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IMS MEMBERSHIP

Ordinary Membership

Ordinary of the Irish Mathematical Society is open to all persons
interested in the activities of the Society. Application forms are
available from the Treasurer and from Local Representatives. Spe-
cial reciprocity rates apply to members of the Irish Mathematics
Teachers Association and of the American Mathematical Society.

Institutional Membership

Institutional Membership is a valuable support to the Society. In-
stitutional members receive two copies of each issue of the Bulletin
and may nominate up to five students for free membership.

Subscriptions rates The rates are listed below. The member-
ship year runs from Ist October to 30th September. Members
should make payments by the end of January either direct to the
Treasurer or through Local Representatives. Members whose sub-
scriptions are more than eighteen months in arrears are deemed
to have resigned from the Society.

Ordinary Members 1R.£5
IMS-IMTA Combined IR£6.50
Reciprocity Members from INTA  IRL1.50
Reciprocity Members from AMS  US$6
Institutional Members = IR.£35

Note: Equivalent amounts in foreign currency will also be ac-
cepted.

1




THE 1990 SEPTEMBER MEETING

Donal O Regan

The 1990 September meeting was hosted by Dublin City Univer-
sity. This very successlul meeting was organised by Alastair Wood.,

Professor J. Mawhin (Louvain) opened the conlerence on Thu-
rsday 6 September with a talk entitled “Topological Results for Pe-
riodic Solutions of ODLEs™. e described via continuation methods
how the existence question for period solutions of ODIEs could be
approached.

Dr Donal O'Regan followed with ~Some Old and Some New

Results for Certain Classes of BV Ps for ODEs™ in which a briel

description of recent results for systems of BV Ps was presented.,

The morning session concluded with Proflessor N Everitt (Bir-
mingham) who spoke on *Recent Developments in Computer Pro-
grammes for eigenvalues of the Sturm-Liouville problein™. Regular
and singular (limit cirele type only) Sturm-Liouville problems were
discussed and also a briel discussion was presented of the computer
programme SLEIGN 1 for computing eigenvalues.

The afternoon session began with Me N. Stecle’s (Coventry)
talk “An Introduction to Neural Networks™. A description ol the
learning algorithm was presented and computer displays of his
ideas were also given.

Next Dr T Murphy (TCD) spoke on “Cubic Art”. e de-
scribed how cubic splines could be presented via allive geometry

(with Besier curves) to sccondary school teachers,
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The final lecture of the afternoon session “Semi-homomorph-
isms of Groups/Rings™ was given by Dr M Leeney (UCC). Tle gave
a brief account of how scmi-homomorphisns of division rings occur
in projective geometry. Recent results on semai-homomorphisms of
rings were presented.

Professor I'. Holland (UC'C) began the morning session on Fri-
day 7 September with a talk entitled “lHankel Operators between
Weighted Sequence Spaces”. He introduced his subject with a de-
scription of Hankel operators between sequence spaces and then
recent results for weighted sequence spaces were presented.

Next, Professor 1. J. Laffey (UCD) spoke on " review of
Unitarity Similarity of Matrices™. e gave a short deseription of
the general problem, i.c. given two n X n matrices, how can one
decide “in a nice way’, if there exists a unitary maltrix 77 trans-
forming one of the given matrices into the other via siunilarity?
Results for the cases n= 2 and 3 were discussed.

After coffee Dr € Budd (Bristol) spoke on “Coronas in Non-
linear Electrostatics™. e began with a description of the clee-
tric fields i the vicinity of a high voltage “coronating” clectrode.
Mathematical models were given and then a briel account of the
steady state problem was presented.

The conference concluded with Professor M. Berry's talk “The
Stokes Phenomenon in Wave Asymptotics.” e gave a historical
introduction on how “Stokes phenomena™ came about.  Reecul
developments in the subject were also included.

Donal O’Regan
Department of Mathematics
University College Galway




NOTICE OF MOTION TO CHANGE THE RULES

D. A. Tipple

At the Ordinary Meeting of the Irish Mathematical Society to be
held in December of 1991 a motion will be proposed to change
four of the Rules of the Society. The Constitution requires that
written notice of such a motion must be given to all members.
Accordingly the motion to be proposed is given below. Significant
changes to the existing rules are written in italics.

Motion

The following changes shall be made to the Rules of the Irish
Mathematical Society. -

Rule 3. shall be amended to read as follows.

3. The election of the Office-Bearers and the additional
members of the Committee shall take place at the last
Ordinary Meeting of each session.

Rule 4. shall be amended to read as follows.

4. The term of office of the Office-Bearers and the Com-
mittee shall be two sessions starting on the first day
of January that follows the Ordinary Meeting at which
they were elected . The President and the Vice-President
may not continue in office for more than two consecutive
terms.

Rule 6. shall be amended to read as follows.
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6. Each session shall commence on the 1st day of January
and last until the following 31st day of December .

Rule 9. shall be amended to read as follows.

9. A Financial Statement for each session shall be wril-
ten by the Treasurer holding office in that session , shall
be duly audited by two persons appointed by the Com-
mittee, and shall be submitted to the First Ordinary
Meeting that follows that session .

The Committee wishes to make these changes to the Rules

for the following reasons.

(1) The Society’s financial year and the terms of office of its
officers and committee members should be brought into
line.

(i) The annual financial statement written by the treasurer
should be based on the accounts maintained by that trea-
surer. Since no rules are laid down for the keeping of
the Society’s accounts, different treasurers may well use
different systems of book-keeping and this could cause
problems.

A copy of the current Constitution and Rules of the Society
is given below.
Irish Mathematical Society
Constitution
(as amended by the Ordinary Meeting held on 21 December 1984)

1. The Irish Mathematical Society shall consist of Ordinary and
Honorary Members.

2. Any person may apply to the Treasurer for membership by
paying one year’s membership fee. His admission to member-
ship must then be confirmed by the Committee of the Society.

o
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Candidates for honorary membership may be nominated by
the Committee only, following a proposal of at least three
members of the Society. Nominations for honorary member-
ship must be made at one Ordinary Meeting of the Society
and voted upon at the next, a simple majority of the members
present being necessary for election.

. Every Ordinary member shall pay subscription to the funds
of the Society at the times and of the amounts specified in
the Rules.

. The Office-Bearers shall consist of a President, a Vice-Presi-
dent, a Secretary, a Treasurer. The Office of President or
Vice-President may be held in conjunction with any of the
other offices.

. The Committee shall consist of the President, the Vice-Presi-
dent, the Secretary, the Treasurer, and eight additional mem-
bers. No person shall serve as an additional member for more
than three terms consecutively.

. There shall normally be at least two Ordinary Meetings in a
session. -

. Notice of a motion to repeal or alter part of the Constitu-
tion shall be given at one Ordinary Meeting. Written notice
of one month shall be given to all members before the next
Ordinary Meeting at which the motion shall be voted upon,
being carried if it receives the consent of two-thirds of the
members present.

. One month’s written notice of a motion to repeal or alter a
Rule, or to enact a new Rule, shall be given to all members
before the Meeting at which it is to be voted upon, the motion

being carried if it receives the consent of a simple majority of
the members present.

. All questions not otherwise provided for in the Constitution
and Rules shall be decided by a simple majority of members
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present at a Meeting. Eleven Ordinary members shall form
a quorum for such business.
Rules
(as amended by the Ordinary Meeting
held on 21 December 1984)

These rules shall be subject to the
over-riding authority of the Constitution.

Subscriptions:

. Every Ordinary Member shall pay, on election to membership

and during January in each succeeding session, an annual
subscription to be determined by the Committee. A change
in the annual subscription shall be ratified by a Meeting of
the Society.

. Ordinary Members whose subscriptions are more than eigh-

teen months in arrears shall be deemed to have resigned from
the Society.

Officers and Committee

. The election of the Office-Bearers and the additional mem-

bers of the Committee shall take place at the first Ordinary
Meeting of each session.

. The term of office of the Office-Bearers and the Committee

shall be two years. The President and the Vice-President may
not continue in office for more than two consecutive terms.

. On alternate years elections for the following positions will

take place :
(a) President, Vice-President, and half of the additional
members of the Committee.

(b) Secretary, Treasurer, and one half of the additional
members of the Committee.
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6. Each session shall commence on the 1st day of October and
last until the following 30th of September.

7. The Committee shall meet at least twice during each session,
the President to be convener. Five shall form a quorum.

8. The Secretary shall keep minutes of the Meetings of the Soci-

ety and of the Committee and shall issue notice of meetings
to members resident in Ireland.

9. At the first Ordinary Meeting of each session the Treasurer
shall submit a Financial Statement for the previous session,
duly audited by two persons appointed by the Committee.

D. A. Tipple
Department of Mathematics
University College Dublin

Change of ISSN

When this Bulletin changed its name from Irish Mathematical
Society Newsletter to its present name, the ISSN was inadver-
tently retained for several issues.

The ISSN has been changed with this issue.

GRADUATES SURVEY
Preliminary report

Donal P. O’Donovan

The background

The David Report on Mathematics in the U.S.A. which appeared
in 1984, was successful in raising the awareness and funding of
mathematics within that country. Having studied this and an
earlier Canadian report, I began advocating the desirability of a
broad based study of the mathematical sciences in Ireland. This
was several years ago. In a document requested by the Irish Math-
ematical Society, I outlined the reasoning behind such a report,
suggested a form that it could take, and hazarded a guess at the
likely requirements in terms of time and money. At the Septem-
ber 1989 meeting of the organisation, at Maynooth, I chaired a
discussion about my proposals, and there was broad agreement
that something along the lines suggested should be undertaken.
It was accepted that somebody from outside mathematics should
be in charge, and some possibilities were put forward. Shortly
thereafter the I.M.S. decided to recommend that the first step in
the proposal, a graduate survey, should be carried out. A form
for Trinity graduates was prepared by Richard Timoney and my-
self, and submitted to the I.M.S. as a specimen. Suggestions were
taken on board, and the questionnaire was mailed in April 1990
to all Trinity mathematics graduates since 1945.

There has been a reasonable response. From a total of 401
questionnaires mailed, 86 were returned completed, and 19 arrived
back marked not known at this address. Mailed with the ques-
tionnaire was a letter which described the survey, and included
a financial appeal for the Trinity Quatercentenary Fund. This
could have reduced the number responding, or biased the sample
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that did respond, if people chose to respond to both or neither.
Also since the early portion of the questionnaire dealt with career
data, perhaps those satisfied with there careers were most likely
to respond. The numbers responding were just too small to deal
with these questions.

"To obtain more complete information on recent years we have
undertaken a repeat mailing to those from the last fifteen years
who had failed to reply. This was done in March 1991. To date no
other College has to my knowledge even started the first part of
such a survey, which is acquiring/compiling their graduate data
base, so in the hopes that a little further prodding might help, I
would like to summarise some of the survey results. I say further
prodding as David Simms has already compiled and presented
much of this information at the 1990 September meeting of the
LM.S. at Dublin City University. Also the ubiquitous Richard
Timoney must be credited with much of the work.

The results

First here is a profile of the respondents by year of graduation,
compared with the number to whom the survey was mailed.

~ 40

VN

\-\A»"A/\A~ f\iﬁ\/\/\/\_/\/\

R R -2 1] R -1 1.1 TRTO

R 1=-3

Number surveyed ...and
number responding —
(1946-1989)
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Here are some of the questions, and the percentage responses.

Employment status. o
(a) What general category would you put your job in?

First Present
Employment Employ-
ment

21 Academic, third level 22
12 Academic, primary or secondary 07
20 Actuarial 11
00 Statistical 01
10 Financial services 09
15 Computer services 20
04 Business 01
02 Management 16
02 Civil Service 00
04 Engineering 00
04 Industrial R&D 05
05 Other 04
05 No Answer 05

(b) What role did your mathematics background play in attaining
these positions?

02 None 05
15 Only in so far as I had a degree 10
in something
13 A small role 30
28 A large role 23
28 It was an absolute requirement 23

{c) Would you recommend a mathematics degree for people
interested in such a position?

15 No 21
68 Yes 66
17 No Answer 12
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Further Study.
What, if any, further study did you undertake?

