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Dimension Theory and Stable Rank

Gerard J. Murphy

1. Topological Dimension Theory

The theory of dimension in topology grew from attempts to establish the
topological invariance of the dimension of Buclidean spaces. The first proof
that the spaces R™ and ™ are homeomorphic only if n and m are equal was
given by Brouwer in 1911. His proof did not explicitly involve a property that
might serve as a topological definition of n, but in the same year Lebesgue
suggested an approach which led to the covering dimension. If I is the closed
unit interval of R it was observed by Lebesgue that the cube I can be covered
by arbitrarily small closed sets in such a manner that not more than n+ 1 of
them meet (in a common point). This is illustrated in the 2-dimensional case
by the usual pattern of brickwork, where a maximum of 3 bricks can meet.

To define the covering dimension we introduce a preliminary concept. If
® = (Un)ren is a family of subsets of a topological space: X and .z € X the
order of ® at z, denoted ord.(®), is defined to be the number of elements A of
A such that Uy contains z (if there are infinitely many such elements A then
ordg(®) = 4+00). The orderof @ is defined to be the supremum of all ordz(®)
where z runs over X. Thus for the brickwork family of sets mentioned above
the order is 3. If X is a topological space the (covering) dimension of X,
denoted dim(X), is the least integer n such that every finite open covering of
X has an open refinement of order not greater than n + 1. If no such integer
n exists then we set dim(X) = +oo. Here is an alternative, very useful,
formulation: For any topological space X, the inequality dim(X) < n holds if
and only if for each open covering Uy, . .., Uns2 of X there is an open covering
Vi,...,Vnyo such that V; C Uj forj=1,...,n+2and Vin...0Vag =10,
For the classical spaces such as R", I" and S™ (the n-sphere) the covering
dimension is the number one would expect. It is however non-trivial to show
that dim(R") = n. The proof involves the well known theorem of Brouwer
which asserts that for all n the sphere gn-1 is not a retract of the closed unit
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ball of R”. There is a nice easily-stated criterion to determine if a subspace
X of a Euclidean space R™ has dimension n. This is true if and only if X
contains a non-empty open set of R".

The case where the covering dimension is zero is easy to interpret in direct
topological terms. If X is Hausdorff and dim(X) = 0 then X is necessarily
normal and totally disconnected. For compact Hausdorff spaces being zero-
dimensional is equivalent to being totally disconnected, but this is not true
for arbitrary spaces, as we shall see in an example below.

Incidentally, there are other concepts of dimension, such as the large and
small inductive dimensions. For metric spaces the large inductive dimension
is the same as the covering dimension, and all three dimensions agree on
separable metric spaces. The covering dimension appears to be preferred for
the analysis of general topological spaces.

There is a very nice connection between dimension theory and the prob-
lem of the existence of continuous extensions of certain continuous functions:

1.1. Theorem. If X is a normal space then dim(X) < n if and only if
for each closed set A of X and continuous function f: A — S™ there exists a
continuous extension f': X — S,

Dimension theory also has useful applications to topological K-theory.
The latter topic can be viewed as the algebraic aspect of the theory of vector
bundles, and one of the questions it investigates is the extent to which the
cancellation property holds for (Whitney) direct sums of bundles. This is
controlled in part by the dimension of the base space.

Although the covering dimension gives the expected answer in many clas-
sical situations, it has a number of paradoxical and even pathological features.
For instance, the set X = {1,2,3,4} can be endowed with a non-Hausdorff
topology making it a topological space of covering dimension 1. This illus-
trates the point that dimension theory does not work too well for “strange”
topological spaces. A mininum assumption appears to be normality to get
some kind of reasonable theory. But even for compact Hausdorff spaces and

metric spaces unexpected things can happen. For instance, the “logarithmic
product rule”

(*) dim(X x Y) = dim(X) + dim(Y)

fails spectacularly. To illustrate this denote by @ the separable metric space
of all square-summable sequences of rational numbers with the metric defined
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by . 2
d((@a), () = (O (@n = )2
n=1

One can show that dim(Q) = 1 and that Q is homeomorphic to @ x @,
o (*) fails for X =Y = Q. (We promised above an example of a totally
fiiscormected space not of dimension zero. The space Q is sucilj arl exau.npller.c)3
1 1 ils even for compact spaces. Pontryagin has
The logarithmic product rule fai : onrvagin s
ibi ir of compact metrisable spaces of dim
exhibited an example of a pair o : 2
i 1 In a number of important cases one ge
whose product has dimension 3. :
useful inequality instead of (¥). If X and Y are arbitrary compact Hausdorff

th '
shares e dim(X x Y) < dim(X) + dim(Y).

This inequality also holds in the case that X and Y are metrlg spaczi.dimen-
Perhaps one should not really be surprised by these. para 1oxes Jmen-

sion theory. After all, as is well known, one can continuously map

2 .

a There are many more aspects to dimension theory, a full accognt ottl'1 w}lﬁi

can be found in [5] and [6]. We turn now to the problem of dﬁ?mg dfadates

mension” of a C*-algebra. We shall see thelje a number‘ of pos511 e .caxll dlimen_

for the position, and all have connections with the classical topologica.

sion.

