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Introduction

A recurring theme in general topology is the pursuit of exam-
ples and characterizations, for each homeomorphic invariant P, of
those spaces which are hereditarily P in the sense that all of their
subspaces are P spaces. Implicit in this programme is the cor-
responding problem for hereditarily non-P spaces: indeed from a
purely logical standpoint the two quests are co-extensive since the
negation of an invariant is an invariant. There is however a practi-
cal difference between them because, with few exceptions, the in-
variants of principal interest are shared by all spaces of sufficiently
small cardinality; for each such invariant P this simple observa-
tion serves both to guarantee a supply of (admittedly superficial)
examples of hereditarily P spaces, and to disprove the existence
of hereditarily non-P spaces unless we modify the question by
choosing to disregard these small, “inevitably-P”subspaces. It is
from this modification that the study of total negation, surveyed
in the present article, arises.
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The topic has three historical roots, of which perhaps the
most obvious concerns connectedness. The one-point sets (and
only they) will be connected irrespective of the choice of topol-
ogy on the space surrounding them, and so the nearest we can
approach to a ‘hereditarily non-connected’space is one in which
the only connected subspaces are the singletons: that is to say,
a totally disconnected space. Secondly, the invariant ‘perfect-
ness’(absence of isolated points) gives rise to that of a heredi-
tarily non-perfect (that is, scatlered) space as one in which ev-
ery subspace possesses a (relatively) isolated point: there being
no ‘small’subspaces to disregard this time since every non-null set
can support a non-perfect topology. Thirdly, from the late ’sixties
onwards there has been increasing interest in those spaces (then
called pseudo-finite by Albert Wilansky [28] and cf by Norman
Levine [16], latterly anti-compact) in which only the finite subsets
are compact; as finite sets cannot carry non-compact topologies,
these are likewise as close as one can get to ‘hereditarily non-
compact’spaces.

In 1979 Paul Bankston published the pivotal paper [4] of
the study. Recognising the pattern in the previous examples,
he united them in initiating the general theory of anti-P spaces
(P here denoting an arbitrary invariant), meaning spaces within
which the only P subspaces were those whose cardinalities alone
guaranteed that they would be P. The same article presented
major contributions to the exploration of anti-compactness and
antil-sequential compactness which was already being actively pur-
sued (in different terminology) by Ivan Reilly and M.K. Vamana-
murthy, and of anti-lindeldf spaces and similar ideas. Reilly and
Vamanamurthy and their co-workers have played a central role in
subsequent developments on anti- P spaces, which have mostly fo-
cussed on the cases in which P is either a compactness condition
or a separation/regularity axiom.

We shall now give a detailed exposition of the elements of
the general theory of the “anti-”operation: this is derived from
Bankston’s article, together with presentational details of our own
which have proved useful in explaining the ideas to our colleagues
and to each other. This is followed by a survey of what has been
established (and by whom) about anti-P spaces for specific in-
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variants P, to be read in conjunction with the list of references
which we have endeavoured to make fairly complete. Lastly we
comment on our perceptions of possible further developments, in-
cluding projects we have in hand and some open problems.

The “Anti-"operation in general

Bankston’s operation is generally viewed as acting on classes
of spaces (closed under homeomorphism) rather than on home-
omorphic invariants (identified whenever co-extensive). This is
unlikely to cause any confusion since one may identify each in-
variant with the class of all spaces possessing it. We adopt the
convention of using the same name for the invariant and the class,
but spelling the latter with a capital letter. Thus, for example,
‘compact = lindel6f’and ‘Compact C Lindelof’are to be regarded
as interchangeable. We denote by Ry the cardinality of a count-
ably infinite set. Contrary to the practice of most writers on this
topic we choose not to allow 0 as the cardinal number of a topolog-
ical space, believing it more in keeping with general conventions
to insist that topologies be defined only on non-empty sets.

Each invariant P partitions the positive cardinals into (at

most) three subclasses spec(P), proh(P) and ind(P): for if « is
a cardinal then either every space of cardinality « is a P space,
or none is, or some are and some are not; we shall accordingly
describe « as specific, or prohibitive, or indecisive for P, and the
three types of cardinal constitute the subclasses to which we refer.
Clearly 1 ¢ ind(P), but this is the only restriction on the resulting
division:
Proposition. Let {S,P,Z} be a pairwise-disjoint covering of the
class of positive cardinals. There is a homeomorphic invariant P
for which S=spec(P) and P = proh(P) and I = ind(P) if and
only if 1 ¢ T.

Proof Given that 1 ¢ Z, choose for each i € Z a space X; of car-
dinality 7. If we call X' a P space when either X is homeomorphic
to one of the X; chosen or the cardinality [X| of A" is in &, then
P is as required.

