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Taylor Exactness
and The Apostol Jump
Robin Harte
Abstract

The middle exactness condition of Joseph Taylor is related to the zero-jump
condition of Constantin Apostol and used to derive Kaplansky’s lemma.

0. IfT:X -Y and §$: Y — Z are linear operators between complex spaces
we shall call the pair (5, T) exact iff

0.1 S7H0) € T(X),
whether or not the chain condition
0.2 ST=290

is satisfied. For example if 7' = 0 this means that S is one-one; if S = 0 this

means that 7" is onto. When S and 7' are bounded operators between normed
spaces we shall call the pair (S, T) weakly exact if

0.3 S7H0) C el T(X),

and split exact if there are bounded 77 : Y — X and S’ : Z — Y for which
0.4 S'S+TT =1.

It is clear at once that

0.5 (8, T) split exact = (S, T) exact => (S,T) weakly exact;

conversely if S and T' are both regular in the sense that there are bounded
T":Y — X and S" : Z — Y for which

0.6 T =TT"T and S = SS*S
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then there is implication

0.7 (S,T) weakly exact = (S, T) split exact :
indeed if (0.3) and (0.6) both hold then ([10] Theorem 10.3.3)
0.8 (I -TTMN(I - S"S) =0,

giving two candidates for T” and S’ to satisfy (0.4).
Lemma 1 IfU : W — X T: X =Y and V : Y — Z are linear there is
e : ,

implication

1.1 (V,TU) exact, (T,U) exact = (VT,U) exact

and
1.2 (VT,U) exact, (V,T) exact = (V,TU) exact.

IfU, T and V are bounded there is implication

1.3 (V,TU), (T,U) split exact = (VT,U) split exact
and
14 (VT,U), (V,T) split exact = (V, TU) split exact.

Proof. These are beefed up versions of parts of Theore_rrll 10.9.2UaI;;1)'I;iiirem
10.9.4 of [10]: for example if V=1(0) C TU(W) and T (0) C U(

VTe = 0= Tz € V-10) C TUW) = z — Uw € T~1(0) C U(W)e

Lemma ! does not extend to weak exactness: to \{iolate tl}e weak;n;;lﬂogYu)e
of (1.2) take U = 0, T' dense but not onto and V~1(0) = Ce with e € Y\T(X).

Lemma 2 IfU : W — X and V : Y — Z are bounded and linear, and
T=TT"T:X — Y is regular, then

2.1 v=1(0) C T(X) = T"V=1(0) € (VT)~(0)




22 IMS Bulletin 24, 1990

and

2.2 T7H0) C U(W) = T TU(W) C U(W).
Also

2.3 VV4TT =1 = VIT" = V"V
and

2.4 T'T+ UV =1= T'\TU = UU".

Proof. The first part of this is essentially given by Mbekhta ([16] Proposition
2.4): to see (2.1) argue

Vy=0= VTT "y =VTT"Tz = VTz = Vy=0.
For (2.3) take V¥ = VIT V' + I - VV'e

It is familiar that the product of regular operators need not be regu-
lar ([10](7.3.6.17);(3]§2.8), and that regularity of the product need not imply
regularity of the factors ([10](7.3.6.16);[3]§2.8):

Theorem 3IfT: X —Y and §:Y — Z are bounded and linear and (8,7)
is split exact then

3.1 ST regular <= S, T regular.
Proof. If ST = STUST and $'S + TT' = I then
(I-TTT(I-UST)=0= (I-STU)S(I - S'S).

Conversely if S = SSAS and T = TT*T and S71(0) C I T(X) then ([10]
Theorems 3.8.3, 2.5.4)

STT"S"ST = S(TT" + $*S ~ T = STe

WhenT: X — X and §: X — X are complex linear operators on the
same space X we shall call the pair (S, T) left non-singular if

3.2 STHO)NT-1(0) = {0},
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right non-singular if
3.3 S(X)+T(X) =X,

and middle non-singular if, in matrix notation,

3.4 (-5 T)0)C (g) (X).

