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NOTES ON APPLYING
FOR I.M.S. MEMBERSHIP

1. The Irish Mathematical Society has reciprocity agreements

with the American Mathematical Society and the Irish Math-
ematics Teachers Association.

. The current subscription fees are given below.

Institutional member IR£50.00
Ordinary member IR£10.00
Student member IR£4.00
LM.T.A. repiprocity member IRL5.00

The subscription fees listed above should be paid in Irish
pounds (puint) by means of a cheque drawn on a bank in
the Irish Republic, a Eurocheque, or an international money-
order.

. The subscription fee for ordinary membership can also be

paid in a currency other than Irish pounds using a cheque
drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$18.00.

If paid in sterling then the subscription fee is £10.00 stg.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$18.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

. Any member with a bank account in the Irish Republic may

pay his or her subscription by a bank standing order using
the form supplied by the Society.

. The subscription fee for reciprocity membership by members

of the American Mathematical Society is US$10.00.

il




6. Subscriptions normally fall due on 1 February each year.

; Minutes of Meetings :
7. Cheques should be made payable to the Irish Mathematical of the Irish Mathematical Society

Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

Ordinary Meeting

8. Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

April 12 1990

A general meeting of the Irish Mathematical Society was held at
12.15 p.m. on Thursday 12 April 1990. There were eight present.
The President, F. Gaines, was the in the Chair. Apologies were
received from R. Timoney.

9. Please send the completed application form with one year’s
subscription fee to :

The Treasurer, [.M.S.

Department of Mathematics , L. Mmut.es .
University College The Minutes of. the meeting of 22 December 1989 were read,
Dublin approved and signed.
Ireland - 2. Bulletin
The Bulletin is now at the printers and will be ready in about
3 weeks.

It was noted that the Celtic Studies section of the DIAS is

getting a phototypesetter, which might be of use in producing
L the Bulletin. It is the policy of the Society to produce the

! Bulletin within Ireland if possible.
3. Euromath

A report from Richard Timoney was circulated.

Tim Murphy and Tony O’Farrell both expressed reservations

about the structured document editor, GRIF, which has been

adopted by Euromath.

4. September meeting
The mathematical meeting of the IMS is being held at DCU
on (probably) Wednesday 5 and Thursday 6 September 1990.
Alistair Wood is organising it. On Monday and Tuesday of
that week, there will be a meeting of SEFI, and on the Fri-
day there will be a meeting about cooperation between 3rd
Level Education and Industry. Alistair Wood said it might
be necessary to move the Education/Industry meeting to the
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Wednesday, and to move the IMS meeting to the Thursday
and Friday. He will know for definite when he gets replies
from the speakers.

It was agreed to hold the September 1991 IMS meeting in
UCG.

. Correspondence

(a) EOLAS will provide travelling expenses for one speaker
at the September 1990 IMS meeting, and for S. Sternberg at
the TCD meeting on 24 May 1990. Tony O’Farrell congrat-
ulated the organisers of the TCD meeting on obtaining such
a distinguished speaker.

(b) A letter from Richard Timoney was read, giving details
of the TCD Mathematics survey.

. A.0.B.

(a) Fergus Gaines mentioned that a recent UCD graduate
is studying for a Ph.D. at TCD, whilst being employed by
Hitachi at their TCD laboratory.

(b) Alistair Wood and David Simms have arranged for the
The Royal Society Pop Maths Roadshow to come to the RDS
from 23 to 29 October 1990. The RDS is supplying space free
of charge. The admission to the Roadshow is free.
Volunteers are needed to give popular lectures. (Lectures for
schoolchildren in the afternoons, and adult lectures in the
evenings).

There is also a need for people (research students) to look
after the exhibits. This work would be paid.

(¢) Tony O’Farrell suggested holding an annual walk along
the Canal from Dunsink on the 16th October to commemor-
ate the discovery of the Quaternions.

Minutes of IMS meetings 3

Ordinary Meeting

21 December 1990

The Irish Mathematical Society held an Ordinary Meeting at 12:45
on Friday, 21 December 1990, in the DIAS. Fourteen members
were present. The President, F. Gaines, was in the chair. The
Secretary sent his apologies, and A. O’Farrell took minutes.

1. Minutes

The minutes of the meetings of 12 April 1990 and 6 & 7
September 1990 were approved and signed.

. Matters arising

R. Timoney promised a report on the TCD survey of Math-
ematics Graduates for the Society’s Bulletin.

Satisfaction was expressed with the increased level of the So-
ciety’s activities during the year, especially in relation to the
visit of S. Sternberg and the September Meeting at DCU.
The proposed visit of the Royal Society Pop Math Roadshow
had to be cancelled for lack of sponsors.

The first Quaternion anniversary walk went well. Professor
Wayman and the Dunsink staff arranged a sherry reception
and exhibit at the start, and the Academy staff arranged a
glass of wine at the terminus. The weather was exception-
ally fine. Eight mathematicians are known to have made the
walk, and it is expected to grow as the years go by. The ses-
quicentenary of the invention comes in 1993, and Professor
Wayman promises champagne.

. Bulletin

R. Ryan, who is stepping down as editor, was thanked for
his valuable serviced. J. Ward is to take over to issue num-
ber 26 (Easter 1991). In the meantime F. Gaines plans to
look after number 24 (Easter 1990), which is not completed,
and number 25 (Christmas 1990). It was agreed that

(a) the editorial and secretarial/technical functions should
be separated,
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(b) submissions in TEX should be encouraged now and re-
quired eventually, and

(¢) there should be a new section for Research Announce-
ments in the Bulletin.

F. Gaines expressed the hope that number 24 might be avail-
able by February. He called for contributions to number 25
and subsequent issues. R. Timoney has offered to assist with
number 24.

. The Buropean Mathematical Society

B. Goldsmith, who has been appointed our official repres-
entative to EMS, reported. The inaugural meeting of the
EMS was held in Pcland in October. The IMS is a founding
member, in Class 1. Members will be encouraged to become
individual members of the EMS. There will be an article in
the Bulletin with further information.

. Euromath

R. Timoney, Chairman of the Irish Euromath National Co-
ordinating Committee, reported. Phase 11, the final phase
is now starting. He attended an advisory Board meeting in
Luminy, in July 1990, and held an NCC meeting on Decem-
ber 10th. It would be a mistake to underestimate what has
been done. The Euromath people have 1) identified the UNIX
workstation and X-windows as reasonable standards to aim
for, 2) used collective bargaining power to get discounts on
DEC equipment and the FIZ database (-Zentralblatt), 3) al-
most completed the Directory of Mathematicians. He would
however question whether Euromath will succeed in making
a seamless integrated system to meet all the information-
technology needs of mathematicians.

A. O’Farrell, the Soclety’s representative at the General
Assembly of the European Mathematical Trust, expressed
1) the hope that some good might come of Euromath, now
that R. Timoney has been invited to join the Executive
Committee, and 2) the opinion that conflicts of interest in
the organisation were still an unholy mess, that the research
funds allocated to Euromath would be better spent on real

L
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mathematical research, that the structural flaws in Euromath
could not be cured, so that the only reasonable and honour-
able way for the Society was to pull out. Nevertheless, he
recommended, and it was agreed, that the Society should
take no action on this for a further year, to see whether
things improve. ‘

Elections -

The following were proposed, seconded and elected unop-
posed:

Proposed by  Seconded by

President
R. Timoney, S. Tobin, S. Dineen.

Vice-President
B. Goldsmith T. J. Laffey M. Newell.

Members of the committee:

F.Holland S. Dineen A. O’Farrell.
B. McCann P. Barry M. O Searcéid.
F. Qaines A. O’Farrell M. Newell.

M. O Searcéid F. Gaines R. Timoney.

G. Enright, A. O’Farrell, D. Simms and R. Watson continue
on the Committee, and the Bulletin editor R. Ward will be co-
opted as usual. The Treasurer, D. Tipple, and the Secretary
G. Ellis, also continue in office for a further year.

F. Gaines was warmly thanked for his invaluable services as
President.

. Treasurer’s Report

D. Tipple presented his report. It was adopted on the pro-
posal of R. Timoney, seconded by A. O’Farrell. It was agreed
to appoint A. Pierce as auditor, and to authorise the Treas-

urer to fix official membership rates in other currencies, as he
sees fit.
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rel
.

8. September meeting

R. Ryan is organising the September 1991 meeting, which is
to be held in UCG on 5th and 6th September. J.-L. Loday
has agreed to speak. Suggestions for other invited speakers,
and offers of contributed talks are welcome. It was agreed
that if necessary the Society would underwrite the full cost
of the meeting form its own funds.

Members were reminded that invitations to host the Septem-
ber 1992 meeting should come before the Easter 1991 meet-
ing. There was an indication that Waterford RTC might wish
to host the meeting.

Whether or not the Society will continue with the fourth
meeting of the past two years is conditional on the continu-
ation of support form EOLAS.

. Other Business

(a) The terms of the new IMS-IMTA reciprocity agreement
were approved. These provide that IMS members who wish to
join the IMTA may do so by contacting the IMTA and paying
50% of the usual subscription to that association. Details will
appear in the Bulletin.

(a) The question of whether a uniform national points sys-
termn for university entry should include extra points for Leav-
ing Certificate Honours Mathematics, was discussed at some
length. 5. Tobin expressed some reservations about the pro-
priety of giving extra points to Mathematics for faculties like
Arts, and suggested that it might be better to focus on redu-
cing the overloaded syllabus. T. Laffey quoted the remark-
able statistical study done by A. Moran, which demonstrated
that Mathematics deserves extra weight, in view of its excep-
tional value as a predictor of success, even in Arts faculties.
He also stressed the likely effect of removing the Honours
Mathematics bonus on the numbers taking the subject. He
was especially concerned that girls’ schools might stop offer-
ing Honours Mathematics, which would be severely damaging
to the prospects of women. S. Dineen pointed out that the
universities don’t and can’t control the overloading of the
syllabus, and do control points. R. Timoney said that the
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mathematics course should be heavier than others. M. Newell
agreed, and said that Mathematics should count double. He
thought it essential that mathematicians pull together on this
one. A. O’Farrell stressed the value of Mathematics grades
as a predictor of success, and the possible impact on the
technological development of the whole country if the num-
bers taking Honours Mathematics fell substantially. M. O
Searcdid proposed a PR campaign to promote Mathematics.
He supported the view that the Mathematics course should
be substantial, quoting the British situation. S. Dineen sug-
gested that the RTC’s should also operate a bonus for Hon-
ours Mathematics. S. Tobin was impressed by the evidence
brought forward in the discussion, and agreed that a common
front was appropriate on this one.

Graham Ellis,
University College,
Galway.




Conference Announcements

GROUPS IN GALWAY 1992

This annual conference will be held on Friday and Saturday, 15th
and 16th May 1992 in University College, Galway. The speak-
ers will include A. Christofides (UCG), B. Hartley (Manchester),
K. Hutchinson (UCD) and H. Smith (Bucknell, Pennsylvania and
Cardiff, Wales).

Further details may be obtained from Rex Dark, University
College, Galway, e-mail MATDARK@BODKIN.UCG.IE.

NASECODE VIII

The Eighth International Conference on the Numerical Analysis of
Semiconductor Devices and Integrated Circuits will be held at the
City Club, Vienna, Austria on 18-22 May 1992. Further details
may be obtained either from the Nasecode Secretariat, 26 Temple
Lane, Dublin 2, or (on scientific matters) from Professor J. Miller,
Telephone (01) 679-7655, e-mail JMILLER@QVAX1.TCD.IE, or
(on all other matters) from Paulene McKeever, Telephone (01)
452081.

BAIL VI

The Sixth International Conference on Boundary and Interior
Layers — Computational and Asymptotic Methods will be held in
Summit City, Colorado, USA on 17-21 August 1992. Further de-
tails may be obtained from the Bail Secretariat, 26 Temple Lane,
Dublin 2, or from Professor J. Miller or Paulene McKeever as in
the previous announcement.
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IMS SEPTEMBER 1992 MEETING

The Fifth September Meeting of the Irish Mathematical Soci-
ety will take place in Waterford Regional Technical College on
Thursday and Friday, 3rd and 4th September 1992. The speak-
ers will include D. Armitage (QUB), R. Brown (Bangor, Wales),
E. deLeastar (Waterford RTC), P. Fitzpatrick (UCC), D. Ince
(Open University), J. Lewis (DIAS), J. McDermott (UCG),
M. Stynes (UCC). Further details may be obtained from Brendan
McCann or Michael Brennan, Dept of Physical and Quantitative
Science, Waterford RTC.




Research Announcement

THE TANGENT STARS OF A SET
AND EXTENSIONS OF SMOOTH FUNCTIONS

A.G. O’Farrell* and R.O. Watson

Let X be a closed subset of a C* manifold M. We establish
a necessary and sufficient condition for a continuous function
f: X — R to possess a C* extension to M. This solves a prob-
lem left open by Whitney [2].

