
C*-algebras are completely bounded respectively completely pos-
itive, and their norms coincide with the completely bounded norm
(here, the identification My (C(X)) = C(X, M,) turns out to be
useful). Likewise each positive linear map from a commutative
C*-algebra is completely positive which was already noted by
Stinespring in 1955, however the corresponding result for bounded
maps fails.

Finite-dimensionality has also its consequences on the be-
haviour of completely positive and completely bounded maps.
For example, Choi proved that every n-positive linear map frgm
M, into a C*-algebra is completely positive (cf. [26]), and Smith
showed that CB(A, My,) = L(A, My) for every C*-algebra A and
that ||¢]les = l|¢all < nlig|| for each ¢ € L(A, M,) (cf. [26]).
However, as Haagerup [17] observed, there is in general nom € IN
such that ||¢m|] = ||#]les if ¢ € L(M,, B).

The next result is not unexpected.
Proposition 3.6. For all C*-algebras A and B we have
CP(A,B) C CB(A, B),

and the norm and the completely bounded norm of a completely
positive map coincide.

This can be deduced nicely from Lemma 1.2. Assurr‘ling without
restriction that A is unital we take a € M,(A) with Ha“ <1
whence (L %) € Man(A) is positive. The complete positivity of

en (o $)= (50 40

¢ yields that

is positive which entails that

llgn(a)ll < llga (DI = [lDI]-
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Therefore, ¢ is completely bounded with ||¢|lcs < [|¢]l, and the
other inequality is obvious.

In particular, the linear span of the completely positive op-
erators is contained in the completely bounded operators, and 1t
was an open question for some time whether equality always holds.
This is in fact true for a certain class of C*-algebras which will
be discussed in the next section, but for instance not the case for
A= B =C[0,1], as proved by Smith [33].

So far we haven’t provided any concrete examples of posit-
ive respectively bounded maps that are not completely positive
respectively completely bounded. The easiest positive mapping
which is not 2-positive is the transpose map on Ma, and an infin-
ite dimensional analogue on L(£?) gives a bounded not completely
bounded map (for details see [26]).

4. Representation and extension theorems

Two important features of bounded linear functionals on C*-
algebras are the Jordan decomposition and, of course, the Hahn-
Banach theorem. The former was established by Grothendieck in
1957 and generalises the fact that every bounded regular Borel
measure on a compact Hausdorfl space is a linear combination of
four positive measures, while the latter is clearly an indispensable
tool of the theory. In the present section we will discuss possible
extensions of these results to arbitrary completely bounded maps.

In order to be able to formulate the problems, we have to ex-
tend the notions of complete positivity and complete boundedness
as follows.

Definition 4.1. Every subspace M of a C*-algebra A is called
an operator space, with the understanding that, for each n € IN,
Mn(M) is regarded as a subspace of My (A). Every self-adjoint
subspace S of a unital C*-algebra which contains the identity is
called an operator system. Note that the self-adjoint part S;q of
S is a real ordered normed space with generating cone Sy = {z €
S|z > 0} since

o= L(all+2) = t(llzll —2) (= € Sea).
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Again, M,(S) is endowed with the order inherited from M, (A). If
B is another C*-algebra and ¢: M — B is a linear map, then the
notions of complete boundedness, complete contractivity, complete
isomeiry, and n-positivity respectively complete positivity, if M =
S is an operator system, are defined analogously to the case M =

A.

An abstract characterisation of operator spaces which goes
parallel with Banach’s abstract characterisation of the subspaces
of C(X) was given by Ruan [30] as follows. Let M be a normed
complex vector space, and suppose that for each n € IN norms are
provided on the matrix spaces M, (M) satisfying

llezll < lledlllell,  llzall < Nzl e,

and
llz ® yl| = max {||[|, [|vll}

for all z € Mp(M), y € Mn(M) and & € M,. Then M is
(completely isometric to) an operator space.

The following generalisation of the Hahn-Banach theorem was
proved for the completely positive case by Arveson [1] in 1969,
and for the completely bounded case independently by Haagerup
[14], Paulsen [24] and Wittstock [37] several years later. Witt-
stock’s original proof used a Hahn-Banach theorem for set-valued
mappings into L(H) while Haagerup elaborated techniques previ-
ously available for completely positive maps only for completely
bounded maps. Paulsen’s proof reduces the problem to the com-
pletely positive case via the “off-diagonal technique” described
below, and the proof of Arveson’s theorem can be divided into
two steps: first consider the finite-dimensional situation and then
extend the result to the general case by exploiting the compactness
of closed bounded subsets of CP(A, L(H)) in the BW-topology.

