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The first problem this time is elegant, simple to state and yet
rather surprising. I heard it first from Tom Laffey, who indicated
that it may have an application to checking the accuracy of com-
puter calculations!
25.1 Let

m*n = mn+ [pm][en],

where m, n are positive Integers, ¢ is the golden ratio %(1 +/5)
and [z] denotes the integer part of x. Prove that * is associative.

The next problem came from John Toland at the University
of Bath. By checking special cases one can ‘guess’ the solution,
but producing a proof is a different matter!

25.2 What are the eigenvalues of the matrix

0 —(n-1)
L0 —(-2 0
2 0 £

n—-1 0

Finally, here is a tantalising “find the next term in the se-
quence’ problem, which I heard first from Derek Goldrei here at
the OU.

25.3 Find the next term in the sequence

2,4,16,37,58, 89, ..

How do such sequences behave in general?

:
.
:
{

74 IMS Bulletin 25, 1990

Now here are the solutions to the problems in Issue 22. Prob-
lem 22.1 was concerned with a relative of the Mandelbrot set,
which was found by my colleagues David Crowe, Robert Hasson
and Peter Strain-Clark. To define this set, consider the recurrence
relation -

znyi(c) = zp(c) +¢, n=0,1,2,...,

where ¢ is complex and zo(c) = 0. Without the complex conjugate,
such sequences are used to define the Mandelbrot set and so it
makes sense to give the name Mandelbar set to

Mpar = {¢: z,(¢) — 00 as n — oc}.
By a simple argument, this is equivalent to
Mpar = {c:|za(c)| <2, forn=1,2,..}.

22.1Prove that Mpar has a rotational symmetry.
When Mpar is plotted using (1) the following picture ap-
pears. :
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The picture suggests that Mpag is symmetric under a rota-
tion through 27/3 about the origin, and this can be verified as
follows. Let

fc(z) = z° + ¢,
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so that
zn(c) = £7(0),

where f7 denotes n applications of the function f.. Now put
w = e2™/3 5o that @ = w, and hence

foc(2) = Fwe=w((z/w +¢) =wfiz/w).
By induction, therefore,

foc(z) = wfl(z/w),

and so, on putting z = 0, we obtain
zp(we) = wzy(c).

Thus z,(we) tends to oo if and only if z,(c) tends to oo, as re-
quired.

In fact 1t turns out that Mpag has been studied for some time
by John Milnor, who uses the more descriptive name of tricorn,
T, for it. The set arose first in connection with the Mandelbrot
set for cubics (a subset of C?), which has been studied in great
depth by Milnor, John Hubbard and Bodil Branner. More details
about Mpar = 7" and further references can be found in:

D. Crowe, R. Hasson, P.E.D. Strain-Clark and P.J. Rippon,
‘On the structure of the I\"Iandelbarﬁmset’, Non-linearity 2(1989),
541-553.

J. Milnor, ‘Remarks on iterated cubic maps’, Preprint, Stony-
brook Institute for Mathematical Sciences.

R. Winters, ‘Bifurcations in families of antiholomorphic func-
tions in biquadratic maps’, Ph.D Thesis, Boston University, 1990.

22.2Prove that it Is impossible to tile the plane with triangles in
such a way that at most 5 triangles meet at each vertex.

I came across this problem many years ago while living for
a time in West Africa. The local library had just a few maths
books, including a Hungarian problem book, which included 22.2.
Unfortunately, my wording of 22.2 was not quite precise in view of
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examples like the following, which I found when writing up these
solutions.

S/
In this example, vertices of some of the triangles are allowed
to lie on sides of others. If such a configuration is forbidden, then
the problem is correctly posed and the solution goes as follows.
Suppose, if possible, that there does exist a tiling of the plane
in which at most 5 triangles meet at each vertex. Consider a large
circle and form the union of those triangles in the tiling all of whose
vertices lie in or on the circle. This union forms a polygon and
we note that at most 3 of the polygon’s constituent triangles can
meet at one of its boundary vertices. Indeed il 4 of its constituent
triangles were to meet at one of its boundary vertices, then there
would be exactly one triangle from the tiling outside the polygon

at this vertex and this triangle would have to lie in the polygon
(because its 3 vertices would be in or on the circle)

Suppose now that the polygon consists of ¢ triangles from the
tiling, and that it has e edges and v interior vertices. Summing
all the angles of the ¢ triangles and using the fact that the interior
angles around the boundary of the polygon sum to (e — 2)w, we
obtain the equation

tm = (e — 2)w + 2um,
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so that
t=e—2+2v. (1)

Counting all the angles of the ¢ triangles, we obtain the inequality
3t < 3e + Sv, (2)

and, from (1) and (2), it follows that v < 6. This is a contra-
diction, however, if the circle is large enough, since we also have
t < bv because each triangle of the polygon has at least one inte-
rior vertex.
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