All years 1970-75

Diploma 25 38

Masters 33 42

Doctorate 25 08

Professional 33 46
qualification

Other 17 20

None 14 17

These numbers are also percentages. To see how things were
changing, I have included a column for seventies graduates. This
relates to 24 students. The number of doctorates in the All Years
column is strikingly high, but less in the seventies column, by
which time numbers of students were increasing. Separate data
that David Simms has suggests that this seventies figure for doc-
torates is too low, which highlights the need for more complete
data. The numbers taking a professional qualification are quite
large. The bulk of these are an accountancy, actuarial, or insur-
ance qualification. As the response to a later question, there were
suggestions that some courses in business and economics should
be available to mathematics students. But only some courses,
as most people stressed that the most important thing that they
had carried away from their mathematics studies was the ability
to treat problems in a disciplined and logical way.

Use of Mathematics

During your career, how often have you made use of your mathe-
matical training?

never (1
rarely 11
sometimes 28
frequently 22
constantly 37

The remaining questions were specific to the Trinity degree,
so I will not bother to comment on them here. The exercise is still
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incomplete, but already we have learned much from it. In many
cases it has simply confirmed what most of us would have imag-
ined. But imagined information will not be sufficient for dealing
with deans, or mandarins. I hope that all mathematics depart-
ments will proceed with a similar study, and that in the mean-
time the I.M.S. will be putting in place the structures needed to
complete the picture of all aspects of Mathematical Sciences in
Ireland.

Donal P. O’Donovan
School of Mathematics
39 Trinity College
Dublin 2




ENGINEERING MATHEMATICS FOR THE 1990°s
REPORT OF IMS/SEFI MWG JOINT MEETING,
University College, Dublin
September 3rd and 4th 1990

This meeting was organised by the Irish Mathematical Society and
the Mathematics Working Group of S.E.F.I. (Société Européan
pour la Formation de Ingénieurs) to coincide with and comple-
ment the S.E.F.I. Annual Conference, hosted this year by the
Engineering Faculty of University College, Dublin.

The meeting was held in UCD’s new Engineering Building
and the delegates were welcomed by the Dean of Engineering,
Professor V. McCabe. Then the chairman of the S.E.F.I. Mathe-
matics Working Group (S.M.W.G.), Professor L. Rade (Gothen-

burg) formally opened the meeting. The Ea.pers can be divided
into three (related) themes:

o curriculum and teaching developments
o current research in mathematics related to engineering
o use of computers in engineering mathematics

Curriculum and Teaching

A major reason for holding the meeting was to air the (nearly
completed) S.M.W.G. report on a core curriculum in engineering
mathematics.

P. Nuesch (Lausanne) (S.E.F.I.’s next president) spoke about
the need for mathematicians to adapt to the newer types of engi-
neering, for co-operation between universities in Western Europe
and in Fastern Europe, for S.E.F.I. and S.M.W.G. to address the
issue of mutual recognition of qualifications, as required by the
E.C. from 1993. ”

. E. Murphy (Limerick) addressed the issue of the role of statis-
tics in engineering education but with particular reference to qual-
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ity and reliability. He quoted a 1989 report by American Man-
agement Association which said that engineering students must
study more statistics to enable them to cope with these issues.
Attempts to reduce statistics to a black box package should be
resisted, rather we should ensure that our graduates have a good
scientific base, to enable them to benefit fully from the rest of
their ‘formation’.

G. James (Coventry), former chairman of the S.M.W.G. pre-
sented the report on the curriculum. Among the factors listed
were:

o need to balance theory and applications, analytic and
numerical methods

o need to provide coverage of mathematical ideas and
techniques of current applicability

o need to provide coverage of mathematical ideas that
will provide a foundation for future study

The document caused much discussion, and although gen-
erally welcomed, there were reservations about some its recom-
mendations. For example D. McHale (Cork) agreed that one role
of mathematics was to improve an engineer’s creativity, whereas
F. Hodnett (Limerick) was disappointed to see that special func-
tions had been squeezed out.

Addressing pedagogical issues, M. Attenborough (London)
argued that the concept of a system is fundamental to engineer-
ing, as it is to applied mathematics. And J. Kennedy (Dublin)
discussed the integration of numerical methods and computing
into mathematics teaching, and he illustrated some of the prob-
lems that packages implementing standard numerical methods can
give rise to if used without understanding.

Mathematics Related to Engineering
The papers presented on this theme were designed to illustrate
the type of mathematics that is currently used by mathematicians
when addressing engineering problems, and so may reflect back on
the engineering mathematics cwrriculum

P. Fitzpatrick (Cork) gave an illuminating talk showing how
aspects of abstract algebra and number theory are now finding
application in computer engineering. For example in coding the-
ory, cyclic codes draw on the rich algebraic structure of ideals,
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and convolution codes use an extended version of the familiar Eu-
clidean algorithm. Similarly in the study of IIR filters algebraists
have introduced a “signed binary redundant number system” to
ensure that the most significant digits in a calculation are those
that are calculated first.

A. Wood (Dublin) described a problem which originated in
the real engineering requirement of estimating leakage at bends
in optical fibres. His approach to this modern problem showed
how some very classical ideas in Applied Mathematics (Sturm-
Liouville problems, Airy functions, contour integration, Stoke’s
phenomenon) retain their relevance to engineering.

M. Newman and A. Roberts (Belfast) jointly described a
stochastic feedback control problem where the approach to the
solution depends on a spectral decomposition of polynomial ma-
trices.

P. Boland (Dublin) gave a brief review of reliability—a topic
that uses probability, statistics and caleulus.

Also on the topic of reliability, L. Rade {Gothenburg) de-
scribed his use of the symbolic algebra package MATHEMATICA for
doing calculations that arise in reliability theory.

Rade was followed by C. Wolfram from Wolfram Research,

the designers of MATHEMATICA. He gave anoverview of the pack-
age.

Computing in Mathematics Teaching

A number of case studies relating to this theme were presented.
In Eindhoven, computing is fully integrated into the early calculus
and linear algebra courses. J. Smits described how PC-MATLAB is
used as the vehicle to teach a first linear algebra course which
has matrix decomposition as its core. At present the course is
still examined in the traditional way, but they are moving to a
situation in which computing will be involved in that process too.

D. Sprevak (Belfast) described two prograims (FLIP and NAN-
oPT) that he uses to teach numerical optimisation to engineering
students.

In separate talks P. Boieri (Turin) and C. Mate (Madrid)
described their approaches to the introduction of computing into
engineering mathematics courses.

The concluding paper of the meeting was a well illustrated
talk by W. Schauffelberger (Ziirich) who described the Project-
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Zentrum IDA in the ETH in Zurich. This government financed
centre is concerned with integrating computers, especially work-
stations, into engineering and scientific education. Its aim is to
equip ETH with one workstation per five students by 1991 so Fhat
students can spend roughly one day per week on computer driven
tasks.

R. H. Critchley D.W. Levffis
Department of Mathematics Department of Ma‘thematl‘cs
University of Limerick University College, Dublin




A CONTEXT FOR ADDITION FORMULAE

P. D. Barry and D. J. Hurley

§1. Introduction

For a function w of a complex variable, an addition formula is
an explicit expression for w(¢ + «). This is less precise than an
(algebraic) addition theorem in which w({ + a), w(¢) and w(a)
are to be related algebraically [4, p. 440, 519 and 595].

The context that we have in mind for w is that of satisfying a
homogeneous ordinary linear diflerential equation. For some dif-
ferential equation of order 1, we find an addition formula pretty
much as we might expect, similar to that for the exponential func-
tion. However for a differential equation of order 2, we find that
there is a pair of addition formulae shared by two linearly indepen-
dent solutions, similar to those for the cosine and sine functions,
although this pattern is obscured when there is a constant so-
lution as then the addition formula appears to involve only one
function. More generally for a differential equation of order n > 2,
the method shows that there are n additions formulae shared by n
linearly independent solutions, although when there is a constant
solution only n — 1 seem to be involved.

§2 Basic Theory

We present our material largely in terms of second order equations
and consider

(2.1) pg(zv)w”(:’) + pr(2)w'(2) + po(2)w(z) =0

where pa, p1 and pp are functions analytic (holomorphic) in some
neighbourhood of v = 0 and py is not identically 0. If py(0) #
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0, then by continuity ps(z) is zero-free in some disc N(0,06); if
p=(0) = 0, then since the zeros of a non-constant analytic function
are isolated, there is some deleted disc N*(0,6) = {z: 0 < |z| < 6}
in which p2(z) is zero-free. Thus we can assume that py, p; and
po are analytic in N(0,6) and either

(2.2) pa(z) £ 0 forall z € N(O,8)
or
(2.3) pa(z) £ 0 for all z € N*(0,4).

Then [3, p. 34, 47-49], (2.1) will have a solution w on Ds where
in case (2.2) Ds = N(0,6) and in case (2.3) Djs is the slit disc

N(0,6) = N(0,6)\ {z:z=2,~6 <z <0}

For 0 < 5 < 6§/2, let us denote by D, the set of points in Ds
such that z is at a distance exceeding 7 from the complement of
Ds. Then Ds, is a domain and for ¢ € N(0,7) and « € D5, we
have ( + a € Ds.

Now let 177(¢) = w(¢ + ). Then corresponding to (2.1) we
have

(2.4) pa(C 4+ )W) + pr(C + )TV () + po(¢ 4+ o)W () = 0.

Tor a € Ds .y, clearly pa(«) # 0 and so ¢ = 0 i1s an ordinary point
of (2.4). ‘

Consgequently there is a fundamental set of solutions 1V7(¢, &),
115(¢, o) of (2.4) on N(0,n) satisfving

W0, a)=1, 1W/(0,a) =0
Wa(0,0) =0, T75(0,a)=1

and any solution of (2.4) on N(0,7) can be expressed as a linear

combination of these [2, p. 16]. Then for any solution w of (2.1)
on Dgs, we have that

w(C+ a) =W (¢, o)+ ol ((, &)

§
|
|

S

S B

f

A
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where ¢; and ¢y are independent of {. On putting ¢ = 0 we see

that ¢; = w(e); on differentiating once with respect to ¢ and then
putting ¢ = 0 we have ¢ = w'(). Thus

(2.6) w(( +a) = w(a)Wi(¢, a) + w' () Wa(¢, a)
for « € Ds, and ¢ € N(0,n). This shows the structure of an

addition formula for w.

We note moreover that (2.1) will have linearly independent

solutions wy and w, on Dy, and then by (2.6) we get the following
result.

Let wy, wy be linearly independent solutions of the differ-
ential equation (2.1) on Ds, and for « € Dy, let Wi, Wy be a
fundamental set of solutions of the differential equation (2.4) on
N(0,n) satisfying (2.5). Then we have the addition formulae

2.7) wi(C+ o) = wi(a)Wi(¢, @) + wi(a)Wa(C, @)
. w2 (C + @) = wa @)W1 ((, &) + wh(a)Wa((, a).

In the particular case when pq is idéhtically 0, 1.e.
(2.8) pa(2)w”(2) 4+ p1(2)w'(z) = 0

we take wi(z) = 1 and Wy(¢,«) = 1 identically. Then with the
same notation as before we have the following.

Let wy be any non-constant solution of the differential equa-
tion (2.8) on Ds, and for a € Ds,, let 1Vo be the solution of the
differential equation corresponding to (2.4), on N (0,7), satisfying

Wa(0,a) =0, WW5(0,a)=1.

Then we have the addition formula

(2.9) wa (¢ + a) = wa(a) + wh(a) (¢, a).
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§3. Examples of Full Type

There is a difficulty in providing examples that make a ready
impact, a difficulty which stems from our mcomple‘te knowlgdge
of differential equations. Although we may gtart with a famlhar
equation in (2.1), it is only too common th.:at‘ in the corresponding
(2.4) we cannot find a solution in any exph.mt formf and 1‘1ave not
any individual distinctive notation for functions which satisfy such
an equation.

As a well known example we could derive the addition forn‘luA
lae for the cosine and sine functions from the differential equation

w(2) + w(z) = 0

as is done in [2, p. 54]. We obtain a more substantial example,
containing this, as follows.

