A CONTEXT FOR ADDITION FORMULAE

P. D. Barry and D. J. Hurley

§1. Introduction

For a function w of a complex variable, an addition formula is
an explicit expression for w(¢ + «). This is less precise than an
(algebraic) addition theorem in which w({ + a), w(¢) and w(a)
are to be related algebraically [4, p. 440, 519 and 595].

The context that we have in mind for w is that of satisfying a
homogeneous ordinary linear diflerential equation. For some dif-
ferential equation of order 1, we find an addition formula pretty
much as we might expect, similar to that for the exponential func-
tion. However for a differential equation of order 2, we find that
there is a pair of addition formulae shared by two linearly indepen-
dent solutions, similar to those for the cosine and sine functions,
although this pattern is obscured when there is a constant so-
lution as then the addition formula appears to involve only one
function. More generally for a differential equation of order n > 2,
the method shows that there are n additions formulae shared by n
linearly independent solutions, although when there is a constant
solution only n — 1 seem to be involved.

§2 Basic Theory

We present our material largely in terms of second order equations
and consider

(2.1) pg(zv)w”(:’) + pr(2)w'(2) + po(2)w(z) =0

where pa, p1 and pp are functions analytic (holomorphic) in some
neighbourhood of v = 0 and py is not identically 0. If py(0) #
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0, then by continuity ps(z) is zero-free in some disc N(0,06); if
p=(0) = 0, then since the zeros of a non-constant analytic function
are isolated, there is some deleted disc N*(0,6) = {z: 0 < |z| < 6}
in which p2(z) is zero-free. Thus we can assume that py, p; and
po are analytic in N(0,6) and either

(2.2) pa(z) £ 0 forall z € N(O,8)
or
(2.3) pa(z) £ 0 for all z € N*(0,4).

Then [3, p. 34, 47-49], (2.1) will have a solution w on Ds where
in case (2.2) Ds = N(0,6) and in case (2.3) Djs is the slit disc

N(0,6) = N(0,6)\ {z:z=2,~6 <z <0}

For 0 < 5 < 6§/2, let us denote by D, the set of points in Ds
such that z is at a distance exceeding 7 from the complement of
Ds. Then Ds, is a domain and for ¢ € N(0,7) and « € D5, we
have ( + a € Ds.

Now let 177(¢) = w(¢ + ). Then corresponding to (2.1) we
have

(2.4) pa(C 4+ )W) + pr(C + )TV () + po(¢ 4+ o)W () = 0.

Tor a € Ds .y, clearly pa(«) # 0 and so ¢ = 0 i1s an ordinary point
of (2.4). ‘

Consgequently there is a fundamental set of solutions 1V7(¢, &),
115(¢, o) of (2.4) on N(0,n) satisfving

W0, a)=1, 1W/(0,a) =0
Wa(0,0) =0, T75(0,a)=1

and any solution of (2.4) on N(0,7) can be expressed as a linear

combination of these [2, p. 16]. Then for any solution w of (2.1)
on Dgs, we have that

w(C+ a) =W (¢, o)+ ol ((, &)
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where ¢; and ¢y are independent of {. On putting ¢ = 0 we see

that ¢; = w(e); on differentiating once with respect to ¢ and then
putting ¢ = 0 we have ¢ = w'(). Thus

(2.6) w(( +a) = w(a)Wi(¢, a) + w' () Wa(¢, a)
for « € Ds, and ¢ € N(0,n). This shows the structure of an

addition formula for w.

We note moreover that (2.1) will have linearly independent

solutions wy and w, on Dy, and then by (2.6) we get the following
result.

Let wy, wy be linearly independent solutions of the differ-
ential equation (2.1) on Ds, and for « € Dy, let Wi, Wy be a
fundamental set of solutions of the differential equation (2.4) on
N(0,n) satisfying (2.5). Then we have the addition formulae

2.7) wi(C+ o) = wi(a)Wi(¢, @) + wi(a)Wa(C, @)
. w2 (C + @) = wa @)W1 ((, &) + wh(a)Wa((, a).