It is usually an easy exercise to identify these subclasses for
a given invariant. We illustrate the ideas by the following table of
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simple but important examples. Note that spec(P) is known as
the spectrum of P.

P spec(P) ind(P) proh(P)
Connected {1} 2,) @
Perfect é [2,) {1}
Compact  [1,R¢) [N, ) ¢
Lindelof [1, No] (No, ) 9’1)

Infinite [Ny, ) ¢ [1,Rg)
Normal  {1,2} [3,) o)

A space X is called anti-P if, for every P subspace Y of
X, we have |Y] € spec(P). By Anti-P we understand the class
of all such spaces. One sees immediately that anti-connected =
totally disconnected, that anti-perfect = scattered, and that anti-
compact is as described earlier. Bankston’s key observations on
Anti-P in general are now summarised:

Theorem.

(i) Anti-P # ¢.

(ii) Anti-P is hereditary; that is, membership of the class is a
hereditary invariant. .

(iii) If P is hereditary then (a) spec(P)C spec(Anti-P), (b) P C
Anti-Anti-P.

(iv) Anti-P C Anti-Anti-Anti-P.

(v) Suppose spec(P) = spec(Q); then P C Q implies Anti-Q C
Anti-P.

Proof (i) Bearing in mind that 1 ¢ ind(P), the one-point spaces
either are or are not P: and in either eventuality they are anti-P.

(i) is immediate from the definition.

(iii)(a) Assuming P to be hereditary, consider a (P) subspace
Y of a space X for which |X| € spec(P). Any space Z having the
same cardinality as ¥ will be a subspace of some X; with |X;| =
|X|; thus Z will be P because X’ is, and we deduce that |Y| €
spec(P). This shows that X is anti-P, and so |.X| € spec(Anti-P).

(b) Now let ¥ be an anti- P subspace of a P space X. With P
being hereditary, ¥ must be a P subspace of itself, which implies
[Y] € spec(P). In view of (a) this shows X to be anti-anti-P.
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(iv) is immediate from (ii) and (iii)(b).
(v) again follows directly from the definitions.

Much use has been made of part (v) in particular, for it tran-
spires that there are many sets of important invariants having the
same spectrum and being implicationally related: for instance,
compact and countably compact; lindelof and o-compact; To, T3,
Ty, T3 and Tjy.

The enunciation of the other major result in this area, due to
Brian Scott, also appears in [4]. It asserts that every hereditary
class, apart from one easily-recognised set of exceptions, is of the
form Anti-P for some suitably chosen P. As far as we can de-
termine, its demonstration has never been published, so we were
obliged to prove it for ourselves. Subsequently Bankston sent us a
lot of information on the origin of the topic, which we acknowledge
with sincere gratitude, including details of Scott’s proof. Since it
differs substantially (albeit not radically) from our own, and in
view of the utility and striking elegance of the conclusion, we out-
line below our method of verification.

Scott’s Theorem. Let Q be a non-empty hereditary class, and
consider the following condition:
there is a positive integer n such
that n € spec(Q) and n+ 1 € proh(Q)...(*)
(I) If (*) holds, then Q is not of the form Anti-F.

(IT) If (*) does not hold, then

(i) @Q is of the form Anti-P, and

(ii) we can arrange that P shall have empty spectrum.
(1I1) If, further, proh(Q) = ¢, then @ = Anti-(Not Q).

Proof (I) Suppose that (*) holds and that Q = Anti-P. Every
space of cardinality less than n is a subspace of some n-element
space, and is therefore Q; thus {1,2,...n} C spec(Q). Now each
(n+1)-element set X is not anti-P, and must contain a P subspace
Y with |Y]| ¢ spec(P); contradictions follow whether ¥ is proper
or Y = X.

(I11) follows directly from the definitions, since

spec(Not @Q)=proh(Q)
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in general. In proving (II) we may therefore assume that proh(Q)
has a least element 3, and will be of the form [, ) since @ is
hereditary.

Case 1: ind(Q) = ¢. Here, g must be infinite. We propose
calling a space X f-schizoid if |X| = 3 and either it is Ty or f
is the least upper bound of the cardinalities of the point-closures
{Z}, =z € X. It is easily verified that spec(-Schizoid)=¢ and that
every space of cardinality not less than [ possesses a (-schizoid
subspace; it follows that Anti-#-Schizoid=Q.