This last condition means of course that whenever Sy = Tz there is z for
which y = Tz and ¢ = Sz, and is a special case of (0.1)._ Each of these
conditions is symmetric in S and T, and not restricted to pairs (S,T) which
are commutative in the sense that

3.5 ST =TS.

Gonzalez ([7] Proposition) has essentially shown

Theorem 4 Necessary and sufficient for middle non-singularity of (S,T) are
the following three conditions:

4.1 S5=H0) C T S~%(0);
42 T=1(0) € S T7(0);
4.3 S(X)NT(X) C (ST) (TS - ST)~}(0).

If (4.1) and (4.2) hold then also
4.4 (ST)~1(0) + (TS)~*(0) € S~Y(0) + T~ 1(0).

Proof. Suppose first that middle non-singularity (3.4) holds: then

Sy=0=> (-5 T)(%):Oﬁ(%):(?)x,

giving y = Tz with z € $71(0); this proves (4.1), and similarly (4.2). Also

T
w:Tm:Sy:z(Z):(S>z=>w=STz:TSz,
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giving (4.3). Conversely if these conditions hold then, using first (4.3),
(g) €(-S 1) (0) = Sy =Tz = STz = TSz,

givingy—Tz € S71(0) C T 5~Y(0) and - Sz € T-1(0) C S T-1(0), so that
there are u and v for which

y=Tz=Tu with Su=0 and z-S52=5v with Tv=0:

but now (g) (z4+u+v) = (Z) , as required by (3.4). Towards the last part
we assume only (4.1), and claim

4.5 (ST)=1(0) € S~Y(0) + T~(0) :
for if (ST)z = 0 then Tz € T 571(0), giving Tz = Tz with Sz = 0, and hence
z=(z~2)+2€T7'(0)+S(0)e

The conditions (4.3) and (4.4) are not together sufficient for either (4.1
or (4.2), even in the presence of commutivity: if for example

4.6 S=T=P=P¥*%]

is a non-trivial idempotent then both (4.3) and (4.4), and of course also (3.5),
hold, while neither (4.1) nor (4.2) are satisfied. The conditions (4.1) and (4.2)
are not together sufficient for (4.3): for example take S = T to be one-one with
T(X) # T*(X). Specifically if X = ¢, we can take § = T = U the forward
shift with (Uz)n41 = 2, and (Uz)o = 0. Curto ([5] pp 71-72) has shown
essentially that, in the presence of commutivity (3.5), middle non-singularity
(3.4) is equivalent to (4.1) together with

4.7 T71S(X) C 8(X%),
and therefore also (4.2) together with

4.8 S™IT(X) C T(X).
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“Duality” considerations then suggest that (4.1.7),.(4.8) and (4.4) .migh.t to-
gether be equivalent to (3.4). This however fails w1thqut cgmmut1v1ty . if for
example X = {3 we can take T' =V, the backward shift with (Vz), = 2441,
and § = W with (Wz), = (1/n)z,, to satisfy both (4.7). and (4.8), and also
(4.4), but not (3.4). Sufficient for the non-singularity coqdltlons (3'2)T(3‘4) are
the corresponding invertibility conditions: we call the pair (S, T') left invertible
if there is another pair (S’,T") for which

4.9 S'S+T'T =1,
right invertible if there is another pair (5", 7") for which
4.10 S$S" +TT" =1,

and middle invertible if there are pairs (S’,T") and (S",T") for which, in
matrix notation,

ar (F) s o (D o=(19)

In the context of pure linear algebra it is clear that “invertibility” .and “non-
singularity” are equivalent, by the argument for (0.7); for b9unded hnear.oper)—,
ators between normed spaces we require that the “left”, “right” and “middle
inverses be made out of bounded operators. When the operatorg S e.md.T
commute and the space X is a Hilbert space then non-singularity implies in-
vertibility; for Banach spaces this question appears t(? be s.till ope‘n‘([Q] PP
73-74). In general it is sufficient for left, right and middle invertibility that
(4.9) holds for a pair (5’,7") such that

4.12 (8,9),(S", 1), (T",T),(T",S) are commutative.