Example 1 Consider the equation
(3.1)  (as + baz)w"(z) + (a1 + biz)w' (z) + (ap + boz)w(z) =0
with as # 0. Let us denote by

(2) = Fi(ag, bs; ay, bi; ao,bo; 2)
wa(z) = Fy(as,ba; ar,b1; ao, bos =)

the solutions of this which satisly respectively

0)
0)

w(0) =1, wi( 0,
wo(0) = 0, wy{0) =1
Then by (2.7),

Fi(az, bo; a1, by ao,bo; C+a) =
Filas, by ay,by; ao, bo; @)
Fi(az + bocv, bo; ay + biov, by ag + boar, bo; €)
+ F{(az, ba; ay,b1; ao, bo; @)
Fu(as + baa, ba; ar + bia, by ao + ooy, ho; €)
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Falaz, ba; ar,by; ag, bo; ¢+ o) =
Fa(az, ba; ay,b1; ag, bo; )
Fy(as + baa, ba; ay + bia, by; ag + boa, by; ¢)
+ Fi(az, ba; ay,b1; ag, by; )
Fa(ag + baa, ba; ay + byev, by; ag + boa, by: ¢)

We could perform a similar analysis if in (3.1) we replaced
the coefficients by quadratic or cubic polynomials, or polynomials

of a fixed higher degree, or polynomials in exp z, or trigonometric -

polynomials.
Example 2 We can construct an example by taking

wi(z) = (1= 27", wa(s) = (14 )~
where b # 0, these being independent, solutions of
(1= =)w"(2) = 2(b + Dzw'(2) = b(b + Dw(z) = 0.
This is a particular case of the ultraspherical equation. The cor-

responding equation (2.4) does not seem to have a name, but we
can calculate

£,

M= [1=0)- 50 o+ )]
=32 Br-a= ey ar e e
(¢, a) = 1;;2 [(1 - 1fa)'b -1+ T&E ‘b]

where (b)o = 1, (b),, = b(b+ 1) .. (b+mn—1), for n > 1. Then
(2.7) applies.

§4. Examples of Restricted Type
In this section we deal with some examples of the type ( 2.8).
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Example 3 Consider the Euler homogeneous equation
(4.1) 22w (2) + (1 + b)zw'(2) =0
For it we take wy(2) = 1, W1 ({, o) = L for all z and (, respectively,

and L-b_1 _ fl s—t=1 s swhen b 75 0,
wa(z) = 111—3{) ,when b = 0.

The corresponding equation (2.4) can be written as
d?w ¢ dw

¢ —( A h— |
-+ (- 2) e 0w

which is of the hypergeometric type. In fact we note that when
b # 0, we have wh(a) = a=~! and
(4 b1
wy(¢ + o) — wa(a) = / s ds
«

¢ b—1
:a-b—l/ (1+t/a)™ "~ dt
0

[e]
(b + 1)71(1)71 n
R —Cla
=a IR+ 1,12 - (/a)
where o is the hypergeometric function [4]. Thus in this case

we have .
Wa(¢, a) = CFi(b+1,1; 25 =(/a)

for (2.9).

Now when b = 0 we can write
1 /
4. + o) = + —aln(l+ (/o
(4.2) ln(g~ a) Ina - n( ¢/ )

which identifies 1Vo((, @) = aws(1+ (/o) directly in terms of ws.
When b # 0 we can express

wo (¢ + o) = waler) + wg{ {1 +(C+a) - a“b} }
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in a similar fashion, but this more self-contained form seems ad-
ditional to what our general theory provides.

We can make a similar example from the differential equation
(1—2*)"(z) - 20zw'(z) = 0

for which we take

wa(z) = /Oz(l — %)=t s,

The cases
14z
1-—z

when & = 1 [including the arctan function on replacing z by iz],
and

wa(z) = % In

way(z) = arcsin z

when b = 1 are instances of this.
Example 4. Consider the equation

(a2 cos 2 + by sin 2)w”(2) + (ay cos z & by sin 2)uw'(z) =0
with as # 0, and denote by
Glas, bs; ay, by; z)
the solution w of this which satisfies w(0) = 0, w'(0) = 1. Then

on using the addition formulae for cosine and sine to expand the
coefficients in the differential equation, we find that

Glaz,bz; ag, by ¢ + )
7
= G'(as, ba; a1, by; )
* G(ag cos o + by sin o, —azsin « + bs cos a;

@y cos o + by sina, —aq sin o + by cos a; ().

Here G/(1,0; 0,~2; 2) = tan 2.
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§5. A Recognition.
We recall that for a non-homogeneous equation

pa(2)w”(z) + pa(2)w'(2) + po(2)w(z) = ¢(2)

a particular solution, obtainable by the method of variation of
parameters, is

f o “wy (B)wa(z) — wa(t)wi(z) H(t)
(5.1) wp(z)/o W (wr, ws; 1) 0 dt,

where W (w1, wo; ©) is the Wronskian. In the case where the coef-
ficients pa, p1 and po are all constant, this solution can be put in
the form of a convolution as we can express

w1 (Hwa(z) — wat)w(2)

(5:2) W(wy, wa; t)

1

)
)

in the form I (z — t) for an appropriate function K [1, p249].
the general case we ask if z enters in the form z —1, that is if (5.
has the form ¥(z —¢,1). On putting z — ¢ = { we see that (5.
equals

Ir
2
2

wi(t)wa (¢ +1) — wa(t)wr (¢ +1)
W(wy, wo; 1)

and on solving the equations (2.7) for 1W2((, @), we recognise this
as Wo(¢,t). Thus (5.1) can be written as

w- 7)) = ’ Volz — _?5_.(.2
p(~)——/0 Wa(z t,t)pz(t)dt.
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TOTAL NEGATION IN GENERAL TOPOLOGY

J. Matier and T. B. M. McMaster

To Professor Samuel Verblunsky, on the occasion
of his eighty-fifth birthday.

Introduction

A recurring theme in general topology is the pursuit of exam-
ples and characterizations, for each homeomorphic invariant P, of
those spaces which are hereditarily P in the sense that all of their
subspaces are P spaces. Implicit in this programme is the cor-
responding problem for hereditarily non-P spaces: indeed from a
purely logical standpoint the two quests are co-extensive since the
negation of an invariant is an invariant. There is however a practi-
cal difference between them because, with few exceptions, the in-
variants of principal interest are shared by all spaces of sufficiently
small cardinality; for each such invariant P this simple observa-
tion serves both to guarantee a supply of (admittedly superficial)
examples of hereditarily P spaces, and to disprove the existence
of hereditarily non-P spaces unless we modify the question by
choosing to disregard these small, “inevitably-P”subspaces. It is
from this modification that the study of total negation, surveyed
in the present article, arises.
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The topic has three historical roots, of which perhaps the
most obvious concerns connectedness. The one-point sets (and
only they) will be connected irrespective of the choice of topol-
ogy on the space surrounding them, and so the nearest we can
approach to a ‘hereditarily non-connected’space is one in which
the only connected subspaces are the singletons: that is to say,
a totally disconnected space. Secondly, the invariant ‘perfect-
ness’(absence of isolated points) gives rise to that of a heredi-
tarily non-perfect (that is, scatlered) space as one in which ev-
ery subspace possesses a (relatively) isolated point: there being
no ‘small’subspaces to disregard this time since every non-null set
can support a non-perfect topology. Thirdly, from the late ’sixties
onwards there has been increasing interest in those spaces (then
called pseudo-finite by Albert Wilansky [28] and cf by Norman
Levine [16], latterly anti-compact) in which only the finite subsets
are compact; as finite sets cannot carry non-compact topologies,
these are likewise as close as one can get to ‘hereditarily non-
compact’spaces.

In 1979 Paul Bankston published the pivotal paper [4] of
the study. Recognising the pattern in the previous examples,
he united them in initiating the general theory of anti-P spaces
(P here denoting an arbitrary invariant), meaning spaces within
which the only P subspaces were those whose cardinalities alone
guaranteed that they would be P. The same article presented
major contributions to the exploration of anti-compactness and
antil-sequential compactness which was already being actively pur-
sued (in different terminology) by Ivan Reilly and M.K. Vamana-
murthy, and of anti-lindeldf spaces and similar ideas. Reilly and
Vamanamurthy and their co-workers have played a central role in
subsequent developments on anti- P spaces, which have mostly fo-
cussed on the cases in which P is either a compactness condition
or a separation/regularity axiom.

We shall now give a detailed exposition of the elements of
the general theory of the “anti-”operation: this is derived from
Bankston’s article, together with presentational details of our own
which have proved useful in explaining the ideas to our colleagues
and to each other. This is followed by a survey of what has been
established (and by whom) about anti-P spaces for specific in-
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variants P, to be read in conjunction with the list of references
which we have endeavoured to make fairly complete. Lastly we
comment on our perceptions of possible further developments, in-
cluding projects we have in hand and some open problems.

The “Anti-"operation in general

Bankston’s operation is generally viewed as acting on classes
of spaces (closed under homeomorphism) rather than on home-
omorphic invariants (identified whenever co-extensive). This is
unlikely to cause any confusion since one may identify each in-
variant with the class of all spaces possessing it. We adopt the
convention of using the same name for the invariant and the class,
but spelling the latter with a capital letter. Thus, for example,
‘compact = lindel6f’and ‘Compact C Lindelof’are to be regarded
as interchangeable. We denote by Ry the cardinality of a count-
ably infinite set. Contrary to the practice of most writers on this
topic we choose not to allow 0 as the cardinal number of a topolog-
ical space, believing it more in keeping with general conventions
to insist that topologies be defined only on non-empty sets.

Each invariant P partitions the positive cardinals into (at

most) three subclasses spec(P), proh(P) and ind(P): for if « is
a cardinal then either every space of cardinality « is a P space,
or none is, or some are and some are not; we shall accordingly
describe « as specific, or prohibitive, or indecisive for P, and the
three types of cardinal constitute the subclasses to which we refer.
Clearly 1 ¢ ind(P), but this is the only restriction on the resulting
division:
Proposition. Let {S,P,Z} be a pairwise-disjoint covering of the
class of positive cardinals. There is a homeomorphic invariant P
for which S=spec(P) and P = proh(P) and I = ind(P) if and
only if 1 ¢ T.

Proof Given that 1 ¢ Z, choose for each i € Z a space X; of car-
dinality 7. If we call X' a P space when either X is homeomorphic
to one of the X; chosen or the cardinality [X| of A" is in &, then
P is as required.

It is usually an easy exercise to identify these subclasses for
a given invariant. We illustrate the ideas by the following table of
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simple but important examples. Note that spec(P) is known as
the spectrum of P.

P spec(P) ind(P) proh(P)
Connected {1} 2,) @
Perfect é [2,) {1}
Compact  [1,R¢) [N, ) ¢
Lindelof [1, No] (No, ) 9’1)

Infinite [Ny, ) ¢ [1,Rg)
Normal  {1,2} [3,) o)

A space X is called anti-P if, for every P subspace Y of
X, we have |Y] € spec(P). By Anti-P we understand the class
of all such spaces. One sees immediately that anti-connected =
totally disconnected, that anti-perfect = scattered, and that anti-
compact is as described earlier. Bankston’s key observations on
Anti-P in general are now summarised:

Theorem.

(i) Anti-P # ¢.

(ii) Anti-P is hereditary; that is, membership of the class is a
hereditary invariant. .

(iii) If P is hereditary then (a) spec(P)C spec(Anti-P), (b) P C
Anti-Anti-P.

(iv) Anti-P C Anti-Anti-Anti-P.

(v) Suppose spec(P) = spec(Q); then P C Q implies Anti-Q C
Anti-P.

Proof (i) Bearing in mind that 1 ¢ ind(P), the one-point spaces
either are or are not P: and in either eventuality they are anti-P.

(i) is immediate from the definition.

(iii)(a) Assuming P to be hereditary, consider a (P) subspace
Y of a space X for which |X| € spec(P). Any space Z having the
same cardinality as ¥ will be a subspace of some X; with |X;| =
|X|; thus Z will be P because X’ is, and we deduce that |Y| €
spec(P). This shows that X is anti-P, and so |.X| € spec(Anti-P).

(b) Now let ¥ be an anti- P subspace of a P space X. With P
being hereditary, ¥ must be a P subspace of itself, which implies
[Y] € spec(P). In view of (a) this shows X to be anti-anti-P.
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(iv) is immediate from (ii) and (iii)(b).
(v) again follows directly from the definitions.