2. The Bass Stable Rank and the Real Rank

One of the great sucesses in recent years in operator. algebra theory i]:i
been the development of K-theory of Q*-algebras (for an mtroductt}ory ;}:51 o
tion see [3]). Recall that a C*-algebra is a Banach alzgebrafli togeAlerIf ith an
isometric involution @ — a* such that ||a*a|| = ||a||* for al. a € A His e
Hilbert space and B(H) denotes the algebra of all bounded lm’ez.a.rtopeéalo;bra
H then B(H) is a C*-algebra, as is every norm-closed s.elf-ad‘]ox}lz. su t;} g are:
A theorem of Gelfand and Naimark asserts that up to isomorphism these

* .
! t}};hfre ?;g:: Eransportant connection with topology given as itollows: If X llzxa—
locally compact Hausdorff space then C'o.(X),' the‘set of all contm'uou(sjioril;;bra
valued functions on X that vanish at infinity, 1s a ?ommutatlve -a grm)
(the operations are pointwise-defined and t'he norm is the sué)rgmumrnc})lism,
Conversely every commutative C*-algebra is of this form up to isomorp .
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Thi

H:lss gg;rfezg:zxjegce .betvs‘lee(ril commutative C*-algebras and locally compact
s has mspired an approach to the th * i

et o8 ha : eory of C*-algebras which

jefti:,es nl}i; ;Lz] nlc))n. commutative t.opology”, with the finitely-generated pro-

Joctt theoremezf ;mg t)he ;ﬁpropn&te generalisation of vector bundles (based

wan). is point of view has b i

the motivation for introduci i eebue thoory. From to
. ucing K-theory into C*-algebra th i

perspective it is natural to tr DA

y to develop some co “di ion”

x ‘ ncept of “dimension” f
tCemaultgedbli)a an.alogous to the dimension of a topological space. This wa,sO;te-1
fer kpo? ) g*lefgﬂ'il [10’]1,‘ }yho introduced the concept of the topological stable

-algebra. This was soon seen to be identical witl
rank already known to al 1 1 o vestigate the stoble
gebraists. Rieffel was led to investigate t}
: : t
:?Onk lby a %ues‘tlon concerning a certain class of C*-algebras. ng g isu;nS iilr)al:
b nal number in [0,11 then t‘here is (up to isomorphism) a unique C*-algebra
mi gen:;ated by a pair of unitaries u, v such that uv = "™ yu (u is a unitar
a M T
e Il;soti ‘::t:u =u"1). These algebras, called irrational rotation algebras arZ
doveony b;ntghex;{nfdles in ;hle non-commutative differential geometry b’eing

. e Fields’ medalist Alain Connes. Th i i

Rl e Flelds’ m ' . The question that interested
ellation property for jecti
the atiom] ox the ca ! y projective modules holds for
gebras. This can be reformul i
X ra atio : ulated in more concrete
eerurinj.llf E};voTpro‘]ectlons in Ay have equal trace are they necessarily unitarily
quivalent? The answer turns out to be affirmative, as was shown by Rieffel

using the stable rank. He was led to hi 1
. . s notion of t i
the following theorem of classical dimension the(;)ry:opologlcad stable rank by

2.1.T <
P i;;:orem. IfX isa com;?act Hausdorff space then its dimension is the
ger n such every continuous function from X to R™*! can be uni-

formly approximated arbitrari i
ormly rbitrarily closely by continuous functions which never

Interpreting this in terms of th

: ' e algebra Cp(X), and then slightly re-

fcoim;lla}t)mg, one arrives at the definition of stable rank. Let A bega u}:liz:xl
-algebra, and for each integer n let L, (A) be the set of n-tuples (a

generating A as a left ideal, that is, such that e tn)

Aay + -+ Aa, = A.

’i{‘lhil:i?ble }:a'nk sr(A) of A is the least integer n such that Ln(A) is dense
or the product topology. If no such integer exists sr(A4) = +oco. If
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A = Co(X) where X is a compact Hausdorff space, and if [t] denotes the
integer part of ¢, then sr(A) = [dim(X)/2]+ 1.

Except in the lowest rank case, it is not easy to interpret the stable rank
directly in terms of properties of the algebra A. It can however be proved
without difficulty that a unital C*-algebra A is of stable rank 1 if and only if
the set of invertible elements of A is dense in A. The question of whether this
is true for the irrational rotation algebras was open for a number of years, and
has only recently been determined (in the affirmative) [9].