The reader may suspect that there is an analogue for Theorem 4 with “in-
vertibility” in place of “non-singularity”: the author has been unable to find
it. The invertible analogues of the conditions (4.1) and (4.2), and of (4.7) and
(4.8), are not hard to find - each consists of either a column or a row from
(4.11): the reader is invited to think up invertible analogues for (4’.’3) and
(4.4). Theorem 4 should also have an analogue for “weak exactness”: thus
(3.2) is equivalent to implication
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4.13 SU=TU=0=U =0,

the weakly exact analogue of (3.3)is

4.14 VS=VT=0= V=0

b

and the weakly exact analogue of (3.4) is

415 (=S T)(‘é”):(v V')(:g):Oz(V V')("g')zo.

It is not hard, starting from the “invertible” versions of (4.1) and (4.2), and

of (4.7) and (4.8), to write down corresponding weak versions of these four
conditions . :

The next observation is again based on Gonzalez ([7] Theorem), and has

also been noted by Curto ([5] p 72):
Theorem 5 If (S1,5,,T) is commutative then there is equivalence
5.1 (515,,T) non-singular <= (51,T) and (S;,T) non-singular
and equivalence
5.2 (8515, T) invertible <« ($1,T) and (S,,T) invertible.
Proof. Consider first invertibility : if $7.8) + T!T = I = 5583 + T4T then

I=8)(S1S1+T{T)S; + T4T = (8351)5182 + (S4T1 S + TH)T;
conversely if §1,515; + T{,T = I then

(51252)S1 + T{,T = I = (81,51)S2 + T}, T.

This proves (5.2) for left invertibility, and similarly for right invertibility .
Towards middle invertibility, suppose that

53 R'S'+SR=1I with SU=U'T and W'T +WU=1:
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then U=R'SU+SRU=R'UT +UTRU

givine WR'U'T = WU(I-TRU) = (I~ W T)(I-TRU)

and hence #
5.4 (WR’U’ +WHT' + T(RU) =L .

The implication (5.3)==(5.4), which we have just proved, gives forward im-
plication in (5.2) for middle invertibility if we take

T _ T /: _ S T
5.5 T=<S1>’T,=(_Sl T),S_<5152> and S'=(-55 T)

with

I 0\ w_g w=( 1 0 >
5.6 U= 0 S ) =% - T{231 SiQSl

! —S51y
W'=<1%2>, R=(T{; Si2), RII(T{’Z '

Conversely if

_ T oy _ (10
5.7 (TSf)(—Sx T)+<Sl>(51/ Tl')—(o I)
then since again T 1o ) <T>
(5132 T\0 S /S
I o\ _(=SY,_ <T>T,, s
(0 sz>“<SQT{>( T S+ g ) (T S

0 _—'1 ~T)SH
<&>“(&ﬂ>T+<&& 1

we have

giving
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and hence

5.8 (T)Suz( {0\ (T
515, ! =-S517 I Sq

and also

5.9 (I):(—Si _ T\ o

Combining (5.8) with

5.10 (‘5,%)(42 T)+(§2)(Tz" 55')=(g_ ?)

gives

S// 0) Sl ”
5.11 ( ! = 152 T
-ST] 1 (SzT{S§+T§>(“SZ T>+(S152)S;'(T5' s4),

which combines with (5.9) to give

I T
5.12 ( ) = < ) T 1" S!St
0 5152 (T + STo51) + Sng’g’ziTiQ (=S251).

From (5.11) and (5.12) we get
5.13 (Si : 0 I> _ S15%
=51 1 0) = \smsyymy) (=% T =5:5)

T
+ < S, 52) (S{Ty SYSYy TV +S'TYS,),

from which we can read off

5.14 I 0
0 I

=( 5152 (=818 T T I
SyTIS, + T} 1% T+ g g, ) (TU+51TYS: Sysy).
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This is backward implication in (5.2) for middle invertibility, and completes
the proof of (5.2). With the information displayed in the proof of (5.2), the
argument for (5.1) can be left to the reader o

For bounded linear operators between Banach spaces, (5.1) follows from
the spectral mapping theorem for the Taylor spectrum, and then (5.2) from
the corresponding theorem for the “Taylor split spectrum” ([10] Theorems
11.9.10,11.9.11). Our derivation of forward implication in (5.2) is based on the
corresponding argument for non-singularity ([9] Theorem 4.3; [6]); our deriva-
tion of backward implication in (5.2) also follows from the corresponding argu-
ment for non-singularity, which is what is given by Gonzalez [7]. The reader
may find it entertaining to try and carry out the matrix juggling in terms
of operator calculations; he may also like to try and do the non-singularity
argument (5.1) in a general ring, using conditions (4.13)-(4.15).