Theorem 4.2. Every completely bounded (completely positive)
linear map from an operator space (operator system) in a unital
C*-algebra A into L(H) can be exiended to a completely bounded
(completely positive) map on A under preservation of the cb-norm.
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A C*-algebra B is called injective if every completely positive
linear map from an operator system S in some C*-algebra A into
B can be extended to a completely positive map from A into B.
Thus, Arveson’s extension theorem states that L(H) is injective.
From this and a result by Tomiyama (see e.g. [13] or [35]), it is
easily deduced that B C L(H) is injective if and only if there
exists a projection of norm one from L(H) onto B (a conditional
ezpectation).

Injectivity is related to a number of other important struc-
tural properties of C*-algebras which are compiled in the next
theorem, thus revealing the significance of completely positive op-
erators. It is here where the real sorcerers in the field used all
their magic.

Theorem 4.3. The following conditions on a C*-algebra A are
equivalent. '

(a) A is nuclear.
(b) A has the CPAP.
(¢

)

) A*™ is semi-discrete.
(d) A*™ is injective.
)

)

o

A is amenable.

—~~

€

(f) CB(A*,A™) =linCP(A™, A*).

The various implications in this result are due to Connes
8], Choi and Effros [2], [3], Effros and Lance [12], and Haagerup
(15], [17]. In order to explain the terminology we recall that a
C"-algebra A is said to be nuclear if for every C*-algebra B all
C*-cross norms on A ® B coincide, or equivalently, 4 ® i, B =
A ®mar B where

lzllmin = sup {||m1 ® 72 (z)|| | 71, 72 representations of A, B}
and

lz|lmaz = sup {||7(2)|| | = a representation of 4 ® B}

<]
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are the minimal respectively the maximal C*-cross norm. Among
the class of nuclear C*-algebras are all finite-dimensional and all
commutative C*-algebras, and inductive limits as well as tensor
products of nuclear C*-algebras are nuclear. The reduced group
C*-algebra C}(G) of a locally compact group G is nuclear if and
only if G is amenable. For some more information, see e.g. [21]
and [35]. A C*-algebra A has the completely positive approzim-
ation property (CPAP) if the identity on the dual of 4 can be
approximated by completely positive contractions of finite rank
in the topology of simple convergence, while a W*-algebra R is
semi-discrete if the identity on R is approximated by normal com-
pletely positive contractions of finite rank in the topology of simple
convergence on (R, o(R, R*)). Finally, A is amenable if every de-
rivation 6: A — E, E a dual Banach A-bimodule, is inner. A
recent discussion of Theorem 4.3 can be found in [28].

Injectivity also plays a role in the generalisation of the Jordan
decomposition. The following result generally referred to as Witt-

stock’s decomposition theorem was obtained independently in
[14], [24], and [36].

Theorem 4.4. Let A be a unilal and B an injective C*-algebra.
Then CB(A, B) = linCP(A, B). More precisely, if ¢: A — B is
completely bounded, then there exists a completely positive map
$: A — B with |[¢]les < ||@llcy such that ¢ £ Re(4) and ¢ +Im(4)
are all completely positive.

Here, the real and imaginary parts of a linear map ¢ are defined by
Re(8)(z) = § ((z) + 6(2*)*) and Im(9)(z) = & (#(z) — B(")"),
respectively. The decomposition of a completely bounded linear
map into a linear combination of completely positive maps is not
always possible, e.g. if A= B = C[0,1] [33]. If A= Bis a Wk
algebra, then the injectivity is also a necessary condition for the
decomposition property as observed by Haagerup in [17].

It emerged that Theorem 4.4 is in fact an immediate con-
sequence of the following representation theorem which was
proved by Stinespring in 1955 for completely positive maps (34],
and by Paulsen in 1984 for completely bounded maps [24].
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Theorem 4.5. Let A be a unital C*-algebra and ¢: A — L(H)
be a completely bounded (completely positive) linear map. Then
there exist a representation (7, K) of A and v; € L(H,K), i =1,2
such that

(2) ¢ = va',vz°7r

1
and ||vs|| = ||9|%, ¢ = 1,2. If ||¢|lecs = 1, then vy and vy can be
taken to be isometries, and if ¢ is completely positive, then vy and
vy can be taken equal, equivalently, My, ., is completely posilive.

