EXACTNESS IN ELEMENTARY
DIFFERENTIAL EQUATIONS

Robin Harte

ABSTRACT A simple pattern {rom linear algebra is present
in linear differential equations, recurrence relations and matrix
theory.

HT:X —Yand S:Y — Z are abelian group homomor-
phisms we shall call the pair (S, T") (left,right) one-one ([3] Ch 10)
if there is inclusion

0.1 $71(0) C T(X),
and exact if in addition
0.2 ST = 0.

Sufficient for (0.1) is that there are homomorphisms 77 : ¥ — X
and S : Z — Y for which

0.3 S'S+TT = I

when 77 ¢ X — Y and § : Y — Z are continuous homomor-
phisms of topological groups, or linear between vector spaces, we
shall require that S and 7" are also continuous, or linear. If in
particular

A X X -
£ =" X — =(- : ] = X
0.4 T_(B>.)& <X>,S (=B A) ()&)
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then condition (0.1) takes the form
0.5 Ax:By:>a::Bz,y:Az,
while condition (0.2) reduces to commutivity
0.6 BA = AB.
From (0.5) it follows in particular that
0.7 B~1(0) C A B=Y(0) ,
and hence also that
0.8 (BA)™H(0) € B71(0) + A~Y(0) .

Already this captures a familiar observation (2],[4] about lin-
ear equations with constant coefficients : with D : X — X
the operation of differentiation on the space X = C(Q) of in-
finitely differentiable real, or complex, functions on an open inter-
val 2 C R, we have

Theorem 1. If p = g¢r is the product of polynomials ¢ and r
without nontrivial common factors then

1.1 P(D)TH0) = ¢(D)}(0) + r(D)~X(0).
Proof. The Buclidean algorithm gives polynomials ¢’ +' for which
1.2 ¢'qg47'r =hef(g,7) =1

since everything commutes we can now argue, with A = ¢(D),

B =r(D), A" = ¢(D) and B' = +/(D),
By =0=y=AAy with BA'y = 4By =0
and hence
BAr=0= 2= (I - A'A)x+ A4z € A71(0) + B~10).

This is inclusion one way in (1.1), and the reverse is clear o
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Something very similar to Theorem 1 is relevant to elemen-
tary matrix theory: if p(A) = 0 and p = ¢r with hef(g,7) = 1
then [4]

1.3 q(A)7H0) = r(A)(X).

With ¢ = (z — A)* and r()\) # 0 this shows that the eigenvectors
of A lie in the column spaces of related polynomials 7(A). The
conditions (0.2) and (0.3) say something about the solution of
equations with coefficients S or T':

Theorem 2. If

2.1 S'S+TT' =1 and ST =0

and

2.2 TT+WW =1and TW =0

then

2.3 Te=b=a=T0+WWbeTb+T1(0)
and ;

2.4 r=Tb= Te=(I-55)

Proof. Cleare

The operations of differentiation and integration fit together
in the pattern of (0.2) and (0.3): if 0 € Q define operators D, D'
and J on the space X = C°°(Q) by. setting

il%gﬁ ; (D'z)(t) :/ z(s)ds ; (Jz)(t) = 2(0) ;

s=0

2.5 (Dx)(t) =

then evidently

2.6 DD'=I=D'D+Jwith DJ =0=JD".

=
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If f € X is arbitrary define multiplications Ly and E} by setting

2.7 (Lpa)(t) = fF(d)a(t) 5 (Epz)(t) = /D) ;

then also

2.8 LgL‘f = Lgf = Lng 3 JLf = LJfJ 3 JEf = E,]fJ
and

E-jEs=1=E;E_;;
2.9 DLy =L;D+Lpy;
DE; = E¢4(D+ Lpy).

It is clear that we can take T'= D in Theorem 2 to obtain the
familiar form of the solution of the equation Dz = f; the same
extends to the first order linear equation:

Theorem 3. If T = D + Lpy then

3.1 TT' =1 =TT+ WW' with TW =0
with
3.2 T/:E_fDlEf ; I’V:E-_fj; T"V’:Ef .

Proof. Again cleare

For second and higher order linear equations there is the tech-
nique of variation of parameters: we claim that this also can be
described by Theorem 2 . The ideas are clear from equations of
order two:

Theorem 4. If T = D? + Ly D + L, is second order linear with

4.1 T7H0) = D (0)f + D™ (0)g
then

4.2 TT =1=TT+WW' with TW = 0,
where




Fxactness in Elementary Differential Equations 55

y D'Ly, 0 —L,\ .

43 W = (L;sJ LyJ);
T — Lpy —Ly I
W= L (-Lpf Ly J\D
with
~ foy
4.4 1/h = det H with H = (Df Dy )

Proof. We follow the usual “variation of parameters” argumenAt,
noting that the Wronskian matrix H must be invertible, and in
effect make the familar substitution:

U 1 .. D 0 Uy _ [0
4.5 LH<V>: D , giving Ly 0 D v)=\1]

It follows
D'DUN _ (D' 0N (0 _ (D 0><L¢>T
DDV )T\ 0 DJTHXT)T\ 0 D )\Ly
C1VIng
s U\ _ (D 0\ /(L T+<J o)
V)70 D)\ Ly 0 J

and hence

46 = (L; Lﬂ(% g) <1€Z>T+
(Lj Lﬂ(g 3) <€;>

This gives T'T + WV’ = I; it is left to the reader to check
that TW =0 and 77" = Ie
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Of course the coefficients p and ¢ in the operator 7" are de-
termined by the complementary functions f and g:

v w0

We can make a similar analysis of recurrence relations. Define
operators U and V' on the space of all real sequences by setting