IfT : X — X is linear then its hyperrange and hyperkernel are the
subspaces

5.15 T(X) = ﬁ T (X)
n=1

and

5.16 T=°(0) = G T-"(0);
n=1

when T is continuous on a normed space X neither of these need be closed.
If we write

5.17 comm(T) = {S € BL(X,X) : 5T = TS}
for the commutant of T and
5.18 comm™(T") = comm(T) N BL™H(X, X)

for the invertible commutant of T, then we can collect the following
Lemma 6 If T € BL(X, X) is arbitrary then

6.1 T-1T=%°(0) € T7°(0)
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and
6.2 T essentially one — one = T™(X) C T T(X)

If S € comm(T) then

6.3 ST™%(0) CT™*(0) and S T®(X) C T®(X).
If S € comm™(T) then

6.4 (T'=8)71(0) € T®(X) and T~=(0) C (T — S)(X).

Proof. This is Theorem 7.8.3 of [10]e

We shall call th .Y . )
(0.1): e operator T': X — X self-exact if the pair (T, T) satisfies

6.5 T1(0) € T(X),
n-exact if (T, T™) satisfies (0.1):

6.6 T(0) ¢ T7(X),
and hyperexact if

6.7 T71(0) C T°(X).

There are various equivalent forms of these conditions:

Theorem 7 If T : X — X is linear and n €Nandm+k=n+1 then
71 T7H0) S TH(X) = T75(0) C T™(X) = T7"(0) C T(X)
and

-1
72 T7(0) CT(X) < T72°(0) CT(X) <= T==(0) c T(X)

IfT =TTT is regular then

7.3 T"T*(X) € T*(X) and T"T~*(0) C T~*(0).
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1f S € comm™*(T) then

74 (T — §)==(0) C T*(X) and T=(0) C (T = 5)*(X)
and 7 |
75 T-°°(0) N (T - §)~(0) = {0}

and for each m,n € N
7.6 T™X) + (T = S)"(X) = X.

Proof. Most of this comes from Lemma 1 and Lemma 2, taking U and V to
be powers of T'. For the last part factorise (I™ — S™)" in two ways to see
that (T — S)*,T") satisfies (4.9)-(4.11) for each n:

7.1 S — (T, S)T™ = (T = S) (T, S)"

for certain polynomials ¢m and rm,ne
We cannot replace m and n by oo in (7.6): for a counterexample take
T = U to be the forward shift on X = {yand S=1.

Definition 8 Call T € BL(X,X) hyper-regular if it is regular and hyper-
exact. We shall say that T is “consortedly regular” if there are sequences (Sn)
in comm~(T) and (T%) in BL(X, X)) for which

81 |ISall+ T2 = T — 0 and T = Sp = (T = Sa)T2 (T = Sa),

and “holomorphically regular” if there is § > 0 and a holomorphic mapping
TA . {|2| < 6} — BL(X, X) for which

8.2 T — M = (T = A\I)T (T — M) for each || <6.

Mbekhta ([16] Theorem 2.6) has essentially proved
Theorem 9 If X is complete and T € BL(X, X) then

9.1
T consortedly regular == T hyper — regular. = T holomorphically regular.
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Proof. If T is consortedly regular then, using (6.4), there is inclusion 77%(0) C
(T = Sp)(X) for arbitrary k and n, where S, satisfies (8.1), and hence if
T*z = 0 then z = (T — S,)T2« giving

(I-TT")z = (T - Sa)Tr —=TTM)z — 0 as n —> 0,

and hence z = TT"z € T(X). This gives, without completeness, the first
implication of (9.1). Conversely suppose T' = TT”T is hyper-regular and S €
comm(T’) with [|S||||T"|| < 1: using (6.3) and (7.3) and expanding (I-T* S)~!
in the geometric series gives

S(I =T S)'T=1(0) C el T~%(0) C el T(X)

and hence
(I-TTMSI -T"S)y™Y(I -T"T) =0,
which by (3.8.4.3) from the proof of Theorem 3.8.4 [10] says

