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Conclusions

As aresult of these and other changes, enrolment in the honours Mathematics
programs began to increase sharply in recent years, and the first year numbers
are now three times their previous levels. Although there are other factors at
work here, the introduction of symbolic computation in first year has certainly
contributed to this development. There is a noticeable improvement in the
attitude of the students to Mathematics. The computer is clearly acting as
a bridge for them into an area that they otherwise would not feel they could
reach.

Finally, the Mathematics courses themselves are changing, and the use
of software such as MAPLE is driving this change. New types of problems
are now accessible which could not be tackled by hand. Some parts of our
courses have become obsolete, and must be ruthlessly pruned. New branches
of Mathematics are emerging. The long-term effect of this will be interesting
to see. One thing is clear: if we are not preceived by our students as leading
in this revolution rather than being dragged along, then Mathematics will, by
the turn of the century, be a neglected backwater.

A pubhc key cryptosystem as hard
as factorisation

M. Christopher W. Jones

atroduction

ea of a public-key cryptosystem was first put forward by Diffie & Hell-
n their 1976 paper [7]. Since then various descriptions of it have ap-
‘ [3 11,14,24,27] including a recent Bulletin article [10]. The idea behind
ic-key cryptosystem is that it allows secret messages to be sent across
en channel without it being necessary for some additional piece of infor-
to be previously exchanged between sender and receiver.

iefly, the idea is this. If Mr. X wishes to receive secret communications
structs an encryplion function E and a decryption funciion D. These
possess the following properties: (i) D(E(m)) = m for all messages m,

th ' and D should be easily computable, (iii) it should not be possible

ermine D from a knowledge of £ alone, (iv) E(D(m)) = m for all
ges m. (Actually property (iv) is not absolutely essential, but is useful

rposes of authentication - for more details consult the above references.)
. X then publishes the encryption function £ (the public key) and keeps
decryption function D to himself (the secret key). Anyone wishing to send
‘@ message m then transmits the encrypted message E(m). On receiving
Mr X is able to recover the original message using D and property (i).
ver any eavesdropper who intercepts E(m) is unable, because of property
o discover m, even if he knows the encryption function F.

order to put the above scheme into practice it is necessary to construct
le encryption/decryption functions. One way this has been attempted is
use of a “trapdoor” function f: this is a function for which it is easy to
ute f(z) but very difficult to compute f~!(z) without some additional
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“trapdoor” information. However with the knowledge of the “trapdoor”
~ information f~!(z) should be easy to compute.

Most attempts to construct “trapdoor” functions consist of puttmg some
computationally hard problem between f and f~!. Then to quote from [10],
“... solving the hard problem implies breaking the cryptosystem and it is
hoped that ... the cryptosystem cannot be broken without solving the hard
problem. In no case has this been proved ...”

It is the purpose of this note to describe a cryptosystem, due to Rabin
(16], which has the property that breaking it is equivalent to solving a compu-
tationally hard problem, specifically that of integer factorisation. In this re-
spect, Rabin’s scheme bears certain similarities to the well-known RSA scheme
(10,20,27]. However Rabin’s scheme possesses the important difference that
breaking it is known to be equivalent to factorising an integer; whereas in the
case of the RSA scheme, all that is known is that no-one has yet been able to
devise a method of breaking it which does not involve factorisation.

The problem of factorisation of large integers has received much attention
in the last twenty years, ever since the use of computers became common-
place. At present the most efficient algorithms for factorising a number n
have average running times of order exp(log nloglogn)!/? (see [8,9,26]). Riesel
[18,19] states that the present upper limit for factorisation is 107 and he esti-
mates that with the most sophisticated technology available, factorisation of
a hundred digit number would take one year. However, it may be noted that
few theoretical results above the difficulty of factorisation, are known - it is
not, for instance, known whether the factorisation problem is N P-hard (see
(12,23,27)).