Much use has been made of part (v) in particular, for it tran-
spires that there are many sets of important invariants having the
same spectrum and being implicationally related: for instance,
compact and countably compact; lindelof and o-compact; To, T3,
Ty, T3 and Tjy.

The enunciation of the other major result in this area, due to
Brian Scott, also appears in [4]. It asserts that every hereditary
class, apart from one easily-recognised set of exceptions, is of the
form Anti-P for some suitably chosen P. As far as we can de-
termine, its demonstration has never been published, so we were
obliged to prove it for ourselves. Subsequently Bankston sent us a
lot of information on the origin of the topic, which we acknowledge
with sincere gratitude, including details of Scott’s proof. Since it
differs substantially (albeit not radically) from our own, and in
view of the utility and striking elegance of the conclusion, we out-
line below our method of verification.

Scott’s Theorem. Let Q be a non-empty hereditary class, and
consider the following condition:
there is a positive integer n such
that n € spec(Q) and n+ 1 € proh(Q)...(*)
(I) If (*) holds, then Q is not of the form Anti-F.

(IT) If (*) does not hold, then

(i) @Q is of the form Anti-P, and

(ii) we can arrange that P shall have empty spectrum.
(1I1) If, further, proh(Q) = ¢, then @ = Anti-(Not Q).

Proof (I) Suppose that (*) holds and that Q = Anti-P. Every
space of cardinality less than n is a subspace of some n-element
space, and is therefore Q; thus {1,2,...n} C spec(Q). Now each
(n+1)-element set X is not anti-P, and must contain a P subspace
Y with |Y]| ¢ spec(P); contradictions follow whether ¥ is proper
or Y = X.

(I11) follows directly from the definitions, since

spec(Not @Q)=proh(Q)
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in general. In proving (II) we may therefore assume that proh(Q)
has a least element 3, and will be of the form [, ) since @ is
hereditary.

Case 1: ind(Q) = ¢. Here, g must be infinite. We propose
calling a space X f-schizoid if |X| = 3 and either it is Ty or f
is the least upper bound of the cardinalities of the point-closures
{Z}, =z € X. It is easily verified that spec(-Schizoid)=¢ and that
every space of cardinality not less than [ possesses a (-schizoid
subspace; it follows that Anti-#-Schizoid=Q.

Case 2: ind(Q) # ¢, and possesses a least element «. The
hereditary character of @ forces spec(Q) = [1, &), ind(Q) = [&, 3).
If B is infinite we can compromise between the two previous choi-
ces, by taking P to comprise the non-@ spaces with cardinalities
in [o, ) together with the S-schizoid spaces. If on the other hand
B 1is finite, choose a (8 — 1)-element non-@ space Y, form a -
element space Y* by adjoining a point to ¥ in any fashion, and
take P to comprise the non-@ spaces with cardinalities in [a, 3)
together with all f-element spaces except those homeomorphic to
Y*. In both eventualities it is easily seen that spec(P) = ¢ and
that Anti-P = Q.

Problem: under what conditions on ) will there exist a
hereditary property P such that Q = Auti-P?

Specific Anti-Properties

We shall first summarise what is known about anti-properties de-
rived from compactness and from related conditions, under four
sub-headings: sources of examples, operations which preserve the
conditions, characterizations, and implications between them.
Examples Let N denote the set of positive integers. Tor any
p in SN\N,N U {p} is anticompact {28]. So are the discrete,
the co-countable, the included-point topologies, and the topology
of decreasing sets on N [16]. The MI spaces of [11], of which
many connected T3 examples can be constructed [1], are anti-A
compact for every cardinal A, and therefore anti-compact and anti-
lindeldf in particular [14,26]. The Ty ‘P’-spaces (those in which
each countable intersection of open sets is open) are anti-compact
[4], and exist in abundance (see, e.g., [3], [20]). An example is
known of a connected 731 anti-compact space [4].
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Preservation Open bijections, finite products, and finite unions
of open or of closed subsets preserve both anti-compactness [16]
and anti-sequential compactness [12,22]. Indeed, arbitrary unions
of open subsets preserve anti-compactness, and so any locally anti-
compact space is anti-compact [21]. “Compact covering”maps
(continuous maps for which each compact set in the range is the
image of a compact set) preserve anti-compactness, and likewise
the anti-lindeldf property is preserved by “lindeldf covering” maps,
as well as by open bijections and finite products [4]. Infinite prod-
ucts preserve these properties only when cofinitely many factors
degenerate [4,22], but stronger preservation behaviour obtains for
various modified products (box products, topological ultraprod-
ucts, see [4] for details).

Characterizations The condition:
for each point p and each infinite set A, p has an

open neighbourhood G such that A\G is not compact
is equivalent to anti-compactness [22]. If we change compact to
‘countably compact’/finite’we obtain characterizations of anti-
countable compactness [23]/anti-sequential compactness [22]. Al-
ternatively, change infinite to ‘uncountable’and compact to “lin-
deldf’and a local characterization of anti-lindeldf spaces arises [23].
An analogous description [24] of anti-semicompactness is founded
by replacing open by ‘semi open’and compact by ‘semi compact’.

The condition ‘no sequence of distinct points has a convergent
subsequence’is necessary and sufficient for anti-sequential com-
pactness [22]. Among first-countable spaces, anti-compactness
and anti-sequential compactness coincide, and are then identified
by each point possessing a finite neighbourhood [12] or, equiva-
lently, by no sequence of distinct points having a cluster-point[16].
Among T» spaces, the anti-compact ones are those whose co-
compact reflections are cofinite: for further details on this and
related matters see [8]. Anti-anti-A compact and anti-anti-anti-
) compact spaces (for regular cardinals A) have also been char-
acterized in [23]: the most striking results being that anti-anti-
compact /lindelf is the same as hereditarily compact /lindelof, and
that every Th space is anti-anti-anti-compact. This is echoed by
the observation that the anti-anti-semi compact spaces are the
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hereditarily semi compact ones [24]. The Stone-Cech remainder
BX\X of a Ty space X is anti-compact if and only if ¥ is 7} for
all Y such that X CY C 8X [5].

Implications

The ‘mainstream’connections (see [23], also [12]) are: anti-
pseudocompact (a — 9ep) implies anti-countably compact (a —
ccp) implies anti-compact (@ — cp) implies both anti-sequentially
compact (a—scp) and anti-o compact (a—ocp), anti-lindelof (a—£)
implies a — cp, a — cp implies anti-semicompact [24]. Many recent
developments [15] centre on the ideas of a bounded subset of a
topological space, i.e. one for which each open cover of the space
has a finite subcover of the set, and of a bf space as one in which
every bounded set is finite; the cbf spaces are defined similarly but
considering only countable open covers; the essentially-compact
(e — ¢p) spaces [10] are those possessing a bounded dense subset.
Lastly, the cid spaces ([25]; also called A-spaces [21]) are those in
which each countably infinite subset is discrete. The relationships
between these concepts are summarised in the following diagram.

pr
$
o
a-fcp cbf [ cid I ’a-(e—cp)l MI I

L= ]

p{\ a-g

aecp | | s-sentee] | e |
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The converse implications are generally false, and counterexam-
ples will be found in the literature cited. Known partial converses
are: @ — scp implies a — cp for first-countable spaces [12] and for
spaces of small infinite cardinality ([22], see also [17]); @ — ¢p im-
plies bf for regular spaces and for those in which every bounded
set is closed [15]: bf implies anti-(e — cp) for T} spaces [15].

There is also a small group of results indicating ‘how close’cer-
tain types of space are to being discrete: we mention a —cp-+T1+
first-countable implies discrete [16], a — cp + T» k-space implies
discrete [4], a — sep+T1+ sequential implies discrete [22]. Miscel-
laneous implications include a — cp+ first-countable implies satu-
rated [12], a — £+ a — scp+ T implies @ — cp, and @ — cp+ T Im-
plies anti-pathconnected [4]; c¢id implies anti-separated, and anti-
anti-compact implies anti-cid implies finite or not T [25]. Also a
Ty space in which every set with dense interior is open must be
a — ccp [27], a space whose compact subsets have empty interiors
and whose topology is maximal with respect to that property is
a — cp [18], and anti-anti-bf does not imply bf [15].

Lastly we examine the total negation of the axioms of separa-
tion and regularity, where in contrast to the preceding discussion
the situation is almost disappointingly simple. In [23] it is shown
that the anti-Tp spaces are the trivial (indiscrete) ones,while for
P =TTy, Ts, Ts-;- ,Tu, Ts, metrizable or discrete, anti-P coincides
with nested (each two open sets are comparable). Also anti-trivial
equals Ty and anti-nested equals T7. For P = complete regularity,
regularity, or the weaker axioms Ry or Rp [6], the anti-P spaces
are those which are Ty and nested. The anti-normal spaces, identi-
fied in [9], comprise the one- and two-point spaces and the unique
non-normal three-point space.

Future developments

The area is quite rich in unsolved (even unposed) problems
and possible lines of further investigation. Many standard in-
variants as yet have no published characterizations of their to-
tal negations: we have for example encountered no references to
those of local compactness, paracompactness, realcompactness,
local connectedness, connectedness im kleinen, first countability
or complete separability, nor (apart from the result mentioned
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above) to that of separability. Our own preliminary investiga-
tions show that some at least of these can be dealt with fairly
simply; a sample conclusion is that the anti-completely separable
spaces are precisely the finite ones. Turning to separation ax-
loms, nothing appears to be known of the ‘anti’s’of those lying in
logical strength between 7% and T [28]. We have checked sev-
eral between Ty and 77 [2], where the evidence is that the trivial
spaces form the anti-class of most if not all of the known ones. An
intriguing set of questions in the general theory concern whether
it is possible to find a class P so that the classes in the sequence
P, Anti-P, Anti-Anti- P, Anti-Anti-Anti-P, ...

are all distinct, or include infinitely many distinct ones, or include
arbitrarily long lists of distinct ones. We have been able to an-
swer these in the negative by proving that, for any choice of P,
the sequence contains at most four distinct classes, which recur
in one of seven simple patterns [19]. Finally, it could be worth
raising corresponding questions (if it has not already been done)
in areas other than topology. Is there a significant body of knowl-
edge concerning anti-abelian groups? anti-distributive lattices?
anti-noetherian rings? anti-precompact uniformities?
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A SURVEY OF SUBNORMAL SUBGROUPS

James J. Ward

Introduction

Since the appearance of Helmut Wielandt’s fundamental paper
[27] over fifty years ago, much progress has been made in the
theory of subnormal subgroups thanks to the contribution of many
distinguished group theorists.

A comprehensive and masterly exposition of the theory of
subnormal subgroups is due to Lennox and Stonehewer. The pur-
pose of this article, based on a talk given at “Groups in Galway”
1s to present some of the remarkable results in the theory without
encumbering the general reader with technical details or proofs.
The selection of topics is not exhaustive and reflects a bias of the
author, but it is hoped to whet the appetite of the reader, who
is referred to Lennox and Stonehewer [12] in the first instance.
Notation is standard and follows that of Lennox and Stonehewer
[12] or Robinson [22].

Definition. If H is a subgroup of a group G such that
tT'He=H VzedG

then H is normal in G, written H « G.

If L «H and H <G it does not follow that L <« G, i.e. for
subgroups of a group normality is not a transitive relation, as can
be verified by examining the alternating group on 4 letters, Ay, for
instance. This may serve as motivation for the following relation
on subgroups which ¢s transitive:
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Definition. A subgroup H is subnormal in a group G if H occurs
as a term in a finite normal series

H:quHm_lq“-qHO:G (*)

from H to G, where H; < H;_| for each ;.

Notation: H 141G or also H sn G will mean H is subnormal in

G.

Definition, The length of the shortest normal series from H to
G is called the defect of I in G, written def(G, H).

Definition. The normal closure of H in G, % s (H99 €
G), the group generated by all the conjugates of the subgroup
H(HY := g~ Hg), and this is of course a normal subgroup of G
It is the smallest normal subgroup of G which contains H.

Thus if H is subnormal of defect m in G, we see that
HY < Hi<Hy =0,
Replacing G by H; we get
HH <Hy<aH,y

Iterating this process, we see that by taking successive normal
closures, in at most m steps the process terminates with arrival
at H,, = H.
Notation: Put Hy = G, set H(z’+1) = HH6) then Hay=HY <
Hy (as in (*) above) Hpy = HHo < i < Hy and in general
H(z-) < H;, the ith term in the normal series (*).