9.2 T-S=(T-9I-T"S)"'TNT - S).

Specialising to scalar S = Al gives the second implication of (9.1)e ’

The derivation of (9.2) is based on Caradus [4]; cf also Theorem 3.9 of
Nashed [18]. If we observe

. TNT - 8)+ (I-T T) = I -T"S

that I — T"S sends the null space of T'— § into the null space of T, then we
can see that for Fredholm T" and one-one I —T"S we have dim(7T'— S)~1(0) <
dim T-*(0) ([10] Theorem 6.4.5). Conversely if T = TTAT is hyperregular
and S € comm(T’) has small enough norm,

9.4

(T=-S*"T+I—-(T-S)"(T-S) = I+(T-S)"S with (T-9)* = (I-T"8)~'1*,

furnishing an invertible operator which sends the null space of T' into the null
space of T'— S. In the Fredholm case this is the Apostol zero jump condition
[1},[22],[19].

Theorem 9 says that the hyper-regular operators form an open subset of
BL(X,X), and hence that a certain kind of “spectrum” is closed in C We
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may also observe that the topological boundary of the spectrum is contained
in this “hyper-regular spectrum”:

95  {T € cleommBL (X, X) : T hyper —regular} C BL™Y(X, X).

We are claiming that if hyper-regular T is the limit of a sequence T - Sn Qf
invertible operators which commute with 7" then T must a}so bg invertible. l‘t
follows from (9.4) that if (T — S)" and I — T"S are both lnvert'lble t.hen 50 1s
T since this argument extends to TATTN this also makes T invertible.

The spectral mapping theorem for polynomials extends to the “hyper-
regular spectrum”:

Theorem 10 If ST = TS then

10.1 ST self — exact => S, T self — exact
and

10.2 ST hyper — regular => S, T hyper — regular
IfST = TS and (S,T) is middle exact then

10.3 S, T self — exact => ST self — exact
and

10.4 S, T hyper — regular = ST hyper — regular.

Proof. The first part is an extension of Mbekhta ([17] Lemma 4.15): if
(ST)~1(0) C (ST)(X) then

T=1(0) C (ST)™}(0) € (ST)(X) = (TS)(X) € T(X),

and similarly for S and powers T" and S™. This gives (10.1) and most of
(10.2): the regularity of S and T' come from (3.1). Conversely, for (10.3), use
(4.1)-(4.4):

(ST)=1(0) € S1(0) + T71(0) € S(X) NT(X) € (STHX).

This gives (10.3) and most of (10.4): the regularity of ST is (3.1) againe
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One situation in which all the i ibili
: ne 1nvertibility and non-si i it1
for (5,T) are satisfied is when we can write ’ ereingularity conditions

10.5 S = q(A),T = r(4)

f .V ' .

n(?ll(‘) :I}aoieratfr A:X — X and }?olynomlals ¢ and r without non-trivial com-
mon {2 chor. n general polynomlals ¢ and r have a unique “highest common
actor” hef(g, r) determined by the logical equivalence

10.6 {g,7} C (Poly)p <= p € (Poly)hei(q, r),

together wit i i ¢ i
g with the requirement that it be “monic” (unless either ¢ or r is 0,

in which case also hef = i ili
gorition so hef(q,r) = 0). It is now familiar that, by the Buclidean

10.7 hef(g, ) € (Poly)q + (Poly)r,

50 tl}at there are polynomials ¢’ and # for which hef(q,7) = ¢'g+ #'r. Ifin
f;ﬁ::lii :cf (.q, ri: 1, so that ¢ and r have no common non-trivial co;nmon
conditi’o ns (131 S()l)r}(i ;1?lg§bra, Poly) the pair (g, r) satisfies all the invertibility

o =.( @ (smce_the alllalogue of (4.12) holds). This extends to the
f)s - o;)erator‘q(th), 7"(fA)), with (8, T") = (¢’(A), »'(A)) whenever A4 : X — X
o o Sa”tist;le(i‘us if (10.5) holds then the non-singularity conditions (3.2)-

Lemma 11 If A : X — X is linear there is equality

11.1 D (A=AD)™(0) = U »(4)(0)
AEC 0#p€Poly

and

11.2 () (A= rD)>(x) = A)(X
AeC 0¢p@olyp( X ;