Stinespring’s paper from 1955 in which the notion of a com-
pletely positive map was introduced can be viewed as both the
historical as well as the conceptual starting point of the whole the-
ory. Originally intended as an extension of a dilation theorem due
to Naimark, it also generalises the famous GNS-construction. In
fact, if ¢ is a state of a C*-algebra A, the GNS-construction yields
a triple (my, Hy, €,) consisting of a cyclic representation (7, Hyp)
with cyclic vector &, such that ¢(z) = (my(x)€, | &) for all
z € A, and by choosing H =C, K = Hyand v: H — K, v1=§,
this translates into ¢ = M,- , o 7. Generally, the triple (7, K, v)
is called a Stinespring representation of the completely positive
map ¢, and it is easily seen that (v, K, v) is unique up to unit-
ary equivalence if 7(A)vH is total in K. However, for the com-
pletely bounded case, no additional assumption is known mak-
ing the above representation unique up to unitary equivalence.
More information on this topic is contained in [26], [35], and
also [13] where the Stinespring representation is derived from the
Kolmogorov decomposition for positive-definite kernels.

From Theorem 4.5, Wittstock’s decomposition theorem is
quickly deduced (cf. [24] and [26]). To do this it suffices to take
B = L(H). If ¢: A — L(H) is completely bounded, then, by (1)
and (2),

3
— 1 -k
(3) ¢ = q Z ¢ M(U2+ik1)1)',vz+ikv1 o
k=0
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whence ¢ can be linearly combined by four completely positive
maps. A simple rearrangement of (3) shows that

1
Y= ) (Myys 1wy 0T + Myye v, 07)

meets the conditions of Theorem 4.4.

The reader will have noticed the rather long time which pass-
ed after the representation and the extension theorems for com-
pletely positive maps until their counterparts for completely boun-
ded maps were obtained. The reason for this was the lack of a
method relating completely bounded maps to completely posit-
ive ones in a natural way. This was remedied by Paulsen’s “off-
diagonal technique” which concludes this section.

Lemma 4.6. (Paulsen 1982) Let A and B be unital C*-algebras,

and let M C A be an operator space. Define an operator system

A a
S_{<b* u> i/\,uE(D,a,bGM},

and for each linear map ¢: M — B a linear map ®: S — Mo(B)

b
y ® <bA* fa) = (qs(Ab)* ¢fta)>'

Then ¢ is completely contractive if and only if @ is completely
positive.

In the surprisingly simple proof one uses first the canonical
shuffle and a module property of ¢, to reduce to the case n = 1,
i.e. to contractivity respectively positivity, and then an approx-
imation as well as a factorisation argument to reduce further to
consideration of ( al, Cl‘) instead of arbitrary elements of 5. Apply-

ing Lemma 1.2 twice accomplishes the proof.

This lemma is used for example in the proof of the extension
theorem (Theorem 4.2) as follows. If ¢: M — L(H) is completely

S




2\
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bounded with ||¢||lcs = 1, Lemma 4.6 yields a completely pos-
itive map ®:S5 — Ma(L(H)) = L(H?) which can be extended
to & € CP(My(A), L(H?)) under preservation of the norm by
Arveson’s extension theorem. Letting w; respectively wy be the
isometries from H onto H @0 respectively 0 H and ¢: A — M3(4)
the embedding into the upper left corner we obtain a complete
contraction 1: A — L(H) extending ¢ by

Y= My, w, 0¥ o My w0t

5. Completely bounded homomorphisms

This final section is devoted to a deduction of Haagerup’s char-
acterisation of those bounded unital homomorphisms which are
similar to *-homomorphisms (Theorem 3.2) from the following
result by Paulsen [25]. By an operator algebra we understand a
unital subalgebra of some C*-algebra.

Theorem 5.1. (Paulsen 1984)  For every completely bounded
unital homomorphism p: A — L(H) on an operator algebra A
there exists an invertible operator S € L(H) such that lolles =

[1S=Y[|SI| and Mgy 50 p is a completely contractive homomorph-
ism. Moreover,

llpllee = inf {||R™I|||RI| | Mp-1 rop is completely contractive}.

The main idea in the proof of this result is to use Theorem
4.2 to extend the homomorphism p to the C*-algebra containing
A and the representation theorem applied to the extended map
in order to introduce a new norm on H which is equivalent to the
original one such that p becomes completely contractive. Once

this is done, Haagerup’s theorem is immediate from Theorem 5.1
and Proposition 3.3.

At about the same time when Haagerup proved Theorem 3.2,
Hadwin showed in [18] that a unital homomorphism from a C”-
algebra into L(H) is similar to a *-homomorphism if and only
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if the homomorphism lies in the span of the completely posit-
ive maps. This together with Wittstock’s decomposition theorem
yields an alternative argument for Theorem 3.2, without giving the
norm identity. Theorem 5.1 is also useful in other applications, for
instance to Halmos’ question whether every polynomially bounded
operator is similar to a contraction, see [26].
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