The series H;y is the most rapidly descending series from G
to H, and H 1<G if and only if H = H;y for some 7 > .

Examples:
(i) Al normal subgroups of a group are subnormal of defect

(it) Subgroups of order 2 in Ajs have defect 2 in As.
(iil) In Dym o (a,8]a®"™ ™" = 42 = 1 p=14p — a”l),m > 3 the
non—central subgroups of order 2 have defect precisely m — 1.
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Some elementary facts concerning subnormal subgroups are:
(1) Transitivity: If H <K and K <<(’ then H <<G.
(1) If H <G and 6 is a homomorphism of G onto G¥, then H <
<2G? | moreover def(Gg,H‘g) <def(G, H). ‘
(i) If H «<G and K is a subgroup of G then

HN K<<k  and def(K,H N K) <def(G,H)

(iv) If H<4G then Ng(H ), the normalizer of H in G Agly™'Hyg =
H} is strictly larger than  i.e. Na(H) > H (the converse of this
fact is false in general). Of course N (IT) is the largest subgroup
of G which contains H as a normal subgroup.

(v) If each member of a (finite) collection of subgroups H; is sub-
normal of defect at most % in G, then

4
J

is also subnormal of defect at most  in G. (If the defects of the
H; are not bounded then an example on p.373 of Robinson [22]
shows that (v) is false without this condition.)

Some of these facts (1), (ii1), (iv), (v) are valid also for normal
subgroups.

On the other hand, whereas normal subgroups have the prop-
erty of permuting with elements of G (N 4G, then Ng =ygN) and
thus with subgroups of & (N<G,H < G then NH = HNY), this is
not usually the case for subnormal subgroups. Another fact con-
cerning two normal subgroups Ny, Ny of a group (' is that Ny N,
is also normal in G. This leads to the earliest but most famous
question concerning subnormal subgroups.

The Join Problem

Let H, K be subnormal in G. Under what circumstances will
(H, K)—the join of H and K—be subnormal in G? This problem
has been the subject of intense tesearch, starting with Wielandt’s
fundamental paper in 1939 [27)/and culminating with a remarkable

result of J.P. Williams [32].




A Survey of Subnormal Subgroups 41

In 1939 Wielandt proved that if G is finite and H, K are sub-
normal in G then (H, K) is also subnormal in . Thus the set
of subnormal subgroups of a finite group G forms a sublattice of
the lattice of all subgroups of a finite group G. In fact Wielandt
showed the result was true provided G satisfied the maximal con-
dition for subnormal subgroups maz-sn whereby every strictly as-
cending chain of subnormal subgroups of G has finite length, (so
every non—-empty set of subnormal subgroups of GG contains a max-
imal member). In the case of G finite there is an elegant proof
due to Kegel, using induction on the order of G, see [12] p.8.

A criterion to guarantee subnormality of (H, K') when H, K «
<G is that K should normalize H i.e. K < Ng(H) (**) One shows
that K normalizes H;y and since A <Q<4H-1)K and Hi<H;_hK
one obtains H;) K <<l ;1)K with defect < def(G,K). In fact
def(G,J) < def(G,H)-def(G, K). The next result is useful also.

Lemma. Let H, K 4<G. Put J = (H, K) then the following are
equivalent:

(i) J <<G,

(i) H¥ (= (H*|k € K)) «<G and

(iii) [H, K](= ([h, k(= h~*k~1hk),h € H, k € I)) a«<G.

Since [H, K]« HX 4 J one only has to show (iil) = (i). (See
(12] p-4)

If G is a nilpotent group of class ¢, that is, if

[G,G,...,G]=(1)

c+1G's

then every subgroup of G has defect at most c¢. In particular if
G'" =[G, G] is nilpotent then from part (iii) of the Lemma above
it follows that for any subnormal subgroups H, I\ of (G their join
is also subnormal. A generalization of Wielandt’s result is due to
Robinson [19].

Theorem (Robinson). Let H, K <<G and suppose G’ satisfies
maz — sn. Then J := (H, K) <<G.

Another easy criterion—a companion to (**)—is the follow-
ing:
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Lemma. Let H,K<<G and putJ = (H,K). If HK = K H then
J <G,

(Of course, KH = HK does not imply that K < Ng(H).)

So it is clearly of interest to the join problem to determine
conditions under which H and K permute. (If J equals HK H
then in fact J equals HK, but a counterexample due to R.S.
Dark [12] p.20 shows that one can have H, K <<G,J = HKHK
but J not subnormal in G!) A famous permutability criterion is
due to Roseblade [23].

Theorem (Roseblade). If H and K are subnormal subgroups
of a group G such that the tensor product of the abelian groups
(regarded as Z-modules)

H/H' Q) K/K'

is trivial (one says H is orthogonal to K, written H LK) then
HK = KH, and thus (H,K)<<G. Moreover if H and K are
not orthogona] then there exists a group Gy such that H ~ Hg<
<1G’07 K~ [XQ <l<lG0 and H()[xo :,lj: IXOHO

In 1958, Zassenhaus [33] published an example [Exercise 23,
Appendix D in his book “Theory of Groups”] showing that the
join of two subnormal subgroups could fail to be subnormal. The
group G constructed by Zassenhaus consisted of a module with a
specially defined basis, over Z, extended by suitably chosen auto-
morphisms. This group was countable and abelian by nilpotent
of class 2 i.e. G/A was nilpotent of class 2, with A abelian. Two
subnormal subgroups H, K each had defect 3 in G and their join
(H, K) was nilpotent of class 2 but not subnormal in G since one
shows J = (. (See also Robinson [22] p.375.) It is worth re-
marking that in an example H cannot have defect 2 since then
H<aH%aG and so HX 9« HS <G, K normalizes HX and one would
get J = (H,K)<<G. So in an example the defect of H(I') must
be at least three which is the case in the Zassenhaus example.
Also G’ is not abelian and neither is J. Thus in some respects
Zassenhaus’ example is the minimum one can get away with!
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To conclude with a necessary and sufficient criterion to ensure
that the join of a pair of subnormal subgroups is subnormal, the
following is a result of J.P. Williams [32]:

Theorem (Williams). Let H, K be groups:

(i) If H/H' ® K/K' (as an abelian group) is the (direct) sum of
a group U of finite rank and a periodic divisible group V (c.f.
Robinson [22] pp. 94-97) then (H, K) is subnormal in all groups
in which H and K can be subnormally embedded.

(ii) Conversely if H/H' @ /K’ does not have the structure in (i)
as an abelian group, then there is a group G containing H, K as
subnormal subgroups such that (H, ) is not subnormal in G.

The proof of this theorem (which is the subject of chapter 5 in
[12]) involves extensive development of ring-theoretic machinery
first introduced by Philip Hall in the 1950’s.

The Wielandt Subgroup

In [1] Baer defined the “Kern” of a group as the intersection

() Ne(H)

HLG
of the normalizers of all the subgroups of GG. In 1958, Wielandt
[28] considered an analogous intersection

w(G)= (] Na(S)

SqaG

i.e. the intersection of the normalizers of all the subnormal
subgroups of G.

Whereas w(G) may equal (1) as in the case of G = Dy
the infinite dihedral group, Wielandt proved the following rather
surprising results [28].

Theorem (Wielandt). If |G| is finite then w(G) # (1).

Theorem (Wielandt). Let G be an arbitrary group. Then
w(G) contains
(1) every simple non—abelian subnormal subgroup of G and
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(ii) every minimal normal subgroup M of G where M satisfies the
minimal condition for subnormal subgroups. (min — sn).
[Indeed, if G satisfies min— sn then Robinson [20] has shown that
|G : w(G)| is finite.]

If G is a finite group, then w(G) # (1). Consequently
w(G/w(G)) # (1).

Setting wo(G)) = (1) and wip1(G)/wi(G) = w(G/wi(G)), for
some finite 7 one will have w;(G) = G. The smallest such i is
called the Wielandt length of the group G.

The Wielandt subgroup has been the subject of a paper by
Camina [4] in which he investigates relations between the Wielandt
length, derived length and Fitting length for a finite soluble group
G. This work has been improved by Bryce and Cossey [3] who ob-
tain best possible bounds for both the derived and Fitting length
of a finite soluble group in terms of its Wielandt length. Ca-
solo [8] has extended these results to infinite soluble groups of
finite Wielandt length. Another result concerning the Wielandt
subgroup due to Brandl, Franciosi and de Giovanni [2] is the fol-
lowing

Theorem. Let G be a polycyclic group (G has a normal series
with each factor cyclic) which is either

(a) metanilpotent (an extension of a nilpotent group by a nilpotent
group) or

(b) abelian by finite. Then w(G)/Z(G) is finite.

The Wielandt subgroup also has the property that since w(G) <
G, a subnormal subgroup K of w(G) is subnormal in ' hence
Ng(K) > w(G) thus K «w(G). In other words, w(G) is a group
in which normality is a transitive relation. Such groups are called
T-groups and for groups in this class G = w(G), and all subnormal
subgroups of GG have defect 1. Finite soluble T-groups have been
classified by Gaschiitz [9], and Robinson [18] has shown that in
fact every soluble T—group is metabelian.
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Groups with every subgroup subnormal

Of course, if G is an abelian group, then every subgroup of G
is subnormal. More interesting is the case of non—abelian groups
with every subgroup subnormal.

Suppose first G is a non-abelian group with every subgroup
normal, then G is a non—abelian Dedekind group and the struc-
ture of G is described in [Robinson, [22] p.139]; for instance Qs is
an example of a non-abelian Dedekind group.

In view of the fact that if G is a nilpotent group of class
c then every subgroup of G is subnormal with defect at most ¢,
Roseblade [24] was able to show that if G is a group in which every
subgroup is subnormal of defect at most d then there is a function
f(d) such that G is nilpotent of class at most f(d). A specific
result of Heineken [10] and Mahdahvianary [14] in this area is the
following: If all cyclic subgroups of GG have defect at most 2, then
G is nilpotent of class 3.

However, a celebrated example due to Ieineken & Mohamed
[11] shows that there are groups G in which every subgroup is
subnormal (but there are no bounds on the defects) and Z(G) = 1,
so (¢ is not even hypercentral. Moreover, for H < G one has
Ng(H) > H, ie. G satisfies the so—called normalizer condition,
whereby every proper subgroup of (& ista proper subgroup of its
normalizer.

Casolo [6] has shown that if G is a group with every subgroup
subnormal, then for some n, G = G®+1) je. the derived series
breaks off after finitely many terms. Recently Mchres [16] proved
that a group G with every subgroup subnormal is in fact soluble.
It would appear that groups in the class of groups with every
subgroup subnormal, are in fact metanilpotent.

The class of B, groups G in which subnormal subgroups have
defect at most n has been investigated. B; groups are the afore-
mentioned T—groups, in which normality is a transitive relation.
Since simple groups trivially are Bj—groups, one restricts atten-
tion to soluble B, —groups. An interesting problem is to try and
bound (if possible) the derived lengths of soluble B,—groups in
terms of n. Examples due to Robinson [21], show that even in
the class of By—groups all derived lengths can occur (using a con-
struction based on iterated wreath products) but these groups are
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torsion free. In the case of periodic soluble By—groups Casolo [5]
has shown that they have derived length at most 10. In the case
of finite soluble By—groups Casolo has shown that they have de-
rived length at most 5 and Fitting length at most 4. An example
of McCaughan and Stonehewer [13] shows that this last result of
Casolo is best possible. Thus there is much scope for investigat-
ing the interrelationship between the derived length and Fitting
length of soluble periodic Bp—groups.

Criteria for Subnormality

Let H be a subgroup of G. Suppose that HK = KH for any
subgroup K of G, we say H is a permutable subgroup of G or H
is quasinormal in G, written I per G. Clearly normal subgroups
are permutable. Not every subnormal subgroup is permutable
(one can verify this by examining A4). Not every permutable
subgroup is normal, if G = (a,bla® = b = 1,07 ab = a5) then
(b) per G, but (b) is not normal in G. Ore [17] showed that a
maximal permutable subgroup of a group G is normal in G and
as a corollary one obtains that a permutable subgroup H of a finite
group G is subnormal in G. This corollary has been extended by
Stonehewer [25] to finitely generated groups.