. b 1 usl I d y
1 fyele) he le t a. d de (0 ) 1S ObVv10 ( lr;c u ed in the I’lght COIlVeISBI

11.3 p(A)71(0) = q(4)71(0) + r(A)~1(0).
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More generally if p = q1¢2...qn 15 @ finite product of factors ¢; of which no
pair has any common factors then the null space of p(A) is the sum of the null
spaces g;j(A)~1(0); but by the fundamental theorem of algebra p is a product
of polynomials of the form (z — A)E for distinct complex numbers A. This
proves (11.1). Similarly, the right hand side of (11.2) is included in the left,
and the opposite inclusion follows by the inductive extension of equality (4.3):

11.4 p(A)(X) = q(A)(X) Nr(A)(X)

if p= qr with hef(q,r) = 1e

The operator A : X — X is described as algebraic if there exists a non-
trivial polynomial p € Poly for which

11.4 p(A)~0) =X,
and as Jocally algebraic if

18 U )0 =X.
0#p€Poly

The intermediate notion is that A is boundedly locally algebraic if there is
k € N for which ’

11.6 X = U{p(A)“l(O) : 0 # p € Poly, degree(p) < k}.

For bounded linear operators between Banach spaces, an application of Baire’s
theorem says that (11.5)== (11.6) ([13] Theorem 15; [20] Theorem 4.8 ; [21]
(3.4)); our interest here is to expound Kaplansky’s lemma ([13] Lemma 14;
[20] Theorem 4.8; [21](3.5)), which says that (11.6)= (11.4):

Theorem 12 If A : X — X is boundedly locally algebraic then it is algebraic.
Proof If A is locally algebraic in the sense of (11.5) then by (11.1) there is
equality

12.1 D (A=AD)TE(0) = X;
: AeC ' )
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for a locally algebraic operator to be algebraic it is necessary and sufficient
that it have a finite set of eigenvalues
12.2

T A) = A€ C(A-ADT0) £ {0} = { € C : (A= AD)"(0) £ {0)).

We claim that if the set 7'*(A) is infinite then the condition (11.6) must fail:
forif Ay, As, ..., A, are pairwise distinct eigenvalues of 4, with corresponding

eigenvectors €1, &3,...,2, ,and p € Poly is a polynomial, we claim that there
is implication

12.3 P(A)Q2) =0== {21,23, ..., 22} C p(4)1(0)
j=1

== {)‘1’ ’\2) B ’\m} (_: p-l(o):
forcing degree(p) > m. To see why the first part of (12.3) holds argue that

12.4 hcf(q,r):l,q(A)yzr(A)z:O,y+z:O=>y=z=0:

this is because the pair (5,T) = (g(A),7(A)) satisfies the condition (3.2) so
that equality y+2z = 0 puts y = —z in a(A)~1(0)Nr(A4)~1(0) = {0}. To apply
(12.4) to the first part of (12.3) take

y:zjaz=zxi;q=2~—)j,'l':nz_,\{.
i#] i#]

To see why the second part of (12.3) holds observe that
12.5 p(3) # 0 = hef(p, 2= X;) = 1 = p(4) " (0)N (A=) I)~1(0) = {0}e

When the operator A is algebraic then (12.1) becomes a finite direct sum de-
composition of the space X : this decomposition makes it clear, as is observed
by Aupetit [2], that if k € N satisfies the condition (11.6) then (11.4) can be
satisfied with degree(p) < k . When A is algebraic then each existing inverse
(A= AI)~! is expressible as a polynomialin A4 : when X is finite dimensional
this is one of the familiar applications of the Cayley-Hamilton theorem. We
may also observe, as in the finite dimensiona] case (12], that when (A —\I)-!
does not exist, then all the eigenvectors z € (A = AI)71(0) lie in the range
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of a related polynomial in A4 : the simple observation is that if p(A) = 0 and
p = qr with hef(g,7) = 1 then

12.6 g(A)7H0) = r(A)(X).

i izati f Kaplansky’s
We conclude by expounding another generalization o .
lemma; the unpublished argument is due to Laffey ([15] Lemma 1; [20] (3.5)):

Theorem 13 If the operator A : X — X is boundedly Ioc:'dIy algebraic
modulo a finite dimensional subspace Y C X, then it is algebraic.