This condition is expressed in terms of the k—th order tangent
star, Tan®(M, X), of the pair (M, X), which is defined in the
following way. Let C*(M) denote the Frechet algebra of all C*
real valued functions on M, C*(M)" its dual, and I(X) the ideal
of functions in C*(M) that vanish on X; for a € M, we write
It({a}) as Ix(a). The space of k—th order tangents to (M, X) at
a is the set

Tan* (M, X, a) = C*(M)" A I(X)* N (I(a)+1)*

This is a topological vector space of finite dimension over R,and a
module over a finite dimensional algebra. The k-th order tangent
star of the pair (M, X) is given by

Tan® (M, X) = U Tan® (M, X, a).
a€M

If V is a closed subset of a C* manifold N, and b €
Y, then a CF-map F : M — N such that F(X) € Y and
F(a) = b induces a continuous linear map from Tan® (M, X, a)
to Tank(N,Y, b), which is also a module homomorphism, and a

* Supported by EOLAS grant SC/90/070
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function F : Tan®(M, X) — Tan*(N,Y) which is a morphism of
stars. The associations (M, X) — Tan®(M, X) and F — F, yield
a covariant functor from the category of pairs to the category of
stars.

In particular, let G denote the graph of f and @ the point
(a, f(a)) of G. The projection 7 : M x R — M, defined
by m(z,y) = =, induces a map from Tank(M x R,G,a) to
Tan®(M, X, a) for each a € X, and a morphism

7 : Tan*(M x R, G) — Tan®(M, X).

Theorem. The function f has a C* extension to M if and only
if the map . is a bijection.

The stars Tan®(M, X) may be explicitly calculated. First
order tangent stars are related to the classical tangents of Denjoy,
Whitney and Zariski, and higher order tangent stars are related to
the higher order tangent bundles of Pohl and to the paratangent
spaces of Glaeser. The details will appear in [1].

References

A. G. O’Farrell and R. O. Watson, The tangent stars of a set, and
extensions of smooth functions, J. Reine Angew. Math. (1992) (To
appear).

H. Whitney, Analytic extensions of differentiable functions defined in
closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.

A. G. O’Farrell and R. O. Watson,
Department of Mathematics,

St Patrick’s College,

Maynooth.




Abstract of Doctoral Thesis

SYMMETRIC BANACH MANIFOLDS
Pauline Mellon

Banach manifolds are manifolds modelled locally on open sub-
S.etS of complex Banach spaces. Symmetric Banach manifolds . or
simply symmetric manifolds, are Banach manifolds with a no’rm
on the tangent bundle and which have a high degree of symmet-
ric ‘structure. Namely, for every point of the manifold there is
an involutive automorphism of the manifold which acts as a sym-
mfetry about that point. This structure is rich enough to allow a
Riemann mapping type classification of the symmetric manifolds.

Ip Aﬁnite dimensions the symmetric manifolds are exactly the
Hermitian symmetric spaces. The Hermitian symmetric spaces
were classified by Cartan in the 1930s , using Lie algebraic tech-
niques and later by Koecher, Loos and others using Jordan algeb-
raic techr.xiques. There is a natural duality between the Hermitian
symmetric spaces of compact and gnon~compact type. An ana-
logue of this phenomenon also holds in infinite dimensions, even
though the symmetric manifolds are then non-compact as, they
are modelled on infinite dimensional Banach spaces. ’

. Kaup gave an algebraic classification of the symmetric man-
¥folds in the general case, by associating to each symmetric man-
ifold 2 Banach space with an algebraic triple product, called a
J.*—trlple system or J*-triple. He proved that the category of all
simply-connected symmetric manifolds with base point is equi-
valent to the category of J*-triple systems. These J*-triples in-
clude in particular, all C*-algebras, all JB*- algebras and all J*-
algebras.

A J*-algebras are algebras of operators between Hilbert spaces
which were introduced and studied by Harris. They give us a
concrete setting in which to study J*-triple phenomenon. The

12
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techniques used by Harris are more function theoretic in nature,
using spectral theory, the functional calculus etc..

In this thesis we study two topics, both related to symmetric
manifolds, one of which comes from the operator theoretic side of
the subject and the other from the more abstract Jordan algeb-
raic/Lie algebraic side.

QOur .aim in the first topic was to generalise results from
J*-algebras to J*-triple systems, by replacing operator-theoretic
techniques with Jordan algebraic techniques, while in the second,
we adopted the opposite approach, by using some of the classical
examples from operator theory to improve our understanding and
to obtain results for the class of dual symmetric manifolds.

Our first topic deals with Schwarz-type inequalities for holo-
morphic mappings which were obtained by Ando, Fan and Wlod-
arczyk in a series of papers culminating in various Julia-type lem-
mata and Wolff-type theorems for operator valued holomorphic
mappings on J*-algebras. Using Bergmann operators we obtained
similar results for J B*-triple systems. In realising these results for
J*-algebras in terms of the Jordan rather than the operator the-
oretic structure we appear to place the results in a more natural
setting (even though the transition is not always smooth).

Our second topic is dual symmetric manifolds. These man-
ifolds are non-compact, as they are modelled on infinite dimen-
sional Banach spaces, but should intuitively behave like compact
manifolds. To investigate this phenomenon we found it neces-
sary to restrict ourselves to a certain class of JB*-triple systems
including in particular all commutative C*-algebras of the form
C(X), for X a compact Hausdorfl space.

If X is a compact Hausdorff space and U a J B*-triple system
then C(X,U) is again a J B*-triple system with pointwise defined
triple product. If M with base point mg is the dual symmetric
manifold of U then we show that the dual symmetric manifold of
the J B*-triple C(X, U) is given by the universal covering manifold
of

Fx(M):={feC(X,M): fis homotopic to
the constant mapping mo in C(X, M) }.
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In particular for the commutative C*-algebra C(X) the dual
symmetric manifold is the universal covering manifold of Fx(C).
We then show that the dual symmetric manifold of C(X) displays
the compact-type property of admitting only constant complex-
valued holomorphic mappings. We conclude this section of the
thesis by examining the concrete example C(X) for X a compact
subset of R and showing that the dual manifold in this case is
given by C(X, ).

The last chapter of the thesis examines the holomorphic
curvature of the tangent norm of an arbitrary dual symmetric
manifold (the tangent norm is a Finsler metric and holomorphic
curvature is therefore different than in the Riemannian sense). We
find that the dual manifolds have constant positive holomorphic
curvature.

Pauline Mellon, ;
Department of Mathematics,
St Patrick’s College,
Maynooth,

Co. Kildare.

[

Abstract of Doctoral Thesis

A NUMERICAL STUDY OF THE
NON-LINEAR BAROTROPIC INSTABILITY
OF FREE ROSSBY WAVES
AND TOPOGRAPHICALLY FORCED
PLANETARY WAVES

William M. O’Brien

This thesis was prepared in the NIHE, Limerick (University of Limerick)
under the direction of Professor P. F. Hodnett and was submitted for
the award of Ph.D. to the University of Limerick, July 1990.

The stability of free and forced planetary waves on a fO-plane
is investigated by integrating numerically the nonlinear quasi-
geostrophic, barotropic vorticity equation on a grid-point model.
It is shown that the exponential growth rate predicted by the lin-
ear model of Lorenz (1972) is accurate. However it is also shown
that instability can occur for wave amplitudes A < A, in the non-
linear case where A, is calculated using the linear model. When
stability occurs for large A the perturbation undergoes exponen-
tial growth followed by a bounded oscillating behaviour. For small
A the perturbation follows an oscillating pattern of growing and
subsiding slowly over a long time period. This appears to confirm
the analysis of Deininger (1982) and Deininger and Loesch (1982).

The effect of boundary conditions on stability is investigated
by comparing the instability for a Rossby wave on a doubly peri-
odic domain with the instability of exactly the same wave in chan-
nel. It is found that there is no significant effect on Rossby wave
stability. The effect of changing the y dependence on the stability
of a Rossby-Haurvitz in a channel is also investigated.

The nonlinear instability of topographic planetary waves on a
doubly periodic beta-plane as well as in a channel is examined. In
the former case an example of a system going form one equilibrium

15
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state to another is found. Instability is studied as a function of
various parameters. For a certain perturbation behaviour similar
to that predicted by Deininger (1981) was found.

William M. O’Brien,
University of Limerick,
Limerick.

DERIVATIONS AND
COMPLETELY BOUNDED MAPS
ON C*-ALGEBRAS

A Survey

Martin Mathieu

The present paper summarises a series of lectures delivered at
the Department of Mathematics of University College Cork in
early spring 1990 which were supported by the ERASMUS pro-
gramme. Aimed at the non-specialist, we intend to provide a gen-
eral survey of the theory of completely bounded linear operators
on C*-algebras with a closer view of their relations to derivations.
Most of the details we have omitted can be found in Paulsen’s
fine treatise [26], in fact the reader may use this paper as a guide
to [26] under the particular aspect of applications to derivations
on C*-algebras. A more comprehensive state-of-the-art overview
on completely bounded operators is given in the recent paper by
Christensen and Sinclair [7], while Effros’ address to the ICM 86
[11] emphasises the connections with cohomology theory of oper-
ator algebras.

Since the mid 1970’s it emerged that the classes of completely
bounded and completely positive operators are among the most
important classes of (multi-)linear mappings on C*-algebras, as
they are intimately related to a number of structural properties,
and several open questions can be phrased in terms of these op-
erators. Here, we shall mainly concentrate on how the problem
of innerness of derivations naturally leads to consider completely
bounded maps. On the way we will also add some remarks on
the role these operators play in the operator algebraic approach
to quantum theory. Occasionally, proofs are outlined in order to
illustrate the typical techniques.

17
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1. Prerequisites on C*-algebras

This section is of a preparatory nature; we will compile several
facts from C*-algebra theory that will be needed in the sequel.

Throughout H, K denote Hilbert spaces over the complex
field € and L(H,K) is the Banach space of all bounded lin-
ear operators from H into K endowed with the operator norm,
\T|| = sup{l|T¢|l | £ € H, llé]l < 1}. The Banach algebra
L(H) = L(H, H) carries a natural involution, T' — T where T
is the adjoint of 7', and the algebraic and the metric structures
are related by the important identity ||T*T|| = 1712

A C*-algebra A is a closed "-subalgebra of L(H). Due to the
work of Gelfand and Naimark, which was completed by several
other mathematicians, there is the following abstract character-
isation of C*-algebras: every Banach algebra with an involution *
(i.e. an anti-multiplicative conjugate-linear bijection of order two)
satisfying ||z*z|| = ||z||* for all z is (isometrically *-isomorphic
to) a C*-algebra. To have both pictures of a C*-algebra is ad-
vantageous: often C*-algebras arise without specification of an
a priori Hilbert space, but to realise immediately a C*-algebra
given concretely as operators facilitates many arguments. If a
C*-algebra A is non-unital, i.e. does not contain a multiplicat-
ive identity 1, we can embed A as a closed ideal into the unital
C*-algebra A= {a+ A1 | a € 4, ) € €} where A C L(H).

Here are some of the basic examples of C*-algebras:

M, = L(C™), the complex n X n-matrices, provides the
simplest non-commutative C*-algebra (for n > 1) and will play
an extraordinary role in the following;

K(H), the compact operators on an infinite dimensional Hil-
bert space H, is a simple non-unital C*-algebra;

C(H) = L(H)/K(H), the Calkin algebra, closely related to
Fredholm operators;

Co(X), the continuous complex-valued functions on a locally
compact Hausdorff space X vanishing at infinity. This is the pro-
totype of a commutative C*-algebra, as, by the Gelfand-Naimark
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theore'm from 1941, every commutative C*-algebra 4 is isometric-
ally *-isomorphic to Co(A), A being the set of all homomorphisms
from A onto € with the weak* topology.

Of course, there are many other fundamental examples and
a number of methods to obtain new C*-algebras from given ones.
The following is the most important for our purposes.

Definition 1.1. Let A C L(H) be a C*-algebra. For each
n € IN the set M, (A) of all n x n-matrices with entries from 4 is
a *-subalgebra of L(H™) under the canonical operations and thus
can be normed with the operator norm. From

1;{.13!;1”0@3‘” <@l < - lasll

i,j=1

for all (a;;) € Mn(A) we see that M,(A) is complete, hence a
C*-algebra on H". If we change the faithful representation of A
we obtain an isometrically *-isomorphic matrix algebra over A,
thus M,(A) can be considered as an abstract C*-algebra, too.

Examples. Mq(K(H)) = K(H"), Mp(Co(X)) = Co(X, Ma).

We can also view M,(A) as a tensor product. If {u;; | 1 <
i,7 < n} denotes the canonical matrix units in My, the mapping

(aij) — Z uij @ aij, Mp(A) = M, ®A
7,j=1

is a *-isomorphism. Let « be any C*-cross norm on M, ® A and
M, ®4 A be its completion. Since every *-isomorphism between
C*-algebras is an isometry it follows that M, (A) and M, ® A
are isometrically *-isomorphic, in particular, M, ® A = Mp ®a
A. (This argument shows in addition that all C*-cross norms on
M, ® A coincide, i.e. M, is nuclear, see Section 4.)

The process of iterating matrix algebras is simplified by the
canonical shuffle. If n,m € IN, then, as a consequence of associ-
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ativity and commutativity of tensor products, we have that

M (Mn(A)) = My ® (Mn @ A)
= M (M (4))

which amounts to a permutation of the entries (cf. [26]).

Let A be a C*-algebra. Decomposing = € A into its real and
imaginary parts shows that A is the topological direct sum of 4,,
and tA,q where A, = {¢ € A |z = z*} is the real Banach space
of all self-adjoint elements in A. The latter becomes an ordered
Banach space by putting

c<y if y—zeA, (2,9 € Asa)

where A, = {z € A,.| all spectral values of z are non-negative}
is the proper closed generating cone of positive elements in A.
By the Fukamiya-Kaplansky-Kelley-Vaught theorem, there is the
following important intimate interrelation between the order and
the algebraic structure: Ay = {z*z |z € A}. If A is unital, the
identity 1 also serves as an order unit and thus A,, will be an
order unit space. As a consequence, the unit ball A1 of A can be
described as 41 = {z € A |zz* < 1}.