To conclude, perhaps we should note that the factorisation problem should
not be confused with the primality problem which is to determine whether a
given integer is prime or not. This problem is much easier and there are
algorithms ([2,5,9,15,17,25]) by means of which a computer can determine the
primality of a 200 digit number in ten minutes. Indeed, as we shall see, in
order to implement the Rabin cryptosystem it is essential that we can easily
generate large (say 100 digit) primes. In passing, readers might be interested
to learn that a new largest known prime has recently been discovered. The
largest known prime is now 391581 x 226193 _ 1 and was discovered by a
group working in the Amdahl Corporation, Sunnyvale, California [4,6]. (This
compares with the previous largest known prime which was 2216991 _ 1 4
record which has stood since 1985.) ’
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2 Number Theoretic Preliminaries

In this section we give a brief account of the number theory necessary for a
description of Rabin’s method. For proofs of the results stated, see almost
any book on number theory, for instance [13,21,22].

Let n be a positive integer greater than 1 and let y be an integer which
is non-zero (mod n). Then if the congruence z? = y (mod n) is soluble, y is
said to be a quadratic residue (mod n). Given y and n, it is straightforward
to discover whether or not y is a quadratic residue (mod n) by means of the
celebrated law of quadratic reciprocity. Now suppose n = p, an odd prime.
Then exactly half of the non-zero integers (mod p) are quadratic residues in
which case the congruence z? = y (mod p) has precisely two incongruent (mod
p) solutions which may be written 2o and p — zo. In the special case when

p is of the form 4k + 3, we have the result that zo = yz?:—l (mod p). (This
follows from Euler’s criterion which states that y is a quadratic residue (mod
p)ifand only if y*5 =1 (mod p).)

In the case when n = pq, a product of two primes, it may be shown that y is
a quadratic residue (mod n) if and only if y is a quadratic residue (mod p) and
y is a quadratic residue (mod ¢). When this is true, and in the particular case
when p and ¢ both have the form 4k + 3, there is a straightforward procedure
for solving 2% = y (mod n) (provided the factorisation of n is known).

To find the solutions, first determine integers a and b such that ap—bg = 1.
(Such integers must exist because the greatest common divisor of p and ¢ is
1 and they can easily be found by the Euclidean algorithm.) Now denote the
solutions of 2 = y (mod p) by v and p — u and the solutions of z? = y (mod
¢) by v and ¢ — v. Then it is a routine calculation to verify that the four
solutions of the original congruence are

z, = bqu+ apv, 22 = bg(p — u) + apv,

z3 = bg(p — u) + ap(g —v), z4=bgu+ap(q—v).

These four solutions are clearly incongruent (mod n) and it is not hard to
show that they are the only solutions (mod n) of z? =y (mod n).

We may now give a description of the Rabin cryptosystem, the security of
which depends essentially on the fact that solving 2?2 = y (mod n) is equivalent
to factorising n.
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3 The Rabin Cryptosystem

A user of the Rabin system who wishes to receive messages first picks two
primes p and ¢ both of which are of the form 4k + 3. He also picks a positive
integer a < n = pg. Then the integers n and @ are made public while the
primes p and ¢ are kept secret. In order to encrypt a message m, which must
be an integer between 0 and n — 1, a sender calculates

E(m)=m(m+a) (modn).

If the resulting encrypted message is e, the receiver, who knows the factorisa-
tion of n, can easily decipher it by means of the following procedure:
It is required to find m which satisfies

m’+am=e¢ (mod n).
Multiplying through by 4 this becomes

4m® + 4am = 4e  (mod n),

which may be written

(2m + a)? = 4e + o? (mod n).

Now, since the factorisation of n is known, it is straightforward to solve 22 =
4e +a® (mod n) by means of the method outlined in §2. When this has
been done m may be determined by solving the linear congruence 2m =z —a
(mod n). Note that there will be, in general, four values of & and hence four
possible messages m. This illustrates a weakness of the Rabin scheme in that
the deciphering process does not lead back to a unique value of m. However,
assuming the original message was written in English, it will normally be
obvious which of the different possibilities for m is the correct one.

(It may be noted here that property (iv) of the list given in §1, that
E(D(m)) = m for all messsages m, does hold in the Rabin system, whichever
value is taken for D(m).)

It is clear from the description given above that breaking the Rabin system
cannot be harder than factorisation. To show that it is in fact equivalent it
will be sufficient to show that if there were an efficient algorithm for solving
z? = y (mod n), where n = pq, then it would be possible to factorise n. To
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see that this is indeed so, suppose that it were possible to solve 2% = y (mod
n). Then by §2 the solutions are:

r1 = bqu + apv, zg = bg(p — u) + apv,

z3 = bq(p — u) + ap(q — v), z4 = bgu + ap(q — v).