As in classical dimension theory, there are a number of surprising results
in the theory of the stable rank. For instance, stable C*-algebras can have
rank either 1 or 2 only. (A C*-algebra A is stable if it is isomorphic to the C*-
tensor product A®, K, where K is the C*-algebra of all compact operators on
the Hilbert space £2. These algebras occur frequently in C*-theory.) If Ais an
arbitrary C*-algebra and M, (A) denotes the set of square matrices of size n
having entries in A, then My (A) is a C*-algebra in a natural way. 1f sr(A) =1
then st(Mn(A)) = 1, that is, if the invertible elements of A are dense in A
then the invertible elements of My, (A) are dense in M, (A). If sr(A) = +o0
then s7(Mp(A)) = +oo also. If 1 < sr(A) < n+ 1 then sr(M,(A)) = 2.

Following along lines set down by Rieffel, Brown and Pedersen [1] intro-
duced another concept of rank for C*-algebras. If A is a unital C*-algebra
then its real rank is defined to be the smallest integer, RR(A), such that for
each n-tuple (a1, ...,an)of self-adjoint elements of A for which n < RR(A)+1
and each € > 0 there is an n-tuple of self-adjoint elements (b, ..., bp)in A
such that Y7 _, b% is invertible and

HZ(ak — bl <e.
k=1

(The element a is self-adjoint if a* = a.) If X is a compact Hausdorff space and
A = Co(X) then it is easy to show that RR(A) = dim(X). For an arbitrary
unital C*-algebra A the real and stable ranks are related by the inequality

RR(A) < 2s7(A) - 1.

However these two ranks can be very far apart. There is a C*-algebra A such
that RR(A) = 0 and sr(A) = +0o0. Based on previous experience one would
expect the lowest real rank case to be easiest to interpret directly in terms of
the algebra, and this is indeed true. One has RR(A) = 0 if and only if every
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self-adjoint element of A is the limit of a sequence of such elements having
finite spectra. Algebras satisfying this condition had already been extensively
analysed by Pedersen (8], and have some very interesting properties.

3. The Analytic Rank

Motivated by results in classical dimension theory the author has intro-
duced a third concept of rank. If A is a unital C*-algebra a C*-subalgebra
B is defined to be analytic if B contains the unit 1 of 4 and a2 € B implies
a € B for all self-adjoint elements ¢ €A IfSisan arbitrary subset of 4 then
there is a smallest analytic subalgebra of 4 containing it, and if this is 4 itself
and the elements of S are self-adjoint then $ is called an analytic base of A.

Every analytic subalgebra contains all the elements with finite spectrum,
in particular all the projections. If A is of rea] rank zero then its only analytic
subalgebra is 4 itself. The field C is an analytic subalgebra of an arbitrary
C*-algebra 4 if and only if the only projections of 4 are 0 and 1. In particular
if A= Cy(X) then C is an analytic subalgebra if and only if X is connected.

The analytic rank, ar(A), of a C*-algebra A is defined to be +00 if 4 has

no finite analytic base, and to be n if A has an analytic base of this (finite)

cardinality but none of smaller cardinality. If X is a compact metric space
then by classical dimension theory results one has ar(A) = dim(X). The
analytic rank, considered purely as a C*-algebra Invariant, seems to behave
better in a number of respects than the stable rank and the real rank, although
like these it has some paradoxical properties.

Here is an example of nice behaviour. Associated with each locally com-
pact group G there is a C*-algebra, C*(G) having the same representation
theory as G (thus the representation theory of these groups is contained in
the representation theory of C*-algebras). If F,, is the (discrete) free group
onn > 1 generators then the stable rank of C* (Fn) is +00, so the stable rank
is unable to distinguish between these algebras. However ar(C*(F,)) = n.

There are a number of properties that one would like a “rank” function
to have. For instance, if 4 r(A) is a rank function it is desirable that it
should satisfy the following conditions:

(1) f A= A; ® A, then r(A) = max{r(4,), r(42)}.
(2) If B is a quotient algebra of A then r(B) < r(4).
(B)IfA=A4, ®, Az, that is, A is the (spatial) C*-tensor product of A; and

Az, then T(A) < T’(Al) -+ T(Az).

(4) If A = B x, G, that is, A is the C*_crossed product of the unital
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C*-algebra B and the countable discrete abelian group G, then r(A) <
r(B) + dim(G), where G is the Pontryagin (cllulal grou}; gf G.lved o
1 1 it1 the proofs invo -
nk satisfies all four conditions, an oc :
"I\};eti?j l;,rt;clfgt difficult. However, some of these conditions are difficult, or
in

for the stable and real ranks. . .
unkn’?‘;v: )an(;rlytic rank seems to be a natural invariant. However the concept of

alytic C*-subalgebra is rather mysterious, an_d it would be useful t(:i bztz(x)l;lg
?Cl)l re);ormulate the definition of analytic rank in terms of better under

*- ic ideas. '
¢ a}fe:;;:;rls that (at least some of) these various concepts of rank may be

f great future importance. As yet however the theory is only in itsdutntlbael
Otagias It is desirable to compute the ranks of many more e)'(amy;le}sl, ar; i ;r >
Zbli té interpret the ranks more directly in terms of properties of the alg .
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