This last observation can be used to derive the following cri-
terion for positivity of certain 2 x 2 - matrices which will turn out
to be crucial in the sequel.

Lemma 1.2. Let a be an element in a unital C*-algebra A.
Then ||a|| < 1 if and only if (L ¢) > 0.

a* 1

Proof. 1If |la]| < 1 then 1 — aa* > 0. Take z € A,, such that
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z2 =1 - aa*. Then

proving the “only if’-paft.

Conversely, if (. ) = =2 is positive and A C L(H), then,
for all §,n € H, we have

|(ag [ m)I?

= [I&l? 11l

which implies that ||a|| < 1. [
Finally we introduce the order preserving mappings.

Definition 1.3. Let A and B be C*-algebras. A linear map
$¢: A — B is called positive if #(Ay) C By, n-positive if id @
¢ M, QA — M,QB is positive, and completely positive if ¢ is n-
positive for all n € IN. The convex cone of all completely positive
maps from A into B will be denoted by CP(A, B).
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Under the identification M, ® A — My (A), the mapping 1d® ¢
becomes

(id® ¢) (Z uij @ ag;) = Z uij @ ¢(aij) — (45(‘“1'))19,3‘51:'

%)

The mapping (ai;) — (#(aij)), Ma(A) — Mn(B) is denoted by
Pn.

Note that, by a simple application of the uniform bounded-
ness principle, every positive linear map is automatically bounded.
For some more grounding on completely positive maps and C*-
algebras we refer to [35].

2. Derivations and homomorphisms of C*-algebras

In this section some of the basic properties of derivations of
C*-algebras as well as their relations to homomorphisms will be
studied, and one of the fundamental problems on derivations is
phrased.

A linear map &: A — A where A is a C*-algebra is called a
derivation of A if

6(ab) = a(6b) + (5%)1) (a,be A).

A derivation is automatically continuous, by a result due to
Sakai, and only non-commutative C*-algebras allow non-zero de-
rivations, which is an observation of I. Singer. For each z € A the
derivation

adz:a— az — za

is described as an inner derivation, and all non-inner derivations
are called outer. There is a temptation to concentrate on inner de-
rivations since they are given concretely and therefore their prop-
erties, e.g. their spectra, can be described more easily. However, if
for instance A = K (H) and p is an infinite dimensional projection
on H, then the restriction of adp to K(H) will be outer. It is
therefore important to know under which conditions derivations
become inner.
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Here are two well known and important answers to this ques-
tion (see [31]: every derivation of a W*-algebra and every deriv-
ation of a simple unital C*-algebra is inner. Recall that a W*
algebra is a C*-algebra which is isometrically isomorphic to the
dual of another Banach space which yields an additional weak*
topology and thus many nice structural properties. Some neces-
sary and sufficient conditions for derivations to be inner can be
found in [27].

Before we proceed to a more general question, let us see where
derivations arise in the applications.

In the operator algebraic approach to quantum theory one
uses the self-adjoint part A,, of a (suitable) C*-algebra A for the
collection of all observables of a specific physical system, and the
state space S(A) (the set of all normalised positive linear function-
als on A) for the set of all physical states of the system. In the
more traditional theory, A was L(H) and the states were iden-
tified with unit vectors in H (vector states). The dynamics of
the system is then given by a continuous one-parameter group
of unitary operators u(t), t € IR, on H: while time passes from
t = 0 tot = tg, the system evolves from the state ¢ into the
state u(to) . Of special interest is the infinitesimal generator h
of {u(t) | t € R} which is a self-adjoint operator (it corresponds
to the energy). The identity u(t) = eith yields the Schrodinger
equation

%u(t)<p:ihu(t)$0 (p € H).

In the Heisenberg picture, the dynamics is on the observables
rather than on the states and thus given by the one-parameter
group of *-automorphisms = — u(t)* zu(t), = € L(H), t e R,
whose generator is the inner derivation z — i(zh — hz).

As it emerged that the algebra L(H) is not always appropri-
ate for the physical model one had to choose more general C*-
algebras. In many cases there is no a prior: specified Hilbert
space, whence the use of the Heisenberg picture and a one-para-
meter group of *-automorphisms U(t) on A is more convenient;
the generator of {U(t) | t € IR} will again be a derivation §. Of
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course, the Schrédinger picture still exists and is equivalent: the
adjoint of U(t) will map S(A) onto S(4). In fact, since U(t) is
* _preserving, § is a *-derivation, i.e. 6450 C Agq. (We are some-
what sloppy about the domain of definition of ¢ which depends
on the continuity of ¢ — U(t). To be precise, we have to assume
uniform continuity throughout.) Conversely, given a *-derivation
§ of A, one defines a one-parameter group of *.automorphisms on
Aby U(t)=¢", t€R.

Now, if U(t) is of the form U(t) & = u(t)* z u(t) for a group of
unitaries u(t) in A, then one has observability of the energy. And
if 6 is inner, § = adih, then U(¢) will be inner with u(t) = eith,
another reason for the interest in inner derivations. For example,
Olesen proved in 1974 that every norm continuous group of *-
automorphisms of A is inner in A** (the enveloping W*-algebra
of A).

While groups of *-automorphisms are sufficient to describe
reversible evolutions of quantum systems, irreversible evolutions
may be described by semigroups of completely positive contract-
ive operators. There are a lot of good reasons for the choice of
completely positive contractions, both mathematical and physical
ones. First of all, the adjoint operators have to fix the state space;
thus they must be positive, hence the original ones also have to
be. Secondly, an invertible completely positive contraction whose
inverse is a completely positive contraction is a *_automorphism;
this fails for general positive maps. And even more important
is the fact that two interacting systems are usually described by
the tensor product of the corresponding C*-algebras whence the
tensor product of the dynamical operators should give the joint
dynamics. Complete positivity ensures this, while mere positivity
doesn’t.

One of the strategies to understand irreversible evolutions
(open guantum systems) has been to try to ‘embed’ them into
larger reversible systems (Hamiltonian systems). This is known
as dilation theory (see e.g. [13], [20]).

The generators of norm continuous semigroups of completely
positive operators can be described precisely: let L: A — A be
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a self-adjoint bounded linear operator (i.e. L A;q C Asq). Then
T(t) = e'L, t > 0, defines a semigroup of completely positive op-
erators if and only if L is conditionally completely positive (see
[13]). For a large class of von Neumann algebras (weakly closed
unital *-subalgebras of L(H)) a more detailed description of con-
ditionally completely positive maps is possible; they can be viewed
as perturbations. of completely positive maps by generalised inner

derivations of a certain type. It is expedient to extend the notion
of a derivation as follows.

Definition 2.1. Let A be a C*-algebra and E be a Banach
A-bimodule (i.e. E is a Banach space and an A-bimodule with
continuous module multiplications). A linear map é: A — E sat-
1sfying

5(adb) = a(6b) + (6a)b (a,be A)

is called an E-valued derivation of A. Every such derivation is a
bounded operator as proved by Ringrose [29]. Again, § is said to
be (E-)inner if § = adz for some z € E. A linear map d: A — E
is said to be a generalised inner derivation if d(a) = az -+ ya for
some z,y € E and all a € A. In this case, we write d = d, y. Note
that, if A is unital, dg 4 is nothing but an additive perturbation
of ad z by left multiplication with z + y.

The following situation often arises. A derivation of a C™-
algebra A is not inner in A but will become inner when A is
regarded as a C*-subalgebra of another C*-algebra B and B is
viewed as an A-bimodule. For example, we observed above that
a derivation of a simple C*-algebra A need not be inner in A, but
it will be inner in the multiplier algebra M(A) (another result
by Sakai [32]). As, by the Gelfand-Naimark theorem, each C*-
algebra A can be considered as a C*-subalgebra of some L(H),
the following question naturally arises.

Problem 2.2. Let AC L(H). Is every derivation 6: A — L(H)

inner?

This problem can be considered as the major open question in
the theory of (bounded) derivations of C*-algebras. So far a num-
ber of important contributions have been made, and it is widely

s

B
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conjectured that, at least for von Neumann algebras, the answer
is always yes. An affirmative answer for type I and for hyper-
finite von Neumann algebras was given by Johnson and Ringrose
in 1972, and for the properly infinite case by Christensen in [4].
Problem 2.2 also serves as the motivation for our exposition of the
interrelations between derivations and completely bounded maps.
Our final purpose is to present Christensen’s equivalent formula-
tion of Problem 2.2 in terms of completely bounded maps, and
to relate it to a number of other important structural properties
and questions (see below and Chapter 8 of [26]). Note that it is
tantamount to ask whether every derivation §: A — L(H) can be
extended to a derivation on L(H).

One of these applications is to a canonical decomposition of
conditionally completely positive maps combining results by Lind-
blad from 1976 and Evans from 1977 [13].

Theorem 2.3. The following conditions on a W*-algebra A are
equivalent.

(a) Whenever A is faithfully represented as a von Newmann al-
gebra on a Hilbert space H, then every derivation 6:A —
L(H) is inner.

(b) Whenever A is faithfully rep%’esented as a von Neumann al-
gebra on a Hilbert space H, then every conditionally com-
pletely positive ultraweakly continuous self-adjoint linear map
L:A — L(H) can be decomposed as L = 1 + dp o= with
Y: A — L(H) completely positive and z € L(H).

Completely positive maps not only are important in the ap-
plications to mathematical physics but also play a central role
in the theory of tensor products of C*-algebras (see Section 4),
non-commutative harmonic analysis, and non-commutative prob-
ability theory where they serve as transition operators of non-
commutative stochastic processes.

In addition to the relation between derivations and homo-
morphisms given by exponentiation, § — e?, there is a more al-
gebraic connection which has also been known for a long time.

£
8
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Suppose that A is a C*-subalgebra of a C*-algebra B and
let 6: A — B be a derivation. Define a homomorphism p: 4 —

M3(B) by
: _[a &)
=[5 °W),  eea.

a

If A is unital, then p will be unital, but p need not be a *-
homomorphism if § is a *-derivation. Actually, the following is
easily obtained [26].

Proposition 2.4. Let A C L(H) be a C*-algebra. The deriva-
tion 6: A — L(H) is inner if and only if the canonically associated
homomorphism p: A — L(H?) constructed above is similar to a *-
homomorphism, i.e. there is an invertible operator S € L(H?)
such that a— S~1p(a) S defines a *-homomorphism.

This result turns out to play a key role in an attack to
solve Problem 2.2 (see the following section). The question
how different homomorphisms of C*-algebras can be from *-
homomorphisms has been investigated by many authors. For ex-
ample, a result due to Gardner [31] stating that two C*-algebras
which are isomorphic as algebras are in fact *-isomorphic yields a
factorisation of an isomorphism p: A — B between C*-algebras A
and B into a product of a *-isomorphism and an automorphism
of the form e®, § a derivation of A.

3. The similarity problem

In 1955 Kadison raised the question when a given homomorphism
from a C*-algebra A into L(H) is similar to a *-homomorphism
[19]. This was preceded by a related question whether a bounded
representation of a topological group is similar to a unitary rep-
resentation. The latter is certainly true for finite groups which
is a classical result, and Dixmier [10] gave an affirmative answer
for amenable groups. However, the result fails in general as was
shown by Kunze and Stein in 1960. Kadison’s question is still
open, and in the present section we will develop the terminology
to state a partial, but important answer due to Haagerup [16].
(In [16] the reader may find additional comments on the history
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of this problem.) From Haagerup’s theorem a characterisation of
inner derivations first given by Christensen in [5] is immediate
(Theorerm 3.3 below).

Let p: A — L(H) be a homomorphism. If there is a similarity
S € L(H) such that 7(a) = S~ p(a) S defines a *-homomorphism,
then, since 7 is a contraction, p has to be bounded by |5~ IS]].
Whether or not every homomorphism from a C*-algebra is neces-
sarily bounded was an open question since the beginning of the
theory of C*-algebras in the 1940’s. Even in the commutative
case the answer wasn’t clear for many years, and had been one
of the main stimuli in automatic continuity theory. One of the
early answers is Gelfand’s result stating that every homomorph-
ism from a C*-algebra into a semi-simple commutative Banach
algebra is bounded, but it took some time until the assumption of
semi-simplicity could be dropped (which was done by Laursen in
1987 for epimorphisms). The question for the case A = C(X) was
finally answered by Esterle in 1978. A good up-to-date account
of this topic is given in Dales’ paper [9].

If we extend p to p,: Mp(A) — L(H™), then p((ay;)) =
Sn mn((aij)) S;1 where S, denotes the n-fold direct sum of S.
Since 7, is a contraction and ISall = IISIL 1S3 = 1S™Y| for
all n € IN, we still get that |||, < ||S=2||||S]|. This stronger
boundedness property motivates the following definition.

Definition 3.1. Let A and B be C*-algebras, and for a lin-
ear map ¢: A — B let ¢n: M,(A) — M,(B) be its extension as
defined in Definition 1.3. Then ¢ is said to be completely bounded
if sup ||¢n|| < oo, and in this case ||¢||c, = sup ||#n]] is called the

n
completely bounded norm of . Moreover, ¢ is called completely
contractive, respectively completely isometric, if |6llee < 1, re-
spectively ¢, is an isometry for all n € IN.

The set CB(A, B) of all completely bounded linear maps from
Ainto B is a Banach space under ||-||., but is not complete under
I[1l, in general; e.g. (CB(A, L(H)),|| - |I) is never complete and is
topologically small, i.e. a rare subset, in L(A, L(H)) unless both
A and H are finite dimensional [33].

=
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The surprising result by Haagerup is that the complete bounded-
ness of a homomorphism from a C*-algebra not only is a necessary
but also a sufficient condition for similarity to a *-homomorphism.

Theorem 3.2. (Haagerup 1983) Let A be a unital C*-algebra
and p: A — L(H) be a unital homomorphism. Then p is similar
to a "-homomorphism if and only if p is completely bounded. In
this case, there exists a similarity S such that a — S5~ p(a) S is
@ *-homomorphism and ||p||.s = ||S~1||||S]|-

This result was proved by Haagerup in [16]; a different proof given
by Paulsen will be outlined in Section 5.

Suppose that 6: A — L(H) is a derivation where A C L(H).
Since a derivation annihilates every central projection we may
assume that A is unital whence the canonically associated homo-
morphism p: A — L(H?) is unital. Using the canonical shuffle we
easily obtain that [|6,]] < [|pn|] < ||6a]|+2 foralln € IN, ie. 6 is
completely bounded if and only if p is completely bounded. Com-
bining Theorem 3.2 with Proposition 2.4 thus yields the following
result (cf. [26]).

Theorem 3.3. (Christensen 1982) Let §: 4 — L(H) be a deriv-
ation of a C*-subalgebra A of L(H). Then § is inner if and only
if & is completely bounded.

Christensen’s original proof [5] rests on the ultrastrong continuity
of a derivation defined on a properly infinite von Neumann algebra
[4] as well as on an estimate relating the norm lladz| || and the
distance of x € L(H) to the commutant A’. It follows in particular
that every derivation of an injective von Neumann algebra (for
the terminology see Section 4) and of a C*-algebra with cyclic
vector is inner in L(H). Both the arguments of Christensen and
Haagerup use in some way Pisier’s non-¢ommutative Grothendieck
inequality.

In the remainder of this section we will discuss some examples
of completely bounded maps. The first result is a simple con-

sequence of the fact that an element a in a C*-algebra A is self-
adjoint if (a) € IR for every state ¢ of A.
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Proposition 3.4. The following conditions on a unital homo-
morphism p between unital C*-algebras are equivalent.

(a) p is contractive.
(b) p is completely contractive.
(¢} pis a *-homomorphism.

Together with the *-homomorphisms, the following are the

prototypes of completely bounded maps. Let a,b € L(H,K).
The mapping

Mge p: L(K) — L(H), = — a*zb

is called a two-sided multiplication. Since (Mae p)n = Ma, +s.,,
where ¢, € L(H™, K™) is the n-fold direct sum of ¢ € L(H, K), it
is easily calculated that M, is completely bounded with

1 Ma= 3llco = llaf |Ib]-

In Section 4 we will discuss the representation theorems which
state that every completely bounded (completely positive) linear
map can be decomposed into a *-homomorphism and a (com-
pletely positive) two-sided multiplication. The completely posit-
ive multiplications can be described as follows.

Proposition 3.5. The following conditions are equivalent.
(a) Mgy is positive.

(b) Ma» s is completely positive.

(c) Mgep = Mg for some c € L(H, K).

The proof given in [22] for the case H = K is easily adopted to
cover Proposition 3.5. Note in addition that the following polar-
isation identity holds which is useful in a deduction of Wittstock’s
decomposition theorem (Theorem 4.4 below)

3
(1) Mgep = % Z ¥ My yiray paira-
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Some matrix calculations show that each bounded linear func-
tional ¢ on a C*-algebra is completely bounded with [|¢]| = llllee,
and if ¢ is positive, then it is completely positive. As a resu}t,
bounded respectively positive linear mappings into commutative
C*-algebras are completely bounded respectively completely pos-
itive, and their norms coincide with the completely bounded norm
(here, the identification My (C(X)) = C(X, M,) turns out to be
useful). Likewise each positive linear map from a commutative
C*-algebra is completely positive which was already noted by
Stinespring in 1955, however the corresponding result for bounded
maps fails.

Finite-dimensionality has also its consequences on the be-
haviour of completely positive and completely bounded maps.
For example, Choi proved that every n-positive linear map frgm
M, into a C*-algebra is completely positive (cf. [26]), and Smith
showed that CB(A, My,) = L(A, My) for every C*-algebra A and
that ||¢]les = l|¢all < nlig|| for each ¢ € L(A, M,) (cf. [26]).
However, as Haagerup [17] observed, there is in general nom € IN
such that ||¢m|] = ||#]les if ¢ € L(M,, B).

The next result is not unexpected.
Proposition 3.6. For all C*-algebras A and B we have
CP(A,B) C CB(A, B),

and the norm and the completely bounded norm of a completely
positive map coincide.

This can be deduced nicely from Lemma 1.2. Assurr‘ling without
restriction that A is unital we take a € M,(A) with Ha“ <1
whence (L %) € Man(A) is positive. The complete positivity of

en (o $)= (50 40

¢ yields that

is positive which entails that

llgn(a)ll < llga (DI = [lDI]-
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Therefore, ¢ is completely bounded with ||¢|lcs < [|¢]l, and the
other inequality is obvious.

In particular, the linear span of the completely positive op-
erators is contained in the completely bounded operators, and 1t
was an open question for some time whether equality always holds.
This is in fact true for a certain class of C*-algebras which will
be discussed in the next section, but for instance not the case for
A= B =C[0,1], as proved by Smith [33].

So far we haven’t provided any concrete examples of posit-
ive respectively bounded maps that are not completely positive
respectively completely bounded. The easiest positive mapping
which is not 2-positive is the transpose map on Ma, and an infin-
ite dimensional analogue on L(£?) gives a bounded not completely
bounded map (for details see [26]).

4. Representation and extension theorems

Two important features of bounded linear functionals on C*-
algebras are the Jordan decomposition and, of course, the Hahn-
Banach theorem. The former was established by Grothendieck in
1957 and generalises the fact that every bounded regular Borel
measure on a compact Hausdorfl space is a linear combination of
four positive measures, while the latter is clearly an indispensable
tool of the theory. In the present section we will discuss possible
extensions of these results to arbitrary completely bounded maps.

In order to be able to formulate the problems, we have to ex-
tend the notions of complete positivity and complete boundedness
as follows.

Definition 4.1. Every subspace M of a C*-algebra A is called
an operator space, with the understanding that, for each n € IN,
Mn(M) is regarded as a subspace of My (A). Every self-adjoint
subspace S of a unital C*-algebra which contains the identity is
called an operator system. Note that the self-adjoint part S;q of
S is a real ordered normed space with generating cone Sy = {z €
S|z > 0} since

o= L(all+2) = t(llzll —2) (= € Sea).
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Again, M,(S) is endowed with the order inherited from M, (A). If
B is another C*-algebra and ¢: M — B is a linear map, then the
notions of complete boundedness, complete contractivity, complete
isomeiry, and n-positivity respectively complete positivity, if M =
S is an operator system, are defined analogously to the case M =

A.

An abstract characterisation of operator spaces which goes
parallel with Banach’s abstract characterisation of the subspaces
of C(X) was given by Ruan [30] as follows. Let M be a normed
complex vector space, and suppose that for each n € IN norms are
provided on the matrix spaces M, (M) satisfying

llezll < lledlllell,  llzall < Nzl e,

and
llz ® yl| = max {||[|, [|vll}

for all z € Mp(M), y € Mn(M) and & € M,. Then M is
(completely isometric to) an operator space.

The following generalisation of the Hahn-Banach theorem was
proved for the completely positive case by Arveson [1] in 1969,
and for the completely bounded case independently by Haagerup
[14], Paulsen [24] and Wittstock [37] several years later. Witt-
stock’s original proof used a Hahn-Banach theorem for set-valued
mappings into L(H) while Haagerup elaborated techniques previ-
ously available for completely positive maps only for completely
bounded maps. Paulsen’s proof reduces the problem to the com-
pletely positive case via the “off-diagonal technique” described
below, and the proof of Arveson’s theorem can be divided into
two steps: first consider the finite-dimensional situation and then
extend the result to the general case by exploiting the compactness
of closed bounded subsets of CP(A, L(H)) in the BW-topology.

Theorem 4.2. Every completely bounded (completely positive)
linear map from an operator space (operator system) in a unital
C*-algebra A into L(H) can be exiended to a completely bounded
(completely positive) map on A under preservation of the cb-norm.
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A C*-algebra B is called injective if every completely positive
linear map from an operator system S in some C*-algebra A into
B can be extended to a completely positive map from A into B.
Thus, Arveson’s extension theorem states that L(H) is injective.
From this and a result by Tomiyama (see e.g. [13] or [35]), it is
easily deduced that B C L(H) is injective if and only if there
exists a projection of norm one from L(H) onto B (a conditional
ezpectation).

Injectivity is related to a number of other important struc-
tural properties of C*-algebras which are compiled in the next
theorem, thus revealing the significance of completely positive op-
erators. It is here where the real sorcerers in the field used all
their magic.

Theorem 4.3. The following conditions on a C*-algebra A are
equivalent. '

(a) A is nuclear.
(b) A has the CPAP.
(¢

)

) A*™ is semi-discrete.
(d) A*™ is injective.
)

)

o

A is amenable.

—~~

€

(f) CB(A*,A™) =linCP(A™, A*).

The various implications in this result are due to Connes
8], Choi and Effros [2], [3], Effros and Lance [12], and Haagerup
(15], [17]. In order to explain the terminology we recall that a
C"-algebra A is said to be nuclear if for every C*-algebra B all
C*-cross norms on A ® B coincide, or equivalently, 4 ® i, B =
A ®mar B where

lzllmin = sup {||m1 ® 72 (z)|| | 71, 72 representations of A, B}
and

lz|lmaz = sup {||7(2)|| | = a representation of 4 ® B}

<]
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are the minimal respectively the maximal C*-cross norm. Among
the class of nuclear C*-algebras are all finite-dimensional and all
commutative C*-algebras, and inductive limits as well as tensor
products of nuclear C*-algebras are nuclear. The reduced group
C*-algebra C}(G) of a locally compact group G is nuclear if and
only if G is amenable. For some more information, see e.g. [21]
and [35]. A C*-algebra A has the completely positive approzim-
ation property (CPAP) if the identity on the dual of 4 can be
approximated by completely positive contractions of finite rank
in the topology of simple convergence, while a W*-algebra R is
semi-discrete if the identity on R is approximated by normal com-
pletely positive contractions of finite rank in the topology of simple
convergence on (R, o(R, R*)). Finally, A is amenable if every de-
rivation 6: A — E, E a dual Banach A-bimodule, is inner. A
recent discussion of Theorem 4.3 can be found in [28].

Injectivity also plays a role in the generalisation of the Jordan
decomposition. The following result generally referred to as Witt-

stock’s decomposition theorem was obtained independently in
[14], [24], and [36].

Theorem 4.4. Let A be a unilal and B an injective C*-algebra.
Then CB(A, B) = linCP(A, B). More precisely, if ¢: A — B is
completely bounded, then there exists a completely positive map
$: A — B with |[¢]les < ||@llcy such that ¢ £ Re(4) and ¢ +Im(4)
are all completely positive.

Here, the real and imaginary parts of a linear map ¢ are defined by
Re(8)(z) = § ((z) + 6(2*)*) and Im(9)(z) = & (#(z) — B(")"),
respectively. The decomposition of a completely bounded linear
map into a linear combination of completely positive maps is not
always possible, e.g. if A= B = C[0,1] [33]. If A= Bis a Wk
algebra, then the injectivity is also a necessary condition for the
decomposition property as observed by Haagerup in [17].

It emerged that Theorem 4.4 is in fact an immediate con-
sequence of the following representation theorem which was
proved by Stinespring in 1955 for completely positive maps (34],
and by Paulsen in 1984 for completely bounded maps [24].
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Theorem 4.5. Let A be a unital C*-algebra and ¢: A — L(H)
be a completely bounded (completely positive) linear map. Then
there exist a representation (7, K) of A and v; € L(H,K), i =1,2
such that

(2) ¢ = va',vz°7r

1
and ||vs|| = ||9|%, ¢ = 1,2. If ||¢|lecs = 1, then vy and vy can be
taken to be isometries, and if ¢ is completely positive, then vy and
vy can be taken equal, equivalently, My, ., is completely posilive.

Stinespring’s paper from 1955 in which the notion of a com-
pletely positive map was introduced can be viewed as both the
historical as well as the conceptual starting point of the whole the-
ory. Originally intended as an extension of a dilation theorem due
to Naimark, it also generalises the famous GNS-construction. In
fact, if ¢ is a state of a C*-algebra A, the GNS-construction yields
a triple (my, Hy, €,) consisting of a cyclic representation (7, Hyp)
with cyclic vector &, such that ¢(z) = (my(x)€, | &) for all
z € A, and by choosing H =C, K = Hyand v: H — K, v1=§,
this translates into ¢ = M,- , o 7. Generally, the triple (7, K, v)
is called a Stinespring representation of the completely positive
map ¢, and it is easily seen that (v, K, v) is unique up to unit-
ary equivalence if 7(A)vH is total in K. However, for the com-
pletely bounded case, no additional assumption is known mak-
ing the above representation unique up to unitary equivalence.
More information on this topic is contained in [26], [35], and
also [13] where the Stinespring representation is derived from the
Kolmogorov decomposition for positive-definite kernels.