A more restrictive form of permutability is that of permuting
with conjugates i.e. VV9 = VIV for all g9 € G. A result of Ore
[17] and Szép [26], is that in a finite group & such a subgroup V
which permutes with its conjugates is subnormal in . Wielandt

[29] has considered similar criteria and the following Theorem is
due to him.

Theorem (Wielandt). Let G be a finite group and A, B sub-
groups of G such that

AB® = B*A forall zeq@.

Then

(i) If G = AB® = BAS then G = AB,

(i) A 0 BA a«G.

(i) If AB < H < G then A" O BY q4G.

(iv) If XY are subsets of G then (A%, BY] <G,
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Another result of Wielandt’s follows: First note that if N <G,
then (i) N < (N, g)Vg € G and (ii) [n,g9] € NVy € G. Moreover
the converse of (i) or (ii) implies N <« G. If H <« <G then clearly
(1) " H<«<{H, g)Vg € G and (ii) ’ for any g € G and sonie positive
integer n and h € H,[g,h,...,h ] € H. Wielandt [30] has shown

n h's
that for finite groups (i)’ and (ii)’ are each sufficient for H to be
subnormal in G.

Theorem (Wielandt). Suppose H < G and ( is finite. Then
the following are equivalent to H <<G':

(i) H<<(H,g9) YgeG

(ii) H a<(H,HY) Vge€G.

(iii) H<<(H,H") Yhe H gegG.

To conclude our survey we mention the subnormalizer of a
subgroup. The normalizer of a subgroup H in a group G, Ng(H) =
{9 € G|H<(H,g)}, and H aG < Ng(H) = @. Consider the fol-
lowing:

Definition: Denote by S¢(H) = {y € G|H <<(H,g)} the sub-
normalizer (in G) of the subgroup H.

One must note that in general Sg(H) is not a subgroup!
Take H = ((12)(34), (13)(24), (14)(23), (12)) and K = ((23)(45),
(24)(35), (25)(34),(25)). Then |H| = |K| = 8 and they are Sylow
2-subgroups of S5, the symmetric group of degree 5. |[HN K| = 2
and H N K = ((34)) is not subnormal in S5. Of course H N K «
<H, K. If the subnormalizer of H N K were a subgroup, it would
contain # and K and hence would contain (H, K') which is Ss,
a contradiction, because H N K is not subnormal in S5. In this
example HK # K H as subsets. The following result shows when
the subnormalizer is a subgroup.

Theorem (Maier [15], Wielandt [31]). Suppose G is a finite
group and G = AB with A,B < G. If H 9<A and H < <B then
H <G,

Thus in a finite group G whenever H «<l/, H « <V(H, UV

subgroups of G) implies H <« <(U, V) then Sg(H) is a subgroup.
Wielandt [31] has formulated a number of conjectures regarding
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criteria for subnormality of a subgroup H in the finite group G
where G = AB for subgroups 4 and B.

The Class of s,—groups

Call G an s,—group if the subnormalizer of every subgroup of
G is itself a subgroup. For any =lement 2 in a group &, denote by
Eg(z)={9€Gllg,z,...,z ] =1 for some n € N}. If we denote

[
n o'ls

by E—groups the class of groups in which E¢ () is a subgroup for
every z in G then a recent result due to Casolo [7] is the following:

Theorem (Casolo). Let G be a finite group. Then G is an
sp—group if and only if G is an E—group.

In addition, Casolo has proved that a finite group G is an s,,—
group if and only if the intersection of any two Sylow subgroups
of G is pronormal in G, whereby a subgroup H is pronormal in G
if H is conjugate to H9 in (H, H9). Thus as the reader can see,
there are new areas of investigation in the theory of subnormal
subgroups which yield surprising connexions with other topics in
group theory such as Engel elements or pronormality.
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EXACTNESS IN ELEMENTARY
DIFFERENTIAL EQUATIONS

Robin Harte

ABSTRACT A simple pattern {rom linear algebra is present
in linear differential equations, recurrence relations and matrix
theory.

HT:X —Yand S:Y — Z are abelian group homomor-
phisms we shall call the pair (S, T") (left,right) one-one ([3] Ch 10)
if there is inclusion

0.1 $71(0) C T(X),
and exact if in addition
0.2 ST = 0.

Sufficient for (0.1) is that there are homomorphisms 77 : ¥ — X
and S : Z — Y for which

0.3 S'S+TT = I

when 77 ¢ X — Y and § : Y — Z are continuous homomor-
phisms of topological groups, or linear between vector spaces, we
shall require that S and 7" are also continuous, or linear. If in
particular

A X X -
£ =" X — =(- : ] = X
0.4 T_(B>.)& <X>,S (=B A) ()&)
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then condition (0.1) takes the form
0.5 Ax:By:>a::Bz,y:Az,
while condition (0.2) reduces to commutivity
0.6 BA = AB.
From (0.5) it follows in particular that
0.7 B~1(0) C A B=Y(0) ,
and hence also that
0.8 (BA)™H(0) € B71(0) + A~Y(0) .

Already this captures a familiar observation (2],[4] about lin-
ear equations with constant coefficients : with D : X — X
the operation of differentiation on the space X = C(Q) of in-
finitely differentiable real, or complex, functions on an open inter-
val 2 C R, we have

Theorem 1. If p = g¢r is the product of polynomials ¢ and r
without nontrivial common factors then

1.1 P(D)TH0) = ¢(D)}(0) + r(D)~X(0).
Proof. The Buclidean algorithm gives polynomials ¢’ +' for which
1.2 ¢'qg47'r =hef(g,7) =1

since everything commutes we can now argue, with A = ¢(D),

B =r(D), A" = ¢(D) and B' = +/(D),
By =0=y=AAy with BA'y = 4By =0
and hence
BAr=0= 2= (I - A'A)x+ A4z € A71(0) + B~10).

This is inclusion one way in (1.1), and the reverse is clear o
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Something very similar to Theorem 1 is relevant to elemen-
tary matrix theory: if p(A) = 0 and p = ¢r with hef(g,7) = 1
then [4]

1.3 q(A)7H0) = r(A)(X).

With ¢ = (z — A)* and r()\) # 0 this shows that the eigenvectors
of A lie in the column spaces of related polynomials 7(A). The
conditions (0.2) and (0.3) say something about the solution of
equations with coefficients S or T':

Theorem 2. If

2.1 S'S+TT' =1 and ST =0

and

2.2 TT+WW =1and TW =0

then

2.3 Te=b=a=T0+WWbeTb+T1(0)
and ;

2.4 r=Tb= Te=(I-55)

Proof. Cleare

The operations of differentiation and integration fit together
in the pattern of (0.2) and (0.3): if 0 € Q define operators D, D'
and J on the space X = C°°(Q) by. setting

il%gﬁ ; (D'z)(t) :/ z(s)ds ; (Jz)(t) = 2(0) ;

s=0

2.5 (Dx)(t) =

then evidently

2.6 DD'=I=D'D+Jwith DJ =0=JD".

=
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If f € X is arbitrary define multiplications Ly and E} by setting

2.7 (Lpa)(t) = fF(d)a(t) 5 (Epz)(t) = /D) ;

then also

2.8 LgL‘f = Lgf = Lng 3 JLf = LJfJ 3 JEf = E,]fJ
and

E-jEs=1=E;E_;;
2.9 DLy =L;D+Lpy;
DE; = E¢4(D+ Lpy).

It is clear that we can take T'= D in Theorem 2 to obtain the
familiar form of the solution of the equation Dz = f; the same
extends to the first order linear equation:

Theorem 3. If T = D + Lpy then

3.1 TT' =1 =TT+ WW' with TW =0
with
3.2 T/:E_fDlEf ; I’V:E-_fj; T"V’:Ef .

Proof. Again cleare

For second and higher order linear equations there is the tech-
nique of variation of parameters: we claim that this also can be
described by Theorem 2 . The ideas are clear from equations of
order two:

Theorem 4. If T = D? + Ly D + L, is second order linear with

4.1 T7H0) = D (0)f + D™ (0)g
then

4.2 TT =1=TT+WW' with TW = 0,
where
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y D'Ly, 0 —L,\ .

43 W = (L;sJ LyJ);
T — Lpy —Ly I
W= L (-Lpf Ly J\D
with
~ foy
4.4 1/h = det H with H = (Df Dy )

Proof. We follow the usual “variation of parameters” argumenAt,
noting that the Wronskian matrix H must be invertible, and in
effect make the familar substitution:

U 1 .. D 0 Uy _ [0
4.5 LH<V>: D , giving Ly 0 D v)=\1]

It follows
D'DUN _ (D' 0N (0 _ (D 0><L¢>T
DDV )T\ 0 DJTHXT)T\ 0 D )\Ly
C1VIng
s U\ _ (D 0\ /(L T+<J o)
V)70 D)\ Ly 0 J

and hence

46 = (L; Lﬂ(% g) <1€Z>T+
(Lj Lﬂ(g 3) <€;>

This gives T'T + WV’ = I; it is left to the reader to check
that TW =0 and 77" = Ie
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Of course the coefficients p and ¢ in the operator 7" are de-
termined by the complementary functions f and g:

v w0

We can make a similar analysis of recurrence relations. Define
operators U and V' on the space of all real sequences by setting

4.8 (Va), = 2p41, (Uz)o =0 and (U2)py1 = 2, ¢
these are the backward and forward shifts, and satisfy
4.9 VU=1=UV+K with KU =0=VK

bl

where (Ka)o = 2o and (Ka),41 = 0. If we introduce operators
Ly, Ey and M by setting

(Lpl’)n = Pnln,

4.10 (Ep)o = 2o,

(Ep®)ng1 = pop1 .- Pnngi,
(Ma), = 2021 ... 2,
then
411 Ly By = Larp, VI9Lp = Ly, V, UL, = LupU, VE, = L, E,V
and hence

4.12 (V= Lp)Ep = LyE(V — 1),

The first order linear recurrence relation is the equation (V —
Ly =q:

Theorem 5. If ' =V — L, then
5.1 T =TI =7'"T + Epd with TE,J =0,

where (J), = 2o and

5.2 T'(xo, 21, 20,...) = (0,20, preo+ 21, popr g +pazitao, .. ).
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Proof. Cleare .
We can see analogy with differential equations if we write

53 D=V-I, D =SU = S~1Iwhere (Sz), = zo+21+. . .+2Zx,

giving

5.4 DD'=I=DD+Jwith DJ=0=JD".
If p, never vanishes we have ‘

5.5 T = E,ﬁE;l U=WU

where

Wi(zo,zy,22,23,...) =
5.6 (20, poro + 1, P1Po%o + P11 + T,
Pap1PoTo + papi®y + Pala + &3, ...
Note also
5.7 VI]=J JU=0, SU=US (V-1)S=1V.

In higher dimensions suppose 2 C R? is open connected and
“starlike” with respect to 0 € R3, and look at ([1] Ch 5 §3) dif-
ferential forms

5 L
5.8 w = wy + Z Z wida; (LLJ e XN = (C%()

r=1|jl=r

and differentiation
5.9
3 3 3 2
D :wo + Z Z wide; — Z Diwodz; + ZZ Z Diw;ides; ;
r=1]j|=r i=1 i=1r=1|j|=r

here (Dyf)(a) = lim—o(f(ar + ¢, as,a3) — f(a1,as,a3))/t ete.
(partial differentiation) and da;; = da; A duy (exterior multiplica-
tion). Diagrammatically:

5.10

, D, Di 0 Ds
|-ps 0 D | b,

gD 7D2 Do) 3\x 0 s P }x D/
X X

58 IMS Bulletin 25, 1990
Since the D; commute, this sequence forms a “chain”. The ho-
motopy H is derived from multiplications L; and moments Sj

(weighted radial averages), given by

1

S (L) = @), (S = [ 87
t=0
specifically
Huwy =0 ;
5.11

H(widwy +wadzs 4+ wades) = (Sywi)wy + (Siws)zs + (Syws)zs ;

H(wiadzys 4+ wisde s + wozdeas) =
(Sawi2)(21des — Taday)
+ (Sowyz)(z1das — vaday)
+ (Sawas)(zodas — 2ades);
H(wizadz123) = (Szwias)(21deos — 2ade s + 2adis) .