In the particular case when pq is idéhtically 0, 1.e.
(2.8) pa(2)w”(2) 4+ p1(2)w'(z) = 0

we take wi(z) = 1 and Wy(¢,«) = 1 identically. Then with the
same notation as before we have the following.

Let wy be any non-constant solution of the differential equa-
tion (2.8) on Ds, and for a € Ds,, let 1Vo be the solution of the
differential equation corresponding to (2.4), on N (0,7), satisfying

Wa(0,a) =0, WW5(0,a)=1.

Then we have the addition formula

(2.9) wa (¢ + a) = wa(a) + wh(a) (¢, a).
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§3. Examples of Full Type

There is a difficulty in providing examples that make a ready
impact, a difficulty which stems from our mcomple‘te knowlgdge
of differential equations. Although we may gtart with a famlhar
equation in (2.1), it is only too common th.:at‘ in the corresponding
(2.4) we cannot find a solution in any exph.mt formf and 1‘1ave not
any individual distinctive notation for functions which satisfy such
an equation.

As a well known example we could derive the addition forn‘luA
lae for the cosine and sine functions from the differential equation

w(2) + w(z) = 0

as is done in [2, p. 54]. We obtain a more substantial example,
containing this, as follows.

Example 1 Consider the equation
(3.1)  (as + baz)w"(z) + (a1 + biz)w' (z) + (ap + boz)w(z) =0
with as # 0. Let us denote by

(2) = Fi(ag, bs; ay, bi; ao,bo; 2)
wa(z) = Fy(as,ba; ar,b1; ao, bos =)

the solutions of this which satisly respectively

0)
0)

w(0) =1, wi( 0,
wo(0) = 0, wy{0) =1
Then by (2.7),

Fi(az, bo; a1, by ao,bo; C+a) =
Filas, by ay,by; ao, bo; @)
Fi(az + bocv, bo; ay + biov, by ag + boar, bo; €)
+ F{(az, ba; ay,b1; ao, bo; @)
Fu(as + baa, ba; ar + bia, by ao + ooy, ho; €)
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Falaz, ba; ar,by; ag, bo; ¢+ o) =
Fa(az, ba; ay,b1; ag, bo; )
Fy(as + baa, ba; ay + bia, by; ag + boa, by; ¢)
+ Fi(az, ba; ay,b1; ag, by; )
Fa(ag + baa, ba; ay + byev, by; ag + boa, by: ¢)

We could perform a similar analysis if in (3.1) we replaced
the coefficients by quadratic or cubic polynomials, or polynomials

of a fixed higher degree, or polynomials in exp z, or trigonometric -

polynomials.
Example 2 We can construct an example by taking

wi(z) = (1= 27", wa(s) = (14 )~
where b # 0, these being independent, solutions of
(1= =)w"(2) = 2(b + Dzw'(2) = b(b + Dw(z) = 0.
This is a particular case of the ultraspherical equation. The cor-

responding equation (2.4) does not seem to have a name, but we
can calculate

£,

M= [1=0)- 50 o+ )]
=32 Br-a= ey ar e e
(¢, a) = 1;;2 [(1 - 1fa)'b -1+ T&E ‘b]

where (b)o = 1, (b),, = b(b+ 1) .. (b+mn—1), for n > 1. Then
(2.7) applies.

§4. Examples of Restricted Type
In this section we deal with some examples of the type ( 2.8).
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Example 3 Consider the Euler homogeneous equation
(4.1) 22w (2) + (1 + b)zw'(2) =0
For it we take wy(2) = 1, W1 ({, o) = L for all z and (, respectively,

and L-b_1 _ fl s—t=1 s swhen b 75 0,
wa(z) = 111—3{) ,when b = 0.

