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Some properties and uses
of the discriminant of a polynomial

R. Gow
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the alternating group of dogros n'm K, G is naturally a subgroup of Ay,

12

The discriminant of a polynomial 13

(iii) If D # 0 and D has no square root in K, G A, has index 2 in G and
K(\/I—D) is a quadratic extension of K contained in the splitting field of f
over K.

It should be clear that the restriction on the characteristic of K is not
required for part (i) above. We will discuss substitutes for parts (ii) and (iii)
when the characteristic of K is 2 later in the paper.

It is the purpose of this paper to discuss some properties of the discrimi-
nant of a polynomial. While the discriminant may seem to be rather a weak
invariant, we hope to show how it may be used quite effectively when inves-
tigating a number of problems. Our results are drawn from various parts of
the literature and contain nothing new.

The discriminant of a polynomial f 1s expressible as a polynomial in the
coefficients of f. However, the number of terms involved tends to be ineffably
large. For example, the discriminant of the quartic ¢! 4 az® + bz® +cz +d is

256(1° — 277%)

where b? bd ¢ a%d  ab b3
ac abe
I=d-T+3 J=F 16 16 48 216
This involves 16 terms. The discriminant of a quintic involves 59 terms. The
interested reader should consult the article by J. McKay, [2], to see some
explicit formulae and references on this topic.
One of the most useful formulae for calculating the discriminant involves

the formal derivative of a polynomial.

1.3 Lemma. Let f € K[z] be a monic polynomial of degree n > 1 and let the
roots of f in some splitting field over K beay, ..., an. Then the discriminant
of f is

(_1)n(n«1)/2 f[ f’(ai)-
i=1

If we take f = 2™ — 1, we find from this formula that the discriminant
D of fis (=1)<™m™ where ¢(m) = m(m - 1)/2 + (m — 1)%. Taking m
equal to an odd