Diagramatically:
—L4Sy —L3S, 0 L3S3
v Lng 0 —L:_;SQ N -—-LzSg
j\ 0 11_1_52 LySy i L:ﬁs
X X
and

LSy, L.S sy
X( 151 ;_21 L3Sy) Y
X

Theorem 6

6.1 HD+DH=1~7J
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where

3
6.2 J(wo + Z Z widz;) = we(0)1.

r=11j|=r
Proof. Note the commutation rules

DzD] —DJDL = S,'Sj -S]'Si — LZL] — LjLZ =0 ;

3 3
63 > LiSiDi=I—J; > LiSkqpDi=I-kSpifk>1;

i=1 =1

DL'LJ' = 5,‘]'I+ LjD,‘ ; DiSk = Sk—l»lDi X LjSk-i-l = S}\-Lj .
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ON SOME MATHEMATICAL WORKS IN
THE LIBRARY
OF THE ROYAL IRISH ACADEMY.

G.L. Huxley, M.R.I.A.

In the course of two centuries the Academy’s library has grown
steadily. In Irish subjects it has become one of the best collections
of manuscripts and printed matter in the country. Other fields of
knowledge are also well represented: this short paper draws atten-
tion to our mathematical holdings in the hope that mathemati-
cians and historians of mathematics will be encouraged to make
greater use of the books and periodicals at Academy House.

Most of the mathematical texts and periodical articles have
been obtained by gift or by exchange. Consequently coverage
of domains within the subject is far from complete or coherent.
Many areas are, however, represented, and the geographical range
of periodicals is remarkable. There are long runs of the Acia
and other serial publications of leading European academies—for
example, from Paris, Berlin, Rome, Gottingen, Heidelberg, and
Helsinki. Our holdings of the Philosophical Transactions of the
Royal Society of London extend back to Volume 1 (1665/6). The
St. Petersburg Commentarii begin in the age of Euler and the set
of Liouville’s Journal de Mathématique pures et appliqueés con-
tinues until 1924 from the first issue in 1836. There are strong
collections of Japanese periodicals published in English, among
them numerous editions of Tensor and the Hiroshima Mathemai-
ical Journal. Current work in the United States is well repre-
sented: we receive the Proceedings of the National Academy of
Sciences, the Princeton Annals of Mathematics, the Duke Mathe-
matical Journal, and, among other leading periodicals, Studies in
Applied Mathematics (Cambridge, Massachusetts)
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From Eastern Europe come Colloguium Mathematicum (War-
saw), Acta Mathematica Hungarice (Budapest), the Czechoslo-
vak Mathematical Journal, and our intakes from the U.S.S.R. and
associated territories are substantial. Outstanding are the Dok-
lady of the Academy of Sciences (Moscow and Leningrad) and the
Academy’s Mathematical Isvestiya.

From Georgia and Armenia numerous publications have been
received. Irish exchanges with the University of Kazan are of long
standing. Matter arrives steadily from Holland and New Zealand,
from Spain and from India, and from many other countries. The
accessions reflect the international standing of the Academy and
the wide distribution of section A of the Proceedings. A cherished
property is a series of Crelle’s Journal from Volume 1 (1836) to
144 (1914).

There are few modern mathematical textbooks in the library,
but mathematical classics are of permanent value—and not only
to historians; and our assemblages benefited greatly from the be-
quest in 1987 of modern works belonging to the late Professor J. G.
Semple. The many books of Geometry reflect the strength of Ire-
land in the subject in the nineteenth century. The powerful mind
of George Salmon is well attested by treatises—for instance, A
Treatise on Higher Plane Curves (second edition, Dublin 1873); we
possess a signed third edition of his Treatise on the Analylic Geom-
etry of Three Dimensions (Dublin 1874) and a sixth edition of his
Treatise on Conics (London 1879). Euclidean Geometry appears
in a classic historical exposition by G.J. Allman, Greek Geomelry
from Thales to Euclid (Dublin and London 1889). John Casey’s
The First Siz Books of the Elements of Euclid (Dublin and Lon-
don 1882) contains at p. 249 M’Cullagh’s proof of the minimum
property of the line named after Philo of Byzantium (expressing
two mean proportionals between two given lines). Casey’s Sequel
to the previous work (fourth edition, Dublin and London 1886)
exhibits a rigour such as would be welcome in some more recent
school-geometries. The Academy possess a copy of G. Monge’s
Géometrie descriptive (fourth edition, Paris 1820) and a Russian
translation, with commentary, of the same treatise by A.I.Kargin
{Moscow and Leningrad 1947).

Also present is A.M.Legendre’s Eléments de Géometrie (twel-
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fth edition, Paris 1823). The history of non-Euclidean Geometry
can be studied in several works: we have V.F.Kagan’s biography
of Lobachevsky (Moscow and Leningrad 1944); Kagan also edited
a selection of Lobachevsky’s studies in the theory of parallel lines
(Issledovania, M.-L. 1945). A Libellus (Claudiopolis (Clug) 1902)
commemorating the centenary of the birth of the younger Bolyai
includes an index (by R. Bonoia) operum ad Geomelriam abso-
lutam spectantium. Among the books of the Semple bequest is
H.5.M. Coxeter, Non-Euclidean Geometry (Toronto 1942).

The holdings in logic and foundations are significant. Aptly
prominent is George Boole: we have a reprint of his Mathemat-
weal Analysis of Logic (Oxford 1951, originally Cambridge 1847)
and a collection, edited by R. Rhees, of Boole’s studies in logic
and probability (London 1952). Instructive also for historians is
Desmond MacHale, George Boole. His Life and Work (Dublin
1985). In the same domain is Kurt Godel, On Formally Undecid-
able propositions of Principia Mathematica and Related Systems
(English translation, Edinburgh and London 1962). Another clas-
sic of mathematical logic is Boole’s An Investigation of the Laws of
Thought; the Academy is fortunate to possess a first edition (Lon-
don 1854). Jan Lukasiewicz lectured in the Academy from 1946
onwards on mathematical logic: we have his Aristotle’s Syllogistic
from the Standpoint of modern Formal Logic {Oxford 1951).

Historians of the theory of numbers will find much of interest
in the Library. A rare work is B.N. Delone, The Petersburg School
of the Theory of Numbers (Moscow and Leningrad 1947). Another
valued property is the collected Oeuvres of P.L.Tchebychef in two
volumes (St. Petersburg 1907 and 1899). (The Academy’s Rus-
sian links, of long standing, are indicated also by the presence
of L.Euler’s Opuscula Analytica 1 (Petropoli 1783)). Happily the
Library has Euler’s three volumes of Diopirica also published at
St. Petersburg (1769, 1770, 1771). Not only antiquarians will be
pleased to find a copy of C.F.Gauss, Disquisitiones Arithmelicae
(Leipzig 1801) and, perhaps, not only analysts will study with
pleasure the papers on Abelian functions and on differential equa-
tions in Karl Weierstrass, Mathematische Werke I (Berlin 1894);
but few nowadays are likely to find easy the notation in Edward
Waring’s Miscellanea Analytica de Aequationibus Algebraicis et
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Curvarum Proprietatibus (Cambridge 1762). The translation into
Russian of mathematical treatises by Al-Farabi and their publica-
tion in Kazakhstan at Alma Ata in 1972 serve to emphasize that
the study of the history of mathematics knows no frontier.

A few details in conclusion, chosen not quite at random from
selective explorations, will show that the intellectual profit from
the use of the Library can be great. Here is C. Huygens studying
the ancient problem of the quadrature of the circle (see Oeuvres
Complétes, Volume 20, The Hague 1940). Here is evidence that
Newton supposed the Creator to have made parts of absolute
space impenetrable (see his Opuscula, Volume 1, ed. J. Castil-
lioneus, p.xxxiii, Lausanne and Geneva 1734). Here is Salmon
handsomely giving credit to Boole for his part in originating the
principles of linear transformation in modern algebra (George
Salmon, Lessons introductory to the Modern Higher Algebra, third
edition, Dublin 1876, p.103). Here is a copy of the third edition of
Newton’s Principia that once graced a library in Ballinlough. And
here are collected works of W. Rowan Hamilton, J.J. Larmour, F.
Severi and others.

Mathematical practitioners who wish to study in the Library
are invited to ask the staff about rules and registration. The
Academy believes that the mathematical aspects of its Library
deserve to be better known; accordingly an increase in the number
of mathematically interested readers would bhe a welcome devel-
opment.

. G.L.Huxley, M.R.I.A.
Honorary Librarian.

Note. I thank Professors J. T. Lewis and Anthony O’ Farrell,
both Members of the Academy, for helpful conversation and advice
before the writing of this paper.

PROBABILITY IN FINITE SEMIGROUDPS

Desmond MacHale

Let S be a finite non-emply set and et + he o closed binary

operalion on S. Tor « € S let () = Co(w). the eentralizer

of 2in S, be {y € Sla*y = yx o). the set of all clements of S

which commute with x. We define P20(5) 1o be Z [CCn/1ST <o
. . reEN

that Pr.(S) is the probability that o pair of clenients of S chosen

at random, will conumute with cachi other,

Cleatly, for z, y € S, @ € (). and o € C) i and only
if y € C(z), but apart from these Givial restrictions there are
no other restrictions on the values 2 (57 iy have, Thus | >
Pr.(S) > 1/1S| and the size of Pr(5) is o good indication of
“how commutative™ {5, %} is. since 20(8) = | il and only 1S is
commutative.

I {G, +} is a group then there are severe restriction on e
values that Pr.((/) may assume. For exaniple we have the follow-
ing (see [1] and [2])

(i_) If PriG) > E then Pr(¢y=1.
(il) I Pr(G) > & then Pr(G) =1+ her Tor some
(1i1) It is not possible to have Jj <P ek

The bound given in (i) is the hest possible and is attained for
example by Dy, the group of all syinnictries of the square,

At the lower end of the scale it is possible to mnke i) as
small as we please in absolute terms, thongl not as simall as el
unless G is trivial.




Probability in Finite Semigroups 65

An easy calculation shows that Pr.(S3) = %, where S3 is the
group of all permutations on three objects, and it is not difficult
to show that Pr.(A x B) = Pr.(A).Pr(B) for the direct product
of groups A and B. Consider then G = S3 x S3 x S3 x --- x S3,
the direct product of n copies of S3. Pr.(G) = 51;;, which tends to

zero as n gets large.

If {R,*} is the multiplicative semigroup of a ring {R, +, *},
then again there are severe restrictions on the values Pr.(R) can
assume (see [2]).

Among these restriction we mention the following:

(i) Pr.(R)< $ for a non-commutative ring R.
This bound is attained by the following two rings of matrices

over Zin
0 0 0 1 1 0 1 1
0 0/°\0 1/)'\1 0/°\1 1
a 0
{(b c> foralla,bﬁ_cezg}‘

Note that the second of these rings is a ring with unity.

and

ii) If p is the least prime dividing |R| then
p

1,5
Pr(R)< —(p~+p-1),

D

o

with equality if and only if (R : Z(R)) = p°, where Z(R) is
the centre of K.

In this note we concentrate on the case where {5, *} is a semi-
group and we show that a finite semigroup can be as commutative
or as noncommutative as we like.

For each n > 4 we show that there is a semigroup T}, of order
n with Pr.(T,) = (n? — 2)/n?, which is as large as possible. For
n>4let T, = {ai,as,...,a,} and define a binary operation *
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on 1y, by an *an_1 = as, with all other products equal to a;. For
example, {74, *} looks like this.

* a as as aq
a ay ay ay ay
az az ay aj ay
as a az ay ayp
G4 ay ay o ay

{Th,*} is closed and (z % y) % 2 = a; = z * (y * z) for all
T, y, z € Ty, so {1y, *} is a semigroup. It is easy to see that
Pr.(Tp) = (n* — 2)/n? and this fraction can be made as close as
we like to 1 by taking n large enough.

. At the lower end of the scale we show that for each n there
exists a semigroup W, with Pr.(IW,) = L. which is as small as
possible.

Let Wy, = {b1,b3,...,b,} and define a binary operation e on
Wy by b; eb; = b, for all 4, j. For example {W3, e} is given by
the following table.