From Theorem 4.5, Wittstock’s decomposition theorem is
quickly deduced (cf. [24] and [26]). To do this it suffices to take
B = L(H). If ¢: A — L(H) is completely bounded, then, by (1)
and (2),

3
— 1 -k
(3) ¢ = q Z ¢ M(U2+ik1)1)',vz+ikv1 o
k=0
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whence ¢ can be linearly combined by four completely positive
maps. A simple rearrangement of (3) shows that

1
Y= ) (Myys 1wy 0T + Myye v, 07)

meets the conditions of Theorem 4.4.

The reader will have noticed the rather long time which pass-
ed after the representation and the extension theorems for com-
pletely positive maps until their counterparts for completely boun-
ded maps were obtained. The reason for this was the lack of a
method relating completely bounded maps to completely posit-
ive ones in a natural way. This was remedied by Paulsen’s “off-
diagonal technique” which concludes this section.

Lemma 4.6. (Paulsen 1982) Let A and B be unital C*-algebras,

and let M C A be an operator space. Define an operator system

A a
S_{<b* u> i/\,uE(D,a,bGM},

and for each linear map ¢: M — B a linear map ®: S — Mo(B)

b
y ® <bA* fa) = (qs(Ab)* ¢fta)>'

Then ¢ is completely contractive if and only if @ is completely
positive.

In the surprisingly simple proof one uses first the canonical
shuffle and a module property of ¢, to reduce to the case n = 1,
i.e. to contractivity respectively positivity, and then an approx-
imation as well as a factorisation argument to reduce further to
consideration of ( al, Cl‘) instead of arbitrary elements of 5. Apply-

ing Lemma 1.2 twice accomplishes the proof.

This lemma is used for example in the proof of the extension
theorem (Theorem 4.2) as follows. If ¢: M — L(H) is completely

S
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bounded with ||¢||lcs = 1, Lemma 4.6 yields a completely pos-
itive map ®:S5 — Ma(L(H)) = L(H?) which can be extended
to & € CP(My(A), L(H?)) under preservation of the norm by
Arveson’s extension theorem. Letting w; respectively wy be the
isometries from H onto H @0 respectively 0 H and ¢: A — M3(4)
the embedding into the upper left corner we obtain a complete
contraction 1: A — L(H) extending ¢ by

Y= My, w, 0¥ o My w0t

5. Completely bounded homomorphisms

This final section is devoted to a deduction of Haagerup’s char-
acterisation of those bounded unital homomorphisms which are
similar to *-homomorphisms (Theorem 3.2) from the following
result by Paulsen [25]. By an operator algebra we understand a
unital subalgebra of some C*-algebra.

Theorem 5.1. (Paulsen 1984)  For every completely bounded
unital homomorphism p: A — L(H) on an operator algebra A
there exists an invertible operator S € L(H) such that lolles =

[1S=Y[|SI| and Mgy 50 p is a completely contractive homomorph-
ism. Moreover,

llpllee = inf {||R™I|||RI| | Mp-1 rop is completely contractive}.

The main idea in the proof of this result is to use Theorem
4.2 to extend the homomorphism p to the C*-algebra containing
A and the representation theorem applied to the extended map
in order to introduce a new norm on H which is equivalent to the
original one such that p becomes completely contractive. Once

this is done, Haagerup’s theorem is immediate from Theorem 5.1
and Proposition 3.3.

At about the same time when Haagerup proved Theorem 3.2,
Hadwin showed in [18] that a unital homomorphism from a C”-
algebra into L(H) is similar to a *-homomorphism if and only
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if the homomorphism lies in the span of the completely posit-
ive maps. This together with Wittstock’s decomposition theorem
yields an alternative argument for Theorem 3.2, without giving the
norm identity. Theorem 5.1 is also useful in other applications, for
instance to Halmos’ question whether every polynomially bounded
operator is similar to a contraction, see [26].
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C*.-DYNAMICAL SYSTEMS AND
COVARIANCE ALGEBRAS

G. J. Murphy

The last two decades have seen extraordinar.y progress in the the-
ory of operator algebras and an enormous increase in the range
and power of its applications. Ig this paper We‘shall look at that
part of the theory which deals w%th the interaction of C*-algebras
and groups of their automprpl}lsms. From.the p.urely tbeoreb
ical point of view, the motivation fgr stud)flng this area is that
it enables the construction of new interesting C*-algebras from
old. Further motivation is provided by the sheer depth a?xnd eleg-
ance of the ideas of the theory, Which‘in‘volve a beautiful interplay
of C*-algebras and harmonic analysis, and concern some of the
deepest (and hardest) results Qf @he theory of operator algebras.
Historically, however, the main 1mpetu§ to the devglopment_ of
the subject came from its applications in mathema_t;ce?} physgs.
For this reason we shall occasionally motivate a point by a brief

reference to quantum physics.

§1. Simple and primitive C*uglgebrgs, |

We begin by reviewing some basic terminology. \Le'o A.be an ‘ai~
gebra (all vector spaces and algebras are complex). An mvoiutjoz:
on A is a conjugate-linear map, a — a*, such that (ab)* = b.a'
and a** = a (a,b € A). A (C*-algebra is an af{gebr; endowed with
an involution and a complete norm such that |labl} < llal| Hb[] arid
lla*all = llall? (a,b € A)- Obviously the complex field C is a C*-
algebra. Less trivially, if Q is a locally compa‘ct Hausdorﬁj space,
then the set Co(§2) of all complex-valued contmuqns functions on
) vanishing at infinity is a C"-algebra (the operations are defined
pointwise and the norm is given by ||fllcc = sup,eqn |f(w)]). By
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the Gelfand representation, every commutative C*-algebra is of
this form, up to isomorphism.

If H is a Hilbert space, let B(H) denote the set of (bounded
linear) operators on H. This is a C*-algebra with the operator
norm and the involution defined by the usual adjoint. If A4 is
a norm-closed subalgebra of B(H) such that T* € A whenever
T € A, then it is a C*-algebra. The Gelfand-Naimark theorem
asserts that every C*-algebra is of this form (up to isomorphism).

A fundamental technique used in analysing a C*-algebra A
is to represent it on various Hilbert spaces. A representation of
A'is defined to be a pair (H, ¢), where H is a Hilbert space and
¢ : A — B(H) is a *-homomorphism, that is, a linear map pre-
serving multiplication and involution. We say that (H, ¢) is non-
degenerate if H is the closed linear span of all elements ¢(a)n
(a € A, n € H); and we say that (H, ) is irreducible if the only
closed vector spaces K of H such that ¢(a)K C K (a € A) are
K=0and K=H.

There are two classes of C*-algebras that play the role of
“building blocks” in the theory—the simple and the primitive C*-
algebras (their description as building blocks has to be taken cum
grano salis). A primitive C*-algebra is one which admits an ir-
reducible representation (H,¢) with ¢ injective. For example,
B(H) is primitive, but Co(Q) is not, unless Q is a single point
(in which case Co(Q2) = C). A C*-algebra A is simple if its only
closed ideals are the trivial ones, 0 and A. Simple C*-algebras are
primitive, but not conversely. For instance, B(H) is simple only
when H is finite-dimensional. The ideal of compact operators is
always simple.

In general it is a non-trivial task to exhibit examples of simple
and primitive C*-algebras. The covariance algebras that we in-
troduce in the next section play a vital role in the construction of
many such examples.

§2. C*-dynamical systems and covariance algebras.

An automorphism of a C*-algebra A is a bijective *-homomorph-
ism from A onto itself. We denote by Aut A the group of auto-
morphisms of A.
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A C*-dynamical system is a triple (A, G,a), where A is a
C*-algebra, G is a locally compact group, and the map o : G —
Aut A, ¢ — «g, is a homomorphism that is continuous in the
sense that the map G — A, =z +— a,(a), is continuous for each
a € A.

The terminology derives from the applications. In quantum
physics the observables are non-commuting operators on a Hil-
bert space. In some models they “form” a C*-algebra A (more
precisely, they form its self-adjoint part A, = {a € 4| a* = a}).
Time evolution and spatial translation of the observables are then
described by a C*-dynamical system.

If A is abelian, we can write A = Co(Q). In this case, the
analysis of (4, G, @) relates to ergodic theory, since we get a cor-
responding action of G on 2 by a group of homeomorphisms af,,
where the map «af, : Q — Q is determined by the equation

(az f(w) = flabi(w)) (z€G,weQ, feA).

When G = R, Z or T (the circle group), the study of (Co(2), G, &)
is in essence classical topological dynamics. The motivation to
work with A non-abelian came from the quantum physicists, who
have to deal with non-commutating observables.

A unitary representatioh of G is a pair (H,U), where H is a
Hilbert space, the map

U:G— B(H), z—U,,

is a homomorphism into the group of unitary operators on H,
and U is continuous in the sense that for arbitrary 5,7 € H the
function

G—C, z+ (Uyn,7),

is continuous.

The analogous object to a representation of a C*-algebra A
is a covariant representation of a C*-dynamical system (4, G, a).
This is a triple (H,¢,U), where (H, ) is a representation of A,
the pair (H,U) is a unitary representation of G, and ¢, U interact
via the condition

plaz(a)) = Usp(a)U; (e €A, z€G).
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We can now introduce the covariance algebra of (4,G,a).
The connection of this C*-algebra with (4, G, «) is that there

“is a natural one-one correspondence between its non-degenerate

representations and the covariant representations of (4, G, ), so
that, at least to some extent, the theory of covariant representa-
tions is reduced to that of ordinary representations.

Let m and A denote the left Haar measure and the modular
function of G respectively. Denote by K(G, A) the vector space
of continuous maps from G to A having compact support. We
endow K (G, A) with a (convolution-type) multiplication and an
involution defined by

(F+9W) = [ f@)as(o(z™3) dm(z)
() = @) as(f)"

for f, g € K(G,A) and z,y € G.

By rather indirect means, one also equips K (G, A) with a
suitable norm making it almost a C*-algebra—the only require-
ment that is not satisfied is completeness. This defect is remedied
simply by completing K(G, A) and extending its operations by
continuity to get a C*-algebra, denoted by C*(A,G,a) or A X, G
and called the covariance algebra of (4,G, @), or the crossed
product of A with G (under the action «).

A primary motivation for this construction is that C*(4, G, )
can be made simple or primitive by imposing suitable conditions
on (A,G,«). Examples of simple and primitive C*-algebras are
important not only for theoretical reasons, but also for applica-
tions. The algebras occurring in physics are often of this type—
as D. Kastler remarks, nature does not have ideals. In physics
the algebra of quantum observables is frequently obtained from
the commutative algebra of the classical observables by taking
something like the crossed product with the group generated by
a set of “conjugate” variables of the classical variables.

A particular case of the crossed product construction is of
great importance in the theory of unitary representations of loc-
ally compact groups. If G is one of these groups, we get a C*-
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dynamical system (C, G, ) by letting G act trivially on C. The
covariance C*-algebra C x o G is denoted by C*(G) and called the
group C*-algebra of G. The theory of the unitary representations
of G then becomes a part of the representation theory of C*-
algebras, since they correspond to the representations of C*(G)
(for details, see [2]). If G is abelian, then C*(G) = Cy(G), where
G is the Pontryagin dual group of G, but in the non-abelian case
the analysis of C*(G) can be very difficult.

Another class of C*-algebras that arise from the crossed
product construction is the class of the irrational rotation algeb-
ras. These have been extensively studied. One reason for their
importance is that they are motivating examples for the non-
commutative differential geometry being developed by the Fields
medalist Alain Connes.

Let A= C(T) and let v : T — C be the inclusion function (u
generates A). If we fix an irrational number @ in [0,1], then there
is a unique automorphism «; of A such that ai(u) = 2™y,
Setting o, = af, we get a C*-dynamical system (A, Z, o) whose
covariance C*-algebra is denoted by As and called an irrational
rotation algebra. The action of Z on T corresponding to « on
C(T) is given by rotation through the irrational angle 6, hence
the name. We shall return to these algebras in the next section.

§3. Ergodicty and simplicity.

Although the crossed product is the most powerful device for get-
ting new C*-algebras, the process is very elusive and a great deal
of effort has been required to give general conditions which imply
it is simple or primitive. In this and the next section we discuss
some of these conditions (there are others which are not suitable
for inclusion here due to their complexity).

‘We shall make the following assumption:

In this and the next section, (A, G, &) is a C*-dynamical sys-
tem for which A is separable and G is countable, discrete and
abelian.

Moreover, in this section only, we further assume that A Is
abelian.

£
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Thus, we may write A = Co(Q). If w € Q, its orbit is the
set of all points a(w) (z € G). We say that « is ergodic if every
orbit is dense in . We write f < g in A to mean f(w) < g(w)
for all w € 2 and f # g. We define o to be free if for all non-
zero elements £ € G and all elements f > 0 in A, there exists an
element g > 0 in A such that ¢ < f and a.(g9) # g.

The following important result is due to E. Effros and F. Hahn.

Theorem [4]. If (4, G, a) Is as assumed above, and the action «
is ergodic and free, then the crossed product A x G Is simple.

Despite the considerable restrictions imposed, this is still a
very useful result. We illustrate it by applying it to the C*-
dynamical system (C(T),Z, a) associated to the irrational rota-
tion algebra Ag: As is well known, the only closed subgroups of T
are the finite ones and T itself. The irrationality of § implies that
the set {€*2™% | n € Z} is infinite, and therefore the closed sub-
group generated by 2™ ig equal to T. It follows that every orbit
is dense in T, that is, « is ergodic. If f is an element of C(T') such
that a,(f) = f for some non-zero integer n, then ama(f) = f for
all m € Z. Hence, f(e!?™™"%) = f(1), and therefore, by density
of the set {e*2™™"¢ | m € Z} in T, the function f is constant.
This easily implies that o is free. Since all the conditions of the
Effros-Hahn theorem hold, we conclude that Ay is simple.

§4. The Olesen-Pedersen spectral theory.
A subset S of A is said to be G-invariant if a,(S) = S (z € G).
If A is abelian, the ergodicity condition defined in the preceding
section means that the only G-invariant closed ideals of A are the
trivialideals 0 and A. When A is not (necessarily) abelian, we use
the term G-simple for this reformulated condition. We say that
A is G-prime if every pair of non-zero G-invariant closed ideals of
A have a non-zero intersection. X

The Arveson spectrum Sp(a) of « is the set of all ¥ € G such
that there exists a sequence of unit vectors a, in A for which

lim [loe(an) = 7(z)an| =0 (2 €G).




48 IMS Bulletin 26, 1991 =

(The y(z) are “joint approximate eigenvalues” of a..) The ap-
propriate spectral object for C*-dynamical systems is not this
spectrum, however, but rather another spectrum derived from it
which we now describe. If B is a G-invariant C*-subalgebra of 4,
we get a new C*-dynamical system (B, G, a|B) by restriction of
« to B. The Connes spectrum of « is

I(a) = NpSp(a|B),

where B runs over all non-zero G-invariant hereditary C*-subal-
gebras of A (B is hereditary if BAB C B). The computation of
I'(a) is helped by the fact that it is a closed subgroup of G, but
nevertheless its calculation is in general a non-trivial task.

The following result is due to Olesen and Pedersen.

Theorem [7] ,[8]. If(A,G,a) satisfies the assumption in section
3 the following conditions are equivalent:

(a) A X G is primitive (respectively, simple);

(b) A is G-prime (respectively, G-simple) and T'(a) = G.

This is a difficult result, involving a beautiful duality theory
for C"-dynamical systems due to Takesaki and Takai that is a
sort of C*-analogue of the Pontryagin duality theory for locally
compact groups. We do not attempt a statement of what thig

duality involves, as it would require a disproportionate amount of
detail.

§5. Crossed products by semigroups.
A question that is begged by the theory we have outlined above is
what kind of results hold if we replace groups by semigroups. This
situation has been analysed by a number of mathematicians in
recent years. We shall briefly outline here some results of a theory
developed by the author [5], [6]. Surprisingly (or perhaps not),
the situation turns out to be radically different, but nevertheless
we get new examples of primitive C*-algebras and, indirectly, of
simple C*-algebras.

We redefine a C*-dynamical system to be a triple (4, G, @),
where A is a C*-algebra, G is a cancellative abelian semigroup
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with zero, and the map « : G — Aut A is a homomorphism. To
avoid trivialities we assume that A and G are non-zero. The pre-
vious construction of the crossed product using K (G, A) does not
work in this setting, but this difficulty is surmounted by construct-
ing A X G as something like the solution to a universal mapping
problem (when G is a group, our crossed product is the same as
before). The details are omitted as they are technical.

For G arbitrary, we can get a C*-dynamical system (C, G, o)
by letting G act trivially on C; we then denote C x, G by
C"(G). Observe that C*(Z) = C(T), which is not something
new. However, C*(IN) is 2 much more complicated and inter-
esting C*-algebra. It is called the Toeplitz C*-algebra, as it is
(isomorphic to) the C*-algebra generated by all Toeplitz oper-
ators with continuous symbol on the unit circle T. It plays an
important role in K-theory, as indeed does the algebra A x, N,
for any C*-dynamical system (A4, Z, ) (this algebra is isomorphic
to the generalised Toeplitz algebra of « as defined by Pims-
ner and Voiculescu in [10]). If G is an ordered group, that
is, an abelian group endowed with a total order < such that
e <y=z+z<y+z andif Gt = {£ € G| 0 < z}, then
C*(G™) was shown to be primitive in [5]. A special case of these
algebras was first studied by Douglas in [3], where he showed that
for G a subgroup of R with the induced order, not only is C*(G+)
primitive, but in this case the commutator ideal (the closed ideal
generated by all ab — ba) is simple.

Let (A, G, «) be a C*-dynamical system and suppose that G
is an ordered group. We get a new (non-classical) C*-dynamical
system (A, G*,a) by restricting o to G*. There is a canonical
*-homomorphism from A x4 G to A xo G. We let K(4,G, )
denote its kernel.

The algebra A x o G is never simple, but we can still get new
simple C*-algebras by indirect means from this construction, and
1t seems in some ways to be easier to get primitive C*-algebras
using A X, G7.
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The following theorem is the main result of [6].

Theorem. If (4, G, @) is as above, then

(a) If A is primitive, so is A xo G¥;

(b) If A is simple and G is a subgroup of R with the induced
order, then K(A, G, a) is simple.

A useful feature of this result is that one does not have to
compute a Connes spectrum—this makes the hypothesis easy to
verify.

Concluding remarks.

We have said nothing about the related theory of W*-dynamical
systems. This involves the revolutionary Tomita-Takesaki theory
and the deep results of Connes on factors. The reader wishing to
learn about this vast subject can consult [9], or, for a quick survey
of Tomita-Takesaki theory, Lance’s preface to [1].
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PERFECT COMPACT T3 SPACES

E. Coleman

Abstract: In a previous note in this bulletin, M, O Searcéid [6] proved
several Interesting results on perfect sets. In this article we prove some
results on the existence of largish perfect sets (§1), use an Erdés-Rado
partition relation to bound cardinalities (§2) and complete the cardin-
ality picture in the final section,

studied in this section 1s the following: X is a perfect space if
and only if every closed set is g Gs. Examples are the reals, any
metric space, any discrete Space. . .; indeed for any topology 7" on
X there is a smallest topology 77 5 7T in which X is a perfect
space. The main result of §1 says that if X is an uncountable

cardinality [X], and X — P ig countable. In other words, there is
a Cantor-Bendixson theorem for perfect Lindeloef T1 spaces too.
Definition. For 4 ¢ X, A ={zecd forall y ENJ]ANN| >
1} where N is the family of open neighbourhoods of 7. For each
ordinal o define X0 := x yeo+l._ (X%) and X@ .= Np<caX? if
@ is a limit ordinal. We uge ‘w for the (cardinality of) the set of
natural numbers.

Lemma 1. For all o < w1, (the first uncountable cardinal) if
X Is uncountable perfect Lindeloef Ty, then (1) X — xoat+i ;o
countable; (2) | X¢| = X[ (3) X — xo jg countable.
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Proof. X is perfect Lindeldoef Ty, so X* is also (since X is
closed in X). Prove (1), (2) and (3) by induction on a. For
a=0:X - X'is a discrete subset of X, X" is closed in X, so
X' = NnewGhr, Gn open, and so X — X’/ = Une.an., F, closed.
If |[X = X'| > w, then for some n|Fu| > w; Fy, is Lindeloef and
discrete—a contradiction. Thus (1), (2) and (3) hold. For o =
B+ 1: from (1); (2) and (3) of the inductive hypgthesw fqr. B,
[X*| = |XP| = |X|, so X* inherits the uncountability condition
too, and (as for o = 0) | X« - x+1| < w, | X -X = |U7Sﬁ)g7~'
X" < 1B w < w. For o a limit ordinal: X* := Mg X*? so
X=X = |UpcaXP ~XP+!| < |a]-w = w: hence |Xe| = ;lxl and
again X * inherits all the conditions on X and so [Xo—Xotl| < g,

Lemma 2. There exists & < w; such that X — X+t

Proof. Suppose not. Then for each o and z € X* — X+l tlllere
exists V(z) an open neighbourhood of z with Viz)Nn X°“"1 =
¢ X = NaewX* is closed so X — X1 — Uaguw, X& ~ X+l =
Uﬂewlf;? ,liqniosf,d‘X“ — X! can be enumerated as (z(n,a) :
n € w). Thus Upe, Fy, = {x(n,a) fa<wn < w}, so for some
m, some B C wy, B cofinal (unbounded) in wy, and Co, @ € B,
¢ # Cy C w one has:

F, = {x(n,a):ozEB,neCa}‘

Now {V(x(n,a)) NFn:a€B,né€Cy}isan open cover of
Fin (closed hence Lindeloef), so for some countable A4 B, and
Do C Cofa € A)

Fr, gU{V(m(n,a)) ta €A n€ Dy} (*)

But supA < w; since 4 is a countable set of countable ordinals.
So one can find 8 € B - (sup A + 1). Consider :c(.r, B) for any
r€Cp:z(r,pB) e U{V(:c(n,a)) ‘o €A n € Dy} since z(rB) €
Xt and V(z(n,0)) N X =g forall w € 4 and n € D,. Of
course z(r, §) € Fr,—contradicting (*).

Therefore there exists o < wy with X = xo+1
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Theorem 3. X contains a perfect subset P of cardinality | X|,
and X — P is countable.

Proof. Choose the first « < w; such that X® = Xe+! Then
P := X% is required.

§2 Partition relations and the power of perfect Lindeloef
T} spaces.
Question: if from a palette of u colours one assigns a colour to
each n element subset of a set X, can one be sure of finding a
large subset H C X which is monochromatic: every n element
subset of H receives the same colour? It depends. The study
of this kind of problem by F. P. Ramsey and later by P. Erdds
and co-workers initiated the partition calculus [2], whose many
applications include a proof of a famous theorem of Arhangel’skil
that every first countable compact (or even Lindeloef) Hausdorff
space has power at most continuum (also in [2]).

Some notation: [X]" := {A C X : |A| = n}; for cardinals
K, A gtk — (A)7 read: “k arrows A super n sub 41"} abbreviates
the statement: for every set X of power &, for every function
f 1 [X]* — p, there exist H C X and o < g such that ) |H|=2A
(ii) for every A € [H]", f(A) = o. Intuitively speaking, the
partition relation k¥ — (A)% holds if for every colouring f of xpy
by u colours, there is a monochrematic (homogeneous) H C X of
power A.

For orientation, here are some partition relations which are
theorems of ZFC (Zermelo-Fraenkel set theory with the axiom of
choice). (k% is the next cardinal after K.)

Theorem. ([2], [4], [1])

(1) w— (W)} n, k €w (Ramsey)

(2) (expa(A) T — M)+ (Erdés-Rado)
where expg(A 1 A, exp, 1 (A) i= exp,(2*);

(3) 2% 4 (A*)3 (Sierpiriski)

where /+ means that the relation is false.

(2)F — (w1)2. (*x)

We’ll need only the special case A = w, n = 1 of [2]
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Theorem 4. [7]: If X is perfect Lindeloef Ty, then X has power
at most 2.

The proof of Theorem 4 illustrates very well how partition
relations bound cardinality:

Lemma 5. If X is a topological space in which every singleton
subset is a G5 and if X has no uncountable discrete subsets, then
X has power at most 2%.

Proof: For z € X, {z} = ﬂnEwG(n,x),A G(n,z) open. Set
U(n,z) = Nm<nG(m,z) so that U(n,z) is open, U(m,zr). 2
U(nz,z) for ny < ny and MueoU(n,z) = {z}. z #y € X im-
plies that there exists k € w such that:

zeUk,z) ygUlk )
e\ yeUlky) zgUky)

Define f : [X]? — w by f({:c,y}) := the least & such that ()
holds. .

Suppose now that |X| > (2¥)*. Then by (%) there exist
H C X and ko € w such that

(1) |H| = wi
and
(i1) for e #y€ Hf({z,y}) = ko.

H is discrete, for if y # = € H, then by (ii) y € U(ko, z) so that
HnNU(kg,z) = {z}. .
To finish the proof of Theorem 4, one employs the simple

Lemma 6. If X is perfect Lindeloef T}, then every discrete subset
of X is countable.

Proof. Let Y C X be discrete. Put FF:={z € X : forall N €
N Y N N|> 1}. It’s easy to check that
(i) F is closed in X and
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(YNF=0,YCX-FandVis closed in X — F. From (1)
and (ii) Y is an F, in X,say YV = Unew Fn, F, closed in X. Since
Y is discrete and X is Lindeloef, F, is discrete and Lindeloef,
hence countable. So Y] < donew | Frl <w-w=w.

Proof of Theorem 4. Every singleton subset is closed in a T3

space; apply lemmas 5 and 6.

Remarks:

(1) Lemma 6 and Theorem 4 are from [7]; Lemma 5 comes from
[3].

(2) Similarly it is easy to show: if X is a perfect k*-compact 7
space, then X has power at most 27,

(3) Recall that X has the Souslin property (the countable chain
condition) if and only if there is no uncountable family of
pairwise disjoint non-empty open subsets of X, Using (*+)
one can prove that if X is a first countable Hausdorff space
with the Souslin property, then X has power at most 2v,

§3Uncountable perfect compact 7] spaces have power 2%,
Theorem 4 says that uncountable perfect compact T} spaces have
power at most 2¥. In fact any such space has power exactly 2+,

Lemma 7. If AC X is a closed uncountable set, then it is pos-

sible to find disjoint closed sets B, C, B C A with AN B, AnC
both uncountable,

Proof. Choose a € 4 such that A N G is uncountable whenever
Ga is open. (a exists, since otherwise for all ¢ € 4 there exists
G(a) open, a € G(a) and G(a) N A4 is countable: 4 is compact
and so 4 C (G(a;) U Gla) U --- U G(an)) N A giving [4] < w
contradiction.)

{a} = NnewGhn, Gp open since X is perfect 7.

-6,
new

so for some n, A4 — G is uncountable. ¢ € G, implies that ANG,

is uncountable; also G, = Umew Fr, Fyy closed, so for some m,

a Fp, is uncountable. Now B — AN(X -Gp) and € := ANE,

are as required.

= ’AL
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Corollary 8. If P C X is perfect uncountable, then there exist
Py, Py disjoint uncountable perfect subsets of P.

Proof Split P to find B, C as in Lemma 7; by Theorem 3 there
are o C B and P, C C perfect, |Pj| = |B|, |P.] = |C| and
P1 n Pz = @

Theorem 9. Suppose that X is a perfect compact T space. If
X is uncountable then X has power 2¥.

Proof By Theorem 3, X contains a perfect subset P, |P|=|X]|.
It’s enough to show |P| = 2v. ,
Define by induction on <*2 (finite sequences of 0’s and 1’s)
a family of sets P, for s € <¥2 as follows: .
P¢s = P (<> is the empty sequence in <“2); if s € <¥9 and P,
is defined so that P, is uncountable and perfect, choose P, P,
disjoint uncountable perfect subsets of P, (by.COrolIary 8).
Now define for f € “2 (functions form w into {0,1}

Pf = m Pfln

new

where f[n is the restriction of f to n giving the finite sequences
(£(0), F(1), ..., f(n— 1)) in <v2,
For m € w, ﬂ Pfin # 0, so by compactness, P £ 0.
< o
Thus {P; : ; _Em“’2} si a family of pairwise disjoint non-empty
subsets of P. So 2¥ < |P| = |X| < 2¥ (By Theorem 4).

Remarks o ‘

(1) Some representability condition is necessary, as evidenced by
the space wy + 1 with 2¥ > w;; similarly a discrete space of
power wy with 2* > w; indicates the necessity of some degree
of compactness.

(2) Theorem 9 resembles the classical theorem that a first count-
able compact Hausdorff space is either countable or has power
2¢,

(3) It turns out that Theorem 9 is true under the weaker assump-
tion: if X is compact 7} and every point of X is a G, then
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ieit}[ga]r |X] <w or |X| =2 Some of the proof can be found
n [5].
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Book Review

DIFFERENTIAL EQUATIONS:
A DYNAMICAL SYSTEMS APPROACH, PART I

Texts in Applied Mathematics 5

J. H. Hubbard and B. H. West

Springer-Verlag, 1991, 348 pages,
ISBN 0-387-97286-2.

Reviewed by Donal O’Regan

The book of Hubbard and West provides roughly about one third
of a year’s undergraduate course in ordinary differential equa-
tions for senior undergraduate mathematics students. The au-
thors give a very nice up to date treatment of first order (one di-
mensional) ordinary differential equations in normal form, namely
z' = f(t, z); their own software package MacMath is used and re-
ferred to throughout the text to compliment the material.

The book consists of five chapters. Chapter 1 is devoted
to qualitative description of solutions; Hubbard and West begin
with a discussion of such standard topics as direction fields and
computer graphics. However the major part of the chapter is
devoted to the introduction of the terms fences, funnels and an-
tifunnels. The authors motivate and illustrate very convincingly
how these concepts can be used to examine the behaviour of solu-
tions. Chapter 2 discusses standard methods for solving differen-
tial equations analytically; here Hubbard and West provide some
lovely insights into some very well known problems. Numerical
solutions of differential equations are examined in chapter 3. Here
the standard one step methods are discussed and again a very nice
treatment is given. Chapter 4 is devoted to the study of existence
and uniqueness of solutions. In addition the error bounds stated
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in chapter 3 are deduced using the ideas (in particular a Dieud-
onné type inequality) of this section. The final chapter in this
book examines iteration methods. This leads naturally to a dis-

would be more suitable as a supplementary or reference text. The
reason for this is that certain sections would have to be optional
reading and therefore the main text would only cover about one
third of a course. Hence another book would be required and this
is far too costly to the student! The book is surprisingly free of
typo’s; the few I did find are hardly worth mentioning,

Donal O’Regan,

Department Of Mathematics,
University College,

Galway.
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Book Review

, FUNCTIONAL ANALYSIS
AND LINEAR OPERATOR THEORY

Carl L. DeVito

Addison-Wesley, 1990,
ISBN 0201 11941 2

Reviewed by A. Christofides

This is a book with a strong personal flavour and a clear sense
of purpose. The author explains in the preface that it is based
on courses he gave over the years, which were designed not only
for students of mathematics, but also for advanced engineering
and science students. As one reads, one soon realises that there

scription of this theory and to the formulation and proof of its
main theorems. The mathematical prerequisites are, a sound
knowledge of basic analysis and linear algebra and familiarity with

Some of the material that one might perhaps expect in a gen-
eral introduction to functional analysis is left out, while other
topics, such as fixed point theorems, are treated parenthetically,
as illustrations, rather than for their own sake. Naturally, a lot
of important basic material Is necessary in order to understand
spectral theory and this is discussed both carefully and concisely.

A long first chapter covers all this introductory material: We
are introduced to normed vector spaces, Hilbert spaces and, in
particular, to L2[a, b] and to i2. Here there is no compromise with
regard to precision, and the definition of 2 is preceded by a brief
section on Lebesgue outer measure and Lebesgue measurable sets.
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Most of the results on Lebesgue measure are stated without proof
but one or two simple key results (such as the fact that a count—’
:cmble set 1s measurable and has measure zero) are proved. There
1s even an attempt to motivate Carathéodory’s mysterious defin-
1t10n. of a measurable set and though the section does not seek to
prov1de a full introduction to measure theory, it succeeds, I t’hink
in demystifying the subject sufficiently to allow an uniniti,axted stu-’
_dent to proceed, without feeling an attack of panic whenever it
1s subsequently mentioned. This chapter also contains a concise
treatment of Fourier series of functions in L%[a, ]
and Weierstrass’ approximation theorem.

' The second chapter introduces bounded linear operators and
~thelr norms. Shortly afterwards, the spectrum of a linear operator
is defined and two interesting examples are carefully described:
We encounter the shift operators on 12 and the multiplication op;
erator on L%[a,b]. The spectra of these operators are worked out
in detail. By the end of the chapter the reader is aware that the
spectrum of a bounded linear operator is a closed bounded set
has.seen examples of spectra, and realises that a real number can’
be in the spectrum of a linear operator without being an eigen-
value. Here again, precision has not been sacrificed in any way
yet tl}e flow of the narrative has onl barely been interrupted——’
once in order to prove a necessary point about closed subsets of
nf)rmed vector spaces and, another time, to state the open map-
ping theorem—without proof.

Subsequent chapters follow one another with perfect logic:
We encounter first the Riesz theory of the spectrum of a compact.
opera.to.r on a Banach space, then the spectral theory of a compact
Hermitian operator and that of a compact normal operator. Then
we have the spectral theory of general bounded Hermitian oper-
ators and a chapter on unbounded operators. A final chapter, on
_Jf,Z[R] and the related problems of Fourier analysis on the real l,ine
?llustrates some of the results of previous chapters and provides’
Interesting examples of linear operators.

Many interesting topics are encountered on the way. The

more ”geometric” chapters, which deal with the spectral theory
of compact Hermitian operators on a Hilbert space, include a com-

, Féjer’s theorem
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prehensive review of the spectral theory in the finite-dimensional
case. There is a good, clear account of the adjoint of a bounded
linear operator on a Hilbert space, with a complete proof that the
adjoint of a compact operator on a Hilbert space is compact. This,
naturally, involves the weak topology on a Hilbert space, which,
like everything in this book, is treated carefully, but with min-
imum fuss. The same can also be said of the complicated spectral
theory of non-compact Hermitian operators. As has already been
indicated, new concepts are often introduced with the help of a
key example. One such example, the Hilbert-Schmidt operator on
L2[a,b], first makes it appearance in the second chapter, and re-
curs throughout the book. The related topic of integral equations
is repeatedly used to illustrate the theory. The lists of exercises,
at the end of each section, are well chosen to complement the text
and the occasional comments, concerning more advanced topics
of the theory and some of the famous problems that have been
preoccupying the experts, help to bring the subject to life.

Maybe a list of topics that are not covered might be of in-
terest. None of the so called “main theorems”, such as the Hahn-
Banach theorem or the open mapping theorem, are proved, but
those that are needed in the text are carefully stated and refer-
ences are given, indicating where one can find a proof. There
is no treatment of LP-spaces, or [P-spaces, for 1 < p < oo and
p # 2. Also, the exercises and examples are deliberately and
strictly mathematical. The author explains his attitude on this
matter in the preface: “My students”, he writes, “told me that
they want to know that what they are learning has applications
but they don’t want to see the details. To do so would mean
learning the concepts and terminology of the application’s sub-
ject.” He feels that students are not sufficiently interested in each
others’ disciplines to justify the inclusion of examples from non-
mathematical areas. Be that as it may in the case of experimental
scientists, I must confess that, as a pure mathematician, I find the
application of subtle mathematical concepts to the physical sci-
ences very exciting. However, here, as in other matters, the author
had to be selective, and his choice of exercises is a perfectly valid

one.
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The introductory remarks at the beginning of each chapter
are useful and illuminating. The proofs are very complete and
none of the details necessary to understand a proof are omitted.
There is however a certain clumsiness of presentation, which I
shall come to in a moment. Another feature, that I have already
mentioned, is the practice of introducing concepts early on and
returning to them repeatedly. In the preface, the author refers
to this as the “spiral approach”. The following extract from the
preface gives an interesting insight in to the author’s pedagogical
method and to the objectives that he has set himself:

“The style in writing mathematics for mathematics stu-
dents is to say something once and only once and we train
our students to be aware of this. This book, however, is
written for students who are primarily interested in using
mathematics. As important as mathematics is to their
course of study, they forget material that hasn’t been
discussed for awhile and appreciate a brief review. So

I do repeat myself and go over some topics more than
once.”

On the whole, this method seems to work quite well. Com-
bined with the single-minded pursuit of a central theme, it adds to
the cohesion of the book and provides a link between new material
and old, so that, when a new topic is introduced, this often throws
further light on already familiar concepts. The effect is also reas-
suring, like seeing a familiar face in strange surroundings. There
is, however, a negative aspect to this approach. The mathemat-
ical practice of saying something “once and only once”, for all its
drawbacks, does have the effect of making the reader particularly
alert to the introduction of new concepts. There is a tendency,
in this book, for concepts to drift in quietly unannounced and, as
with familiar faces, one sometimes finds it difficult to recall the
circumstances of one’s first encounter. The problem is heightened
by the rather indifferent system of cross referencing, and this takes
me to the book’s most serious defect, which has to do with type-
setting, presentation and typographical accuracy.

The first half of the book is literally peppered with typo-
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graphical errors of all kinds. I have counted as many as thirty-
four in the first five chapters. Most of them are perfectly harmless,
but some, which occur in displayed formulae and in mathematical
symbols, result in statements that are either untrue or meaning-
less as they stand. In an exercise on page 19, the reader is asked
to prove that, in an inner product space, elements u fmd v satisfy
< u,v >= ||u||||v|| if and only if u and v are linearly independent.
Further examples of confusing mistakes will be found on pages 10,
19, 21, 22, 23, 41, 69, 90, 105, 108, 138, 184. The number of mis-
prints falls off in the second half of the book, but some stil.l occur.
There is also a certain clumsiness and lack of consistency in nota-
tion. We find vectors being denoted by the symbols u and v and
also by @ and ¥ within the same section of a chapter, (Section
1.6). On page 42, a trigonometric polynomial is denoted by e(z),
and this gives rise to the following rather strange formula:

If —ello <€

Again, expressions such as |||Tz — T:co||| < g, or Ia(?c, ¥ <
[[Al|llz]{||yl] are not easy on the eye, while some readers might find
it a little unnerving to be asked to note, in the closing sentence of
a proof, on page 77, that the notation “has changed slightly” and
that “u is now L. o

T mentioned that the author’s “spiral method” can give rise
to difficulties. Here is an example of what I mean. The following

operator on L?[a,b] is defined on page 92:

P(f) =tfQ).

Leaving aside the rather pedantic objection that the argu-
ment ¢ appears only on one side of this equation, one reads on,
to find a clear and useful discussion which, three pages later,
concludes with the the theorem that the spectrum of the mul-
tiplication operator on L2[a,b] is [a, b] and that this operator has
no eigenvalues. The fact that this multiplication operator is our
friend P, is not made clear when P is first introduced. Instead,
half-way through the discussion, the author begins to refer to P
by name. The index, which on the whole is good, is of no use in
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this instance, since it lists eight references to the multiplication
operator, but not the one where the term is first encountered.

Life is also made harder than necessary by the absence of
Q.E.D. signs, or some equivalent indication of where proofs end.
Chapters are referred to as sections, making it difficult to distin-
guish between chapters and sections within a chapter, numbered
equations and results are sometimes referred to by the wrong num-
ber, unnumbered equations by number, and various typographical
styles of numbering are used.