4.8 (Va), = 2p41, (Uz)o =0 and (U2)py1 = 2, ¢
these are the backward and forward shifts, and satisfy
4.9 VU=1=UV+K with KU =0=VK

bl

where (Ka)o = 2o and (Ka),41 = 0. If we introduce operators
Ly, Ey and M by setting

(Lpl’)n = Pnln,

4.10 (Ep)o = 2o,

(Ep®)ng1 = pop1 .- Pnngi,
(Ma), = 2021 ... 2,
then
411 Ly By = Larp, VI9Lp = Ly, V, UL, = LupU, VE, = L, E,V
and hence

4.12 (V= Lp)Ep = LyE(V — 1),

The first order linear recurrence relation is the equation (V —
Ly =q:

Theorem 5. If ' =V — L, then
5.1 T =TI =7'"T + Epd with TE,J =0,

where (J), = 2o and

5.2 T'(xo, 21, 20,...) = (0,20, preo+ 21, popr g +pazitao, .. ).
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Proof. Cleare .
We can see analogy with differential equations if we write

53 D=V-I, D =SU = S~1Iwhere (Sz), = zo+21+. . .+2Zx,

giving

5.4 DD'=I=DD+Jwith DJ=0=JD".
If p, never vanishes we have ‘

5.5 T = E,ﬁE;l U=WU

where

Wi(zo,zy,22,23,...) =
5.6 (20, poro + 1, P1Po%o + P11 + T,
Pap1PoTo + papi®y + Pala + &3, ...
Note also
5.7 VI]=J JU=0, SU=US (V-1)S=1V.

In higher dimensions suppose 2 C R? is open connected and
“starlike” with respect to 0 € R3, and look at ([1] Ch 5 §3) dif-
ferential forms

5 L
5.8 w = wy + Z Z wida; (LLJ e XN = (C%()

r=1|jl=r

and differentiation
5.9
3 3 3 2
D :wo + Z Z wide; — Z Diwodz; + ZZ Z Diw;ides; ;
r=1]j|=r i=1 i=1r=1|j|=r

here (Dyf)(a) = lim—o(f(ar + ¢, as,a3) — f(a1,as,a3))/t ete.
(partial differentiation) and da;; = da; A duy (exterior multiplica-
tion). Diagrammatically:

5.10

, D, Di 0 Ds
|-ps 0 D | b,

gD 7D2 Do) 3\x 0 s P }x D/
X X
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Since the D; commute, this sequence forms a “chain”. The ho-
motopy H is derived from multiplications L; and moments Sj

(weighted radial averages), given by

1

S (L) = @), (S = [ 87
t=0
specifically
Huwy =0 ;
5.11

H(widwy +wadzs 4+ wades) = (Sywi)wy + (Siws)zs + (Syws)zs ;

H(wiadzys 4+ wisde s + wozdeas) =
(Sawi2)(21des — Taday)
+ (Sowyz)(z1das — vaday)
+ (Sawas)(zodas — 2ades);
H(wizadz123) = (Szwias)(21deos — 2ade s + 2adis) .

Diagramatically:
—L4Sy —L3S, 0 L3S3
v Lng 0 —L:_;SQ N -—-LzSg
j\ 0 11_1_52 LySy i L:ﬁs
X X
and

LSy, L.S sy
X( 151 ;_21 L3Sy) Y
X

Theorem 6

6.1 HD+DH=1~7J
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where

3
6.2 J(wo + Z Z widz;) = we(0)1.

r=11j|=r
Proof. Note the commutation rules

DzD] —DJDL = S,'Sj -S]'Si — LZL] — LjLZ =0 ;

3 3
63 > LiSiDi=I—J; > LiSkqpDi=I-kSpifk>1;

i=1 =1

DL'LJ' = 5,‘]'I+ LjD,‘ ; DiSk = Sk—l»lDi X LjSk-i-l = S}\-Lj .
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ON SOME MATHEMATICAL WORKS IN
THE LIBRARY
OF THE ROYAL IRISH ACADEMY.

G.L. Huxley, M.R.I.A.

In the course of two centuries the Academy’s library has grown
steadily. In Irish subjects it has become one of the best collections
of manuscripts and printed matter in the country. Other fields of
knowledge are also well represented: this short paper draws atten-
tion to our mathematical holdings in the hope that mathemati-
cians and historians of mathematics will be encouraged to make
greater use of the books and periodicals at Academy House.

Most of the mathematical texts and periodical articles have
been obtained by gift or by exchange. Consequently coverage
of domains within the subject is far from complete or coherent.
Many areas are, however, represented, and the geographical range
of periodicals is remarkable. There are long runs of the Acia
and other serial publications of leading European academies—for
example, from Paris, Berlin, Rome, Gottingen, Heidelberg, and
Helsinki. Our holdings of the Philosophical Transactions of the
Royal Society of London extend back to Volume 1 (1665/6). The
St. Petersburg Commentarii begin in the age of Euler and the set
of Liouville’s Journal de Mathématique pures et appliqueés con-
tinues until 1924 from the first issue in 1836. There are strong
collections of Japanese periodicals published in English, among
them numerous editions of Tensor and the Hiroshima Mathemai-
ical Journal. Current work in the United States is well repre-
sented: we receive the Proceedings of the National Academy of
Sciences, the Princeton Annals of Mathematics, the Duke Mathe-
matical Journal, and, among other leading periodicals, Studies in
Applied Mathematics (Cambridge, Massachusetts)