® by b b3
by b1 ba b3
b by by b3
bs b1 bs b3

{Wn, e} is closed and for all z, y, z € 1V,

(xoy)oz:yoz:z:a)cz:xo(yo::),

So {W,, e} is a semigroup. Further biebj =bjeb; =1, = bj.
So Pr.(W,) = +.
n
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Problems

1. Given a rational number 0 < 2 < 1 does there exist a
semigroup S with Pr.(S) = 27 Note that Pr.(S1 x Sp) =
Pr.(S1)Pr.(Sz) for the direct product of semigroups so that
given some values of 2 we can generate others.

2. Are there any restrictions on Pr.(S) for other algebraic struc-

tures such as inverse semigroups, near-rings, bands or group-
oids?

There are many other questions that can be asked about prob-
ability in finite algebraic systems. For example, we ask “what is
the probability that an element of a semigroup S has an inverse?”
We call this probability I(S). If S does not have identity then
I(S) = 0 so we assume S has identity e. We ask the following

question: For each N, is it possible to choose semigroups of order
n which satisfy I(S) = 1, 2,2, .. .27

It is easy to show that for each n we can achieve the value
I(S) = %, as follows. The case n = 1 is trivial, so suppose that
n > 2. Consider a semigroup I\ of order n — 1 such that k does
not have identity (for example, put-every product equal to a fixed
element). Then adjoin to K an element e such that eez = zee = 2
forallz € K andese =e.

Then I(K U {e}) = £.

n

Also, we can achieve & = 1 because there is always a group

of order n, namely the cyclic group {Z,,®}. Thus for n = 2 we
can achieve %, %, % We show that for n = 3, 4 the other values
are also achievable.

For n = 3, {Z3,®} gives I(S) = 2.

(In fact, for p a prime I{Z,,®} = P—lrj—l—, since Z, — {0} is a
group under ®.)
For n = 4, {Z4,®} gives I(S) = %— while {GF(4),®} gives %.

In fact {GF (™), ®} gives E—;—;—'l for any prime power p*. In
general {Z,,®} gives ¢(n)/n, where ¢(n) is the Euler ¢-function.
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3. Find semigroups of order 5 for which the values é and 2 are
achieved. ®

Note that I{A x B) = I(A)I(B) for the direct product of
semigroups A and B and this fact can be of use in generating
the values required in problem 3, though not necessarily among
semigroups of order 5. Finally, we can consider I(R) where R is
a finite ring with unity. Let [n] be the greatest integer function.
We quote the following theorem found in [3].

1
Theorem. IfI(R) > W(lRl —[V/R)), the I(R) = -I—I%I(IRI -1)
and R Is a finite field.

Z,> for p a prime shows that this result is best possible.
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BOOK REVIEW

Introduction to Linear Algebra (2nd Edition)

L. W. Johnson, R. D. Riess & J. T. Arnold
Addison-Wesley ISBN 0-201-16833-2, 1989

#
&

In the preface to “Introduction to Linear Algebra,” the authors
stress the importance of the book’s subject matter as a component
of undergraduate mathematics particularly for scientific, engineer-
ing and social science undergraduates. This book is a carefully
planned and well presented text book on linear algebra. Contain-
ing 7 chapters and almost 600 pages, it strives to approach the
subject at two levels. At the practical level, matrix theory and
the related vector-space concepts provide a language and a pow-
erful computational framework for posing and solving important
problems. Beyond the practical level, its treatment of the subject
contains a valuable introduction to mathematical abstraction and
logical development.

It is at this practical level that the book is particularly at-
. tractive. It contains a variety of (optional) applications in the first
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three (core) chapters. In addition, the final chapter (Chapter 7)
gives a reasonable treatment of a selection of numerical methods
in linear algebra and includes Gaussian elimination, the power
and inverse power methods for eigenvalue problems, reduction to
Hessenberg form and estimation of the eigenvalues of Hessenberg
matrices. This “mix” of theory, applications and numerical meth-
ods makes the book a very atiractive proposition for students
taking both elementary and advanced modules in linear algebra
as well as a basic course in numerical linear algebra. In the latter
case, there is the added attraction of having a range of FORTRAN
programs listed in the final chapter.

Chapter 1, entitled Matrices and Linear Equations contains
a standard but well-presented exposition of Gaussian elimination
and matrix algebra. However, it is refreshing to note that the
chapter contains a number of illustrating applications. These in-
clude the use of matrix methods in data fitting (polynomial inter-
polation), numerical integration and differentiation.

Chapter 2, The Vector Space, R"™ provides an introduction
to vector-space ideas (subspace, basis, dimension, etc.) in the
familiar setting of R”. In this chapter, the applications include
the least-squares problem in R™, data fitting and least-squares
solutions of overdetermined linear systems.

Because of the two-level approach adopted by the authors,
certain material such as that in Chapter 3, The Eigenvalue Prob-
lem, is revisited and considered in greater depth in later chapters.
For example, there is a necessity to provide a brief introduction
to determinants in Chapter 3 to facilitate the early treatment of
eigenvalues but a more complete treatment of determinants (even
repeating some of the earlier discussion) is given in Chapter 5.
Chapter 3 also contains some (optional) applications. These in-
clude difference equations and Markov Chains.

Chapters 4, Vector Spaces and Linear Transformations and 5,
Determinants, follow along traditional lines. For example, the for-
mer concentrates on vector spaces and subspaces, linear indepen-
dence and bases, inner product spaces, linear transformations and

L
|
-
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their matrix representations. However, this is more than just a
traditional approach. The topics are organized so that they flow
logically and naturally from the concrete and computational to
the more abstract. There is also a wealth of examples to enable
the student to gain even further insight into the various concepts.

Chapter 6, Eigenvalues and Applications, begins with an in-
troduction to quadratic forms and this is followed, using the treat-
ment of eigenvalues from Chapter 3, by a review of systems of
differential equations. The remainder of the chapter is devoted to
Hessenberg matrices, Householder transformations, the QR fac-
torization and least-squares solutions, matrix polynomials and the
Cayley-Hamilton theorem. The final section considers generalized
eigenvectors and solutions of systems of differential equations.

I

The final chapter, Chapter 7, Numerical Methods in Linear
Algebra, the contents of which were mentioned earlier, is a wel-
come addition to a general text on Linear Algebra. If a founda-
tion course on Numerical Linear Algebra is offered in conjunction
with more theoretical modules, then this book is sufficiently self-
contained for both aspects. The provisio;f of listings of FORTRAN
prograins is also welcome in relieving the student from time con-
suming and error prone programming.

The authors advise that an instructor’s manual and a stu-
dent solutions manual are now available. The book itself contains
solutions to all the odd-numbered computational exercises while
the student solutions manual includes detailed solutions for these
exercises. The instructor’s manual contains solutions to all of the
exercises.

I consider the book to be an attractive proposition for un-
dergraduate training. There are a number of reasons why this
is so. It provides a gradual increase in the level of abstraction,
1t contains an early introduction to eigenvalues. The first three
chapters could themselves constitute a core (single-term) mod-
ule on linear algebra at first or second year undergraduate level.

.
.
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At all levels in the book, the material is presented very clearly
and it is augmented continuously by numerous examples and, in
particular sections, by applications of very general appeal. The
exercise sets are themselves graduated (or spiralling) and many
sections contain exercises that hint at ideas which are developed
later in the text. The inclusion of computer awareness and reli-
able computer programs provide the numerical flavour which, in
my opinion, enhances the appeal of a text book on one of the most
important components of undergraduate mathematics in our third
level colleges.

Dr. John Carroll

School of Mathematical Sciences
Dublin City University

Dublin 9




PROBLEM PAGE

Editor: Phil Rippon

The first problem this time is elegant, simple to state and yet
rather surprising. I heard it first from Tom Laffey, who indicated
that it may have an application to checking the accuracy of com-
puter calculations!
25.1 Let

m*n = mn+ [pm][en],

where m, n are positive Integers, ¢ is the golden ratio %(1 +/5)
and [z] denotes the integer part of x. Prove that * is associative.

The next problem came from John Toland at the University
of Bath. By checking special cases one can ‘guess’ the solution,
but producing a proof is a different matter!

25.2 What are the eigenvalues of the matrix

0 —(n-1)
L0 —(-2 0
2 0 £

n—-1 0

Finally, here is a tantalising “find the next term in the se-
quence’ problem, which I heard first from Derek Goldrei here at
the OU.

25.3 Find the next term in the sequence

2,4,16,37,58, 89, ..

How do such sequences behave in general?

:
.
:
{
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Now here are the solutions to the problems in Issue 22. Prob-
lem 22.1 was concerned with a relative of the Mandelbrot set,
which was found by my colleagues David Crowe, Robert Hasson
and Peter Strain-Clark. To define this set, consider the recurrence
relation -

znyi(c) = zp(c) +¢, n=0,1,2,...,

where ¢ is complex and zo(c) = 0. Without the complex conjugate,
such sequences are used to define the Mandelbrot set and so it
makes sense to give the name Mandelbar set to

Mpar = {¢: z,(¢) — 00 as n — oc}.
By a simple argument, this is equivalent to
Mpar = {c:|za(c)| <2, forn=1,2,..}.

22.1Prove that Mpar has a rotational symmetry.
When Mpar is plotted using (1) the following picture ap-
pears. :

2 ——

Ivy\ CC)

2 Re (<) z

The picture suggests that Mpag is symmetric under a rota-
tion through 27/3 about the origin, and this can be verified as
follows. Let

fc(z) = z° + ¢,




=1

33
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so that
zn(c) = £7(0),

where f7 denotes n applications of the function f.. Now put
w = e2™/3 5o that @ = w, and hence

foc(2) = Fwe=w((z/w +¢) =wfiz/w).
By induction, therefore,

foc(z) = wfl(z/w),

and so, on putting z = 0, we obtain
zp(we) = wzy(c).

Thus z,(we) tends to oo if and only if z,(c) tends to oo, as re-
quired.

In fact 1t turns out that Mpag has been studied for some time
by John Milnor, who uses the more descriptive name of tricorn,
T, for it. The set arose first in connection with the Mandelbrot
set for cubics (a subset of C?), which has been studied in great
depth by Milnor, John Hubbard and Bodil Branner. More details
about Mpar = 7" and further references can be found in:

D. Crowe, R. Hasson, P.E.D. Strain-Clark and P.J. Rippon,
‘On the structure of the I\"Iandelbarﬁmset’, Non-linearity 2(1989),
541-553.

J. Milnor, ‘Remarks on iterated cubic maps’, Preprint, Stony-
brook Institute for Mathematical Sciences.

R. Winters, ‘Bifurcations in families of antiholomorphic func-
tions in biquadratic maps’, Ph.D Thesis, Boston University, 1990.

22.2Prove that it Is impossible to tile the plane with triangles in
such a way that at most 5 triangles meet at each vertex.

I came across this problem many years ago while living for
a time in West Africa. The local library had just a few maths
books, including a Hungarian problem book, which included 22.2.
Unfortunately, my wording of 22.2 was not quite precise in view of
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examples like the following, which I found when writing up these
solutions.

S/
In this example, vertices of some of the triangles are allowed
to lie on sides of others. If such a configuration is forbidden, then
the problem is correctly posed and the solution goes as follows.
Suppose, if possible, that there does exist a tiling of the plane
in which at most 5 triangles meet at each vertex. Consider a large
circle and form the union of those triangles in the tiling all of whose
vertices lie in or on the circle. This union forms a polygon and
we note that at most 3 of the polygon’s constituent triangles can
meet at one of its boundary vertices. Indeed il 4 of its constituent
triangles were to meet at one of its boundary vertices, then there
would be exactly one triangle from the tiling outside the polygon

at this vertex and this triangle would have to lie in the polygon
(because its 3 vertices would be in or on the circle)

Suppose now that the polygon consists of ¢ triangles from the
tiling, and that it has e edges and v interior vertices. Summing
all the angles of the ¢ triangles and using the fact that the interior
angles around the boundary of the polygon sum to (e — 2)w, we
obtain the equation

tm = (e — 2)w + 2um,
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so that
t=e—2+2v. (1)

Counting all the angles of the ¢ triangles, we obtain the inequality
3t < 3e + Sv, (2)

and, from (1) and (2), it follows that v < 6. This is a contra-
diction, however, if the circle is large enough, since we also have
t < bv because each triangle of the polygon has at least one inte-
rior vertex.

Phil Rippon

Faculty of Mathematics

The Open University

Milton Keynes MK7 6AA, UK