Throughout the book one is struck by the contrast between
the content, treatment, and organisation of material, which are
excellent, and these shortcomings in presentation. One sometimes
has the impression that, what we have here is an excellent set of
notes, which were rather hastily brought out in book form. In
spite of its drawbacks, this is a very good introduction to the
spectral theory of linear operators and a new, more careful, edition
is bound to be populiar. ‘

A. Christofides,
University College,
Galway.
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Book Review

AN INTRODUCTION TO ALGEBRAIC TOPOLOGY
(Graduate Texts in Mathematics 119)

Joseph J. Rotman

Springer-Verlag, 1988, 433pp.
ISBN 0-387-96678-1

Reviewed by Graham Ellis

This is a well written, often chatty, introduction to algebraic topo-
logy which “goes beyond the definition of the Klein bottle, and yet
is not a personal communication to J. H. C. Whitehead.” Having
read this book, a student would be well able to use J.F.Adams’
Algebraic Topology: A Student’s Guide to find direction for fur-
ther study. The book begins with a sketch proof of the Brouwer
fixed point theorem: if f: D" — D" ig continuous, then there is
an z € D" such that f(z) = z. Functorial properties of homology
groupsimply that the sphere S” is not a retract of the disc D" and
then a simple argument by contradiction shows that f must have
a fixed point. This illustrates the basic idea of studying topolo-
gical spaces by assigning algebraic entities to them in a functorial
way. There follows a rigorous account of the singular homology of
a space which assumes only a modest knowledge of point-set topo-
logy and a familiarity with groups and rings. The account includes
the Hurewicz map from the fundamental group to the first homo-
logy group, and ends with a proof of the Mayer-Vietoris sequence.
By p. 110 a complete proof of Brouwer’s theorem has been given.
Singular homology is good for obtaining theoretical results, but
not so good for computations. So simplicial homology is intro-
duced in Chapter 7, and used to compute the homology groups
of some simple spaces such as the torus and the real projective
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plane. A proof of the Seifert-Van Kampen theorem for polyhedra
is given at the end of the chapter. Continuing the search for effect-
ive means of computing homology groups, Chapter 8 introduces
CW complexes and their cellular homology. Chapter 9 begins with
a statement (without proof) of the axiomatic characterization of
homology theories due to Eilenberg and Steenrod, and then intro-
duces enough homological algebra to prove the Eilenberg-Zilber
theorem and Kiinneth formula for the homology of a product of
spaces. Chapter 10 deals with covering spaces. The higher homo-
topy groups are studied in Chapter 11 using the suspension and
loop functors. Results obtained include the exact homotopy se-
quence of a fibration, and its application to the fibration S — §2
to show that the group m3(5?) is non-trivial. The isomorphism
m3(S%) = Z is beyond the scope of the book. In the final chapter
a short discussion on de Rahm cohomology is used to motivate
the study of the cohomology ring of a space.

The book is nicely structured, with explanations of where
the theory is heading given at frequent intervals. Important defini-
tions are often accompanied by a discussion on their origins. Many
exercises are given at the end of sections. Proofs are usually given
in full detail. Even though probably every result in the book (and
many more besides) can be found in E.H. Spanier’s classic text
Algebraic Topology, J.J. Rotman’s style of exposition makes the
book a useful reference. However a lecture course based on this
book may turn out to be a bit slow and dry. (Unfortunately the
book corresponds to the syllabus of a one year course given at the
University of Illinois, Urbana.) For example the homology of a
space 1s defined on p. 66 but we have to wait until p. 157 until the
homology of the torus is calculated, and until p. 226 for the ho-
mology of a lens space. The fundamental group is introduced on
p. 44 but isn’t calculated for a wedge of two circles until p. 171.
Maybe too much rigour and generality in a first course on any
topic is not a good thing!

Graham Ellis,
University College,
Galway.

Book Review

| INTRODUCTORY MATHEMATICS
THROUGH SCIENCE APPLICATIONS

J. Berry, A. Norcliffe & S. Humble-

. Cambridge University Press, 1989,
stg.£45 (hardback) ISBN 0 521 24119 7,
stg£L15 (paperback) ISBN 0 521 28446 5.

Reviewed by Martin Stynes

For most of this century, pure (as opposed to applied) mathemat-
ics has held the centre of the mathematics stage. The last twer.lty
vears have seen a significant change in emphasis; today, applied
mathematics is at least an equal partner. This trend has be.en
reflected at the teaching level by the introduction of “new” ?oplcs
such as discrete mathematics and dynamical systems, but it has
not yet had much effect on the teaching of tradition.al courses such
as calculus and linear algebra (except that sometimes these tra-
ditional courses disappear to make room for new courses). Text-
books for traditional courses now tend to use more applied mafter—
ial than heretofore, but the ratio of “ applied” to “ nonfapplled”
examples is still low in the vast majority of cases. In this respect
the book by Berry, Norcliffe & Humble is to be welcomed. Most
of its examples are applied; they come from biologj)f, chemls.try
and especially physics. As the authors state: “ There is a growing
awareness that we must not teach mathematics in isolation from
its applications”. . . .
The book is intended for first-year service courses in science
or engineering. It devotes approximately 1509 . to pre-calculu§ ma-
terial, 80p. to differentiation, 70p. to integration, 80p. to ordinary
differential equations, 60p. to partial differentiation, and 100p. to
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probability and statistics. The topics and techniques covered are
quite standard.

Each chapter begins with a section entitled “ scientific con-
text”, which seeks by example to motivate the material in that
chapter. This motivation is an excellent idea, and overall it works
well, but in some cases it becomes so involved as to discourage the
learner. For instance, in Chapter 13 (Second-order ordinary dif-
ferential equations), a cooling fin on a motor-cycle engine is mod-
elled. This is quite an interesting example, but the explanation
assumes a model for convection and Fourier’s law for conductive
heat flow, in order to derive a second-order ordinary differential
equation.

Th order of the material in the book is sometimes surprising.

For example, on pp. 37-41, we meet the function e and learn
that

z =z
T __ N n o_
e —nl-l»néo(1+ﬁ) “,;)H'
Then on p.44, the book explains why a™/a™ = @™ "™ fora > 0
and m, n positive integers!

‘Returning to pp. 37-41, the authors are guilty here of present-
ing too many things at once. While learning about e®, the novice
reader encounters for the first time the binomial expansion, the
limit of a sequence, the sigma notation, and the sum of an infinite
series. It’s all too much! Surely it would be better to discuss these
other ideas before analyzing ¢*?

This reflects my main criticism of the text: its explanations
are often not as clear as they could be. Sometimes they are mis-
leading, as on p. 139, where the idea of limy_., f(z) is being
introduced: “..the value of f = (2? — 1)/(z — 1) is not so ob-
vious when a = 1 ...dividing top and bottom by z — 1 gives
f(z) = 2+ 1. Now setting £ = 1 we have (=27

The discussion of points of inflection on pp. 194-6 is puzzling
insofar as only points where the first derivative vanishes seem to
be considered. This suspicion is confirmed on p. 467 where we
read: “At a point of inflexion we know that both the first and
second derivatives are zero”. In fact on p. 467, it happens that at

g‘
.
i,
.

!
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the point in question (the critical point where th'e liquid, vapour
and gas phases meet on the surface p = f(z_),t)' given by van der
Waal’s equation of state} one has both der1vat1v<_3s vanishing, so
the example is not in error; the harm is that the‘ mno?ent n.eader
will carry away a nonstandard definition of a point of 1nﬁex1on..

While the book in its preface says that it does not claim
to give a rigorous treatment, arguments are presented‘ later as
apparent proofs without any disclaimer. Thus the chain rule is
justified by

(s(5=)) = tim g(f(:c+h)})l 9(f())
= I g(f(z +h) = g(f(=)) i f(@+h) - f(2)
= flz+ k)= f(z) h—o N
=¢'(f(@) - /(@)

I do think that this calculation has definite heuristic value, but
the reader deserves a little warning!

To summarize, let me divide the book into examples, exer-
cises and exposition. The material of the examples ex_n.d exercises
is very good, with many applications that were unfamiliar to me; a
real effort is made to show how mathematics is used to solvg prob-
lems in science and engineering. However, the exposition is oply
fair. The book is thus a useful source for lecture and examination
material, but I would be reluctant to use it as a textbook.

Martin Stynes,
Mathematics Department,
University College,

Cork.




Problem Page

Editor: Phil Rippon

My first problem this time is a remarkable result about spherical
triangles, which was apparently first proved by a computer!

26.1 Prove that if the area of a spherical triangle is one quarter
of the area of the sphere, then the midpoints of its sides form an
equilateral spherical triangle with angles of 90°.

A discussion of the algebraic verification of theorems in geo-
metry and a BASIC program to prove this result can be found in
the article A new method of automated theorem proving by Yang
Lu (‘The mathematical revolution inspired by computing’ edited
by J. H. Johnson and M. J. Loomes, Oxford University Press,
1991). It might be argued that a computer program cannot tell
you why the result holds, in the way that a conventional proof
should do. .

Next is a problem that I heard recently from my school math-
ematics teacher, Mr Harold Taylor. It was inspired, he says, by a
discussion of the relative sizes of bifurcating blood vessels, given
on a television science programme.

26.2 A pipe from A is split into two smaller pipes at P to supply
B and C. Given that the pipe AP costs k times as much per unit
length as do PB and PC, determine the position of P so that the
total cost is a minimum.

Now, here is some recent news about one of my older prob-
lems. Problem 11.2 asked you to prove that the sequence

an+2:1aﬂ+ll_aﬂy n:0)1,21"'; (1)
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where ag, a1 € R, is always periodic with period 9. Just before
last Christmas, Alan Beardon noticed a connection between this
problem and the theory of Hecke groups (certain discrete groups
of Mobius transformations). This insight has led to a number
of extensions and related results, now being written up by Alan,
Shaun Bullett and myself; for example, the sequence

ant2 = 2cos(m/p)lant1| — an, n=0,1,2,...,
where p € {2,3,...} and aq, a; € R, is always periodic with
period p?. For p = 3, we obtain the sequence (1).

Finally, here is a solution to problem 23.2 which appeared in
issue 23.

23.2 Let s(n) denote the number of triples (a, b, ¢), where a, b, ¢
are positive integers with
a+btec=n, a<b<canda+b>c.

Determine a simple forraula for s(n).

The motivation behind this counting problem is that each
such triple (a,b, ¢) determines an integer-sided triangle, which is
unique up to congruence. We denote the set of such triples by
Sn = {(a,b,c) ta,b,c€EN, a+bt+c=n, a<b<ca+b>cl

and record below the elements of S,, for 0 < n < 10.

n Sn s(n)
0 0
1 0
2 0
3 (1,1,1) 1
4 0
5 (1,2,2) 1
6 (2,2,2) 1
7 (2,2,3),(1,3,3) 2
8 (2,3,3) 1
9 | (3,33),(23,4),(1,4,4) | 3
10 | (3,3,4),(2,4,4) 2
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On the basis of this table, it is clear that s(n) is somewhat
irregular, but it appears that s(n + 3) = s(n) if n is odd. Indeed,
it is clear that if (a,b,c) € S,, then (a+1,b+1, c+1) € Sp43 and
the reverse implication holds also if n is odd (because if a+ b+ ¢
is odd, then a + b — ¢ is 0dd, so that

(a+D+0+1)>c+l=a+b>c—1
= a+b>c).

Thus
s(2m+1)=s2m+4), m=0,1,2,..., (2)

and so the problem reduces to the evaluation of s5(2m), m =
0,1,2,... To do this, we first prove that

s(2m +3) = s(2m) + [-;-(m +2)], (3)

where [z] denotes the integer part of z. For, if (e+1,b+1,c+1) €
S?m+3 but (G, b) C) g SZma then

a+l1+b+1>c+1 and a+b<c,

so that a + b = c. Hence L
2m=at+btce=atb=m<e= (a+ )+ (b+1)=m+2.
Now, there are [3(m + 2)] pairs (a4 1,6+ 1) with a+1 < b+ 1

and (@ 4+ 1)+ (b+ 1) = m + 2, so that (3) follows.
Combining (2) and (3) gives, for m = 0,1,2,. ..,

s(2m 4+ 6) = s(2m) + {%(m +2)]
and hence

s(2m 4+ 12) = s(2m) + B—(m + 2)] + [%(m + 5)]

=s(2m) + m+ 3.

s Problem Page 75

Applying this recurrence relation repeatedly, we find that if 2m =
12k + 2¢, where 1 = 0,1,2,3,4,5and k =0,1,2,..., then

s(2m) = s(20) + (1 +3)+ (i +9)+ -+ (1 +6(k—1)+3)
= 5(20) + 6(k — )k/2 + k(i + 3)
= 5(2¢) + k(3k +7)
= 5(21) + (m? - i?)/12,

since k = (m — 4)/6. Thus, in this case,
s(2m) — m?/12 = s(24) — i*/12.

On examining the table above, we find that, for i = 0,1,2,3,4, 5,

5(21) is the nearest integer to i%/12.
Hence, form=0,1,2,...,

5(2m) is the nearest integer to m?/12,
so that, by (2),
s(2m + 1) is the nearest integer to (m -+ 2)%/12.

To get some feeling for this formula, it is a nice exercise to find
the first value of n for which s(n) > n.

Phil Rippon,

Faculty of Mathematics,
The Open University,
Milton Keynes MK7 6AA,
UK.