(Note that z; = —z3 (mod n) and z, = —24 (mod n).) Then z; + zy =
p(bg + 2av) and so p is the greatest common divisor 9f zy + 2 and n. Since
g.c.d.’s can be found easily using the Euclidean algorithm, this factorises n.

Rabin’s original cryptosystem was rather more sophisticated than the sim-
plified version given here. He relaxed the condition that p and ¢ have the form
4k + 3. This means that another more complicated method, due to Ad%eman
et al, for solving quadratic congruences has to be used. For more details see
[1,15,16].

4 An example

We illustrate this system with an example. Let p = 59, ¢ = 47, n = 2773 and
a = 1371. Now suppose we wish to send the message

TRINITY COLLEGE

The first step is to convert this into numerical form using the sc.he‘me A =
00,B =01...Z = 25, space = 26. The message then becomes, divided into
blocks of four,

1917 0813 0819 2426 0214 1111 0406 0426.
To encipher the first block, we calculate
E(1917) = 1917(1917 + 1371) = 0067 (mod 2773).
In this way the whole message enciphers as
0067 0872 2252 2389 0884 1140 0482 0174.
To decipher this, it is required to find m such that

m? + 1371m = 0067 (mod 2773).

i

e




64 IMS Bulletin 24, 1990

Completing the square this becomes -
(2m +1371)* = 2588  (mod 2773).

The next step is to solve u* = 2588 (mod 59), which simplifies to u? = 51
(mod 59). By a result contained in §2, u = (51)!® (mod 59). This can be
calculated more quickly by writing it as u = ((51%)2)?(512)251251 (mod 59)
and hence we obtain that u = 46 or 13 (mod 59). Similarly the solutions of
v® = 2588 = 3 (mod 47) are v = 35 or 12 (mod 47).

Now, the Euclidean algorithm yields that 4.59-5.47=1 and so the solutions
of
(2m + 1371)% = 2588 (mod 1773) are

3 12 2432
2550

Hence 2m = 1743, 353,10610r 1179  (mod 2773) and so m = 2258, 1563,1917
or 1976 (mod 2773). The only value of m which corresponds to a pair of let-
ters is 1917 which leads back to TR. The rest of the decryption is accomplished
similarly.

341
9m + 1371 = 5.47 { ;16} +4.59 { 35} = 1724 (mod 2773).
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An Elementary proof that periodicity
and generalized-periodicity are
equivalent in nilpotent groups

Gary J. Sherman

Let S be a non-empty subset of the group G. An element z of G is said
to be S-periodic if there are elements g1, ..., ¢n in S for which

n
Hgi—la:g = €.
i=1

If S = {e}, then S-periodicity is the usual notion of group periodicity. If
S = G, then S-periodicity is referred to as generalized-periodicity, a concept
which occurs naturally in the theory of partially ordered groups. Indeed, a
group admits a partial ordering relation compatible with the group operation
if, and only if, the group contains an element which is not generalized-periodic
[1]. Another case of special interest is when S = P(G), the set of periodic
elements of G. It was shown in [5] that P(G) is a subgroup of G if, and only
if, each P(G)-periodic element of G is periodic.

If G is abelian, then generalized-periodicity and P(G)-periodicity are equiv-
alent to periodicity. Thus, when presented the class of nilpotent groups as a
natural generalization of the class of abelian groups one asks: “Is generalized-
periodicity equivalent to periodicity in the class of nilpotent groups?” Hollister
[3] has shown that the answer to this question is yes. His proof makes use of a
deep result from the theory of partially ordered groups and the fact that the
periodic elements of a nilpotent group form a subgroup [4]. In this paper we
give an elementary proof of Hollister’s result and obtain, as a corollary, the
fact that P(G) is a subgroup for nilpotent G.

To this end the following two observations are useful. Let = and y be
elements of the group G.

Fact 1. If z and y are periodic then zy is generalized-periodic.

Proof. Let z and y be of orders m and n, respectively. Then

mn-—1
H e ryzt = xymn:cmn—l = e.

1=0
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