The corresponding equation (2.4) can be written as
d?w ¢ dw

¢ —( A h— |
-+ (- 2) e 0w

which is of the hypergeometric type. In fact we note that when
b # 0, we have wh(a) = a=~! and
(4 b1
wy(¢ + o) — wa(a) = / s ds
«

¢ b—1
:a-b—l/ (1+t/a)™ "~ dt
0

[e]
(b + 1)71(1)71 n
R —Cla
=a IR+ 1,12 - (/a)
where o is the hypergeometric function [4]. Thus in this case

we have .
Wa(¢, a) = CFi(b+1,1; 25 =(/a)

for (2.9).

Now when b = 0 we can write
1 /
4. + o) = + —aln(l+ (/o
(4.2) ln(g~ a) Ina - n( ¢/ )

which identifies 1Vo((, @) = aws(1+ (/o) directly in terms of ws.
When b # 0 we can express

wo (¢ + o) = waler) + wg{ {1 +(C+a) - a“b} }
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in a similar fashion, but this more self-contained form seems ad-
ditional to what our general theory provides.

We can make a similar example from the differential equation
(1—2*)"(z) - 20zw'(z) = 0

for which we take

wa(z) = /Oz(l — %)=t s,

The cases
14z
1-—z

when & = 1 [including the arctan function on replacing z by iz],
and

wa(z) = % In

way(z) = arcsin z

when b = 1 are instances of this.
Example 4. Consider the equation

(a2 cos 2 + by sin 2)w”(2) + (ay cos z & by sin 2)uw'(z) =0
with as # 0, and denote by
Glas, bs; ay, by; z)
the solution w of this which satisfies w(0) = 0, w'(0) = 1. Then

on using the addition formulae for cosine and sine to expand the
coefficients in the differential equation, we find that

Glaz,bz; ag, by ¢ + )
7
= G'(as, ba; a1, by; )
* G(ag cos o + by sin o, —azsin « + bs cos a;

@y cos o + by sina, —aq sin o + by cos a; ().

Here G/(1,0; 0,~2; 2) = tan 2.

24 IMS Bulletin 25, 1990

§5. A Recognition.
We recall that for a non-homogeneous equation

pa(2)w”(z) + pa(2)w'(2) + po(2)w(z) = ¢(2)

a particular solution, obtainable by the method of variation of
parameters, is

f o “wy (B)wa(z) — wa(t)wi(z) H(t)
(5.1) wp(z)/o W (wr, ws; 1) 0 dt,

where W (w1, wo; ©) is the Wronskian. In the case where the coef-
ficients pa, p1 and po are all constant, this solution can be put in
the form of a convolution as we can express

w1 (Hwa(z) — wat)w(2)

(5:2) W(wy, wa; t)

1

)
)

in the form I (z — t) for an appropriate function K [1, p249].
the general case we ask if z enters in the form z —1, that is if (5.
has the form ¥(z —¢,1). On putting z — ¢ = { we see that (5.
equals

Ir
2
2

wi(t)wa (¢ +1) — wa(t)wr (¢ +1)
W(wy, wo; 1)

and on solving the equations (2.7) for 1W2((, @), we recognise this
as Wo(¢,t). Thus (5.1) can be written as

w- 7)) = ’ Volz — _?5_.(.2
p(~)——/0 Wa(z t,t)pz(t)dt.
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Introduction

A recurring theme in general topology is the pursuit of exam-
ples and characterizations, for each homeomorphic invariant P, of
those spaces which are hereditarily P in the sense that all of their
subspaces are P spaces. Implicit in this programme is the cor-
responding problem for hereditarily non-P spaces: indeed from a
purely logical standpoint the two quests are co-extensive since the
negation of an invariant is an invariant. There is however a practi-
cal difference between them because, with few exceptions, the in-
variants of principal interest are shared by all spaces of sufficiently
small cardinality; for each such invariant P this simple observa-
tion serves both to guarantee a supply of (admittedly superficial)
examples of hereditarily P spaces, and to disprove the existence
of hereditarily non-P spaces unless we modify the question by
choosing to disregard these small, “inevitably-P”subspaces. It is
from this modification that the study of total negation, surveyed
in the present article, arises.