Case 2: ind(Q) # ¢, and possesses a least element «. The
hereditary character of @ forces spec(Q) = [1, &), ind(Q) = [&, 3).
If B is infinite we can compromise between the two previous choi-
ces, by taking P to comprise the non-@ spaces with cardinalities
in [o, ) together with the S-schizoid spaces. If on the other hand
B 1is finite, choose a (8 — 1)-element non-@ space Y, form a -
element space Y* by adjoining a point to ¥ in any fashion, and
take P to comprise the non-@ spaces with cardinalities in [a, 3)
together with all f-element spaces except those homeomorphic to
Y*. In both eventualities it is easily seen that spec(P) = ¢ and
that Anti-P = Q.

Problem: under what conditions on ) will there exist a
hereditary property P such that Q = Auti-P?

Specific Anti-Properties

We shall first summarise what is known about anti-properties de-
rived from compactness and from related conditions, under four
sub-headings: sources of examples, operations which preserve the
conditions, characterizations, and implications between them.
Examples Let N denote the set of positive integers. Tor any
p in SN\N,N U {p} is anticompact {28]. So are the discrete,
the co-countable, the included-point topologies, and the topology
of decreasing sets on N [16]. The MI spaces of [11], of which
many connected T3 examples can be constructed [1], are anti-A
compact for every cardinal A, and therefore anti-compact and anti-
lindeldf in particular [14,26]. The Ty ‘P’-spaces (those in which
each countable intersection of open sets is open) are anti-compact
[4], and exist in abundance (see, e.g., [3], [20]). An example is
known of a connected 731 anti-compact space [4].
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Preservation Open bijections, finite products, and finite unions
of open or of closed subsets preserve both anti-compactness [16]
and anti-sequential compactness [12,22]. Indeed, arbitrary unions
of open subsets preserve anti-compactness, and so any locally anti-
compact space is anti-compact [21]. “Compact covering”maps
(continuous maps for which each compact set in the range is the
image of a compact set) preserve anti-compactness, and likewise
the anti-lindeldf property is preserved by “lindeldf covering” maps,
as well as by open bijections and finite products [4]. Infinite prod-
ucts preserve these properties only when cofinitely many factors
degenerate [4,22], but stronger preservation behaviour obtains for
various modified products (box products, topological ultraprod-
ucts, see [4] for details).

Characterizations The condition:
for each point p and each infinite set A, p has an

open neighbourhood G such that A\G is not compact
is equivalent to anti-compactness [22]. If we change compact to
‘countably compact’/finite’we obtain characterizations of anti-
countable compactness [23]/anti-sequential compactness [22]. Al-
ternatively, change infinite to ‘uncountable’and compact to “lin-
deldf’and a local characterization of anti-lindeldf spaces arises [23].
An analogous description [24] of anti-semicompactness is founded
by replacing open by ‘semi open’and compact by ‘semi compact’.

The condition ‘no sequence of distinct points has a convergent
subsequence’is necessary and sufficient for anti-sequential com-
pactness [22]. Among first-countable spaces, anti-compactness
and anti-sequential compactness coincide, and are then identified
by each point possessing a finite neighbourhood [12] or, equiva-
lently, by no sequence of distinct points having a cluster-point[16].
Among T» spaces, the anti-compact ones are those whose co-
compact reflections are cofinite: for further details on this and
related matters see [8]. Anti-anti-A compact and anti-anti-anti-
) compact spaces (for regular cardinals A) have also been char-
acterized in [23]: the most striking results being that anti-anti-
compact /lindelf is the same as hereditarily compact /lindelof, and
that every Th space is anti-anti-anti-compact. This is echoed by
the observation that the anti-anti-semi compact spaces are the
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hereditarily semi compact ones [24]. The Stone-Cech remainder
BX\X of a Ty space X is anti-compact if and only if ¥ is 7} for
all Y such that X CY C 8X [5].

Implications

The ‘mainstream’connections (see [23], also [12]) are: anti-
pseudocompact (a — 9ep) implies anti-countably compact (a —
ccp) implies anti-compact (@ — cp) implies both anti-sequentially
compact (a—scp) and anti-o compact (a—ocp), anti-lindelof (a—£)
implies a — cp, a — cp implies anti-semicompact [24]. Many recent
developments [15] centre on the ideas of a bounded subset of a
topological space, i.e. one for which each open cover of the space
has a finite subcover of the set, and of a bf space as one in which
every bounded set is finite; the cbf spaces are defined similarly but
considering only countable open covers; the essentially-compact
(e — ¢p) spaces [10] are those possessing a bounded dense subset.
Lastly, the cid spaces ([25]; also called A-spaces [21]) are those in
which each countably infinite subset is discrete. The relationships
between these concepts are summarised in the following diagram.

pr
$
o
a-fcp cbf [ cid I ’a-(e—cp)l MI I

L= ]

p{\ a-g

aecp | | s-sentee] | e |
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The converse implications are generally false, and counterexam-
ples will be found in the literature cited. Known partial converses
are: @ — scp implies a — cp for first-countable spaces [12] and for
spaces of small infinite cardinality ([22], see also [17]); @ — ¢p im-
plies bf for regular spaces and for those in which every bounded
set is closed [15]: bf implies anti-(e — cp) for T} spaces [15].