Proof The assumption is that there is k € N for which, for each z € X, there
is a non-trivial polynomial p, € Poly for which

13.1 degree(p;) <k and p (A)zeY.

We are not assuming that the finite dimensional subspace Y is "‘inv?uriant”
under A in the sense that A(Y) C Y, but immediately replace it with the
(possibly infinite dimensional) invariant subspace

13.2 V= {J pa@)=y+ Y axy)

pePoly neN

generated by it, together with the induced quotient opeﬂre}t'or A XY —
X/Y. Applying Kaplansky’s lemma (Theorem 12) to A gives a non-trivial
polynomial (of degree < k) po € Poly for which

13.3 po(A)X)C Y.

,Ym), then again by as-
y @m (Of degree S k) for

If Y is of dimension m , with basis y = (y1,¥2, -
sumption there are non-trivial polynomials g1, ¢z, ...
which

13.4 g(AAy; €Y (i=1,2,...,m),

and hence complex numbers (A;;) = B for which

m
13.5 G(A)Ay =Y Xy (i=1,2,...,m).
. j=1

4
j
i
o
B
|
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This gives
13.6 QA)y=0eY™,

treating the basis y € Y™ as a colu i
mn mat (X)) i
the “operator matrix” et where Q) € KL A)™ is

13.7 QA)=B®I-qA)IeA)

)\111 —q1 (A)A /\12] e /\1mI
/\21] )\221 - QQ(A)A “es )\Zm-[

Amil Ama
It follows ([8] Problem 70; [11](2.0.4)p.108)

Amm = gm(A)A

138 q(A)y; =0 (7=1,2,...,m) with go(A)=detQ(A) € L(X, X) :

since all the entries of Q(A) commute we can wri .
. ite adjQ(A). =
exactly as in the numerical case. It now follows JQ( ) Q(A) qU(A)®I)

20(A)Y =0 and hence go(A)Poly(A)Y = {0}

and hence

13.9 90(A)pe(A)X C go(A)Y = {0}.

Our final observation explains why (13.5)

e was not replaced by something sim-

13.10 degree(qo) > m,

which ensures 0 # gop, € Polye
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Dimension Theory and Stable Rank

Gerard J. Murphy

1. Topological Dimension Theory

The theory of dimension in topology grew from attempts to establish the
topological invariance of the dimension of Buclidean spaces. The first proof
that the spaces R™ and ™ are homeomorphic only if n and m are equal was
given by Brouwer in 1911. His proof did not explicitly involve a property that
might serve as a topological definition of n, but in the same year Lebesgue
suggested an approach which led to the covering dimension. If I is the closed
unit interval of R it was observed by Lebesgue that the cube I can be covered
by arbitrarily small closed sets in such a manner that not more than n+ 1 of
them meet (in a common point). This is illustrated in the 2-dimensional case
by the usual pattern of brickwork, where a maximum of 3 bricks can meet.

To define the covering dimension we introduce a preliminary concept. If
® = (Un)ren is a family of subsets of a topological space: X and .z € X the
order of ® at z, denoted ord.(®), is defined to be the number of elements A of
A such that Uy contains z (if there are infinitely many such elements A then
ordg(®) = 4+00). The orderof @ is defined to be the supremum of all ordz(®)
where z runs over X. Thus for the brickwork family of sets mentioned above
the order is 3. If X is a topological space the (covering) dimension of X,
denoted dim(X), is the least integer n such that every finite open covering of
X has an open refinement of order not greater than n + 1. If no such integer
n exists then we set dim(X) = +oo. Here is an alternative, very useful,
formulation: For any topological space X, the inequality dim(X) < n holds if
and only if for each open covering Uy, . .., Uns2 of X there is an open covering
Vi,...,Vnyo such that V; C Uj forj=1,...,n+2and Vin...0Vag =10,
For the classical spaces such as R", I" and S™ (the n-sphere) the covering
dimension is the number one would expect. It is however non-trivial to show
that dim(R") = n. The proof involves the well known theorem of Brouwer
which asserts that for all n the sphere gn-1 is not a retract of the closed unit
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