There is also a small group of results indicating ‘how close’cer-
tain types of space are to being discrete: we mention a —cp-+T1+
first-countable implies discrete [16], a — cp + T» k-space implies
discrete [4], a — sep+T1+ sequential implies discrete [22]. Miscel-
laneous implications include a — cp+ first-countable implies satu-
rated [12], a — £+ a — scp+ T implies @ — cp, and @ — cp+ T Im-
plies anti-pathconnected [4]; c¢id implies anti-separated, and anti-
anti-compact implies anti-cid implies finite or not T [25]. Also a
Ty space in which every set with dense interior is open must be
a — ccp [27], a space whose compact subsets have empty interiors
and whose topology is maximal with respect to that property is
a — cp [18], and anti-anti-bf does not imply bf [15].

Lastly we examine the total negation of the axioms of separa-
tion and regularity, where in contrast to the preceding discussion
the situation is almost disappointingly simple. In [23] it is shown
that the anti-Tp spaces are the trivial (indiscrete) ones,while for
P =TTy, Ts, Ts-;- ,Tu, Ts, metrizable or discrete, anti-P coincides
with nested (each two open sets are comparable). Also anti-trivial
equals Ty and anti-nested equals T7. For P = complete regularity,
regularity, or the weaker axioms Ry or Rp [6], the anti-P spaces
are those which are Ty and nested. The anti-normal spaces, identi-
fied in [9], comprise the one- and two-point spaces and the unique
non-normal three-point space.

Future developments

The area is quite rich in unsolved (even unposed) problems
and possible lines of further investigation. Many standard in-
variants as yet have no published characterizations of their to-
tal negations: we have for example encountered no references to
those of local compactness, paracompactness, realcompactness,
local connectedness, connectedness im kleinen, first countability
or complete separability, nor (apart from the result mentioned
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above) to that of separability. Our own preliminary investiga-
tions show that some at least of these can be dealt with fairly
simply; a sample conclusion is that the anti-completely separable
spaces are precisely the finite ones. Turning to separation ax-
loms, nothing appears to be known of the ‘anti’s’of those lying in
logical strength between 7% and T [28]. We have checked sev-
eral between Ty and 77 [2], where the evidence is that the trivial
spaces form the anti-class of most if not all of the known ones. An
intriguing set of questions in the general theory concern whether
it is possible to find a class P so that the classes in the sequence
P, Anti-P, Anti-Anti- P, Anti-Anti-Anti-P, ...

are all distinct, or include infinitely many distinct ones, or include
arbitrarily long lists of distinct ones. We have been able to an-
swer these in the negative by proving that, for any choice of P,
the sequence contains at most four distinct classes, which recur
in one of seven simple patterns [19]. Finally, it could be worth
raising corresponding questions (if it has not already been done)
in areas other than topology. Is there a significant body of knowl-
edge concerning anti-abelian groups? anti-distributive lattices?
anti-noetherian rings? anti-precompact uniformities?
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A SURVEY OF SUBNORMAL SUBGROUPS

James J. Ward

Introduction

Since the appearance of Helmut Wielandt’s fundamental paper
[27] over fifty years ago, much progress has been made in the
theory of subnormal subgroups thanks to the contribution of many
distinguished group theorists.

A comprehensive and masterly exposition of the theory of
subnormal subgroups is due to Lennox and Stonehewer. The pur-
pose of this article, based on a talk given at “Groups in Galway”
1s to present some of the remarkable results in the theory without
encumbering the general reader with technical details or proofs.
The selection of topics is not exhaustive and reflects a bias of the
author, but it is hoped to whet the appetite of the reader, who
is referred to Lennox and Stonehewer [12] in the first instance.
Notation is standard and follows that of Lennox and Stonehewer
[12] or Robinson [22].

Definition. If H is a subgroup of a group G such that
tT'He=H VzedG

then H is normal in G, written H « G.

If L «H and H <G it does not follow that L <« G, i.e. for
subgroups of a group normality is not a transitive relation, as can
be verified by examining the alternating group on 4 letters, Ay, for
instance. This may serve as motivation for the following relation
on subgroups which ¢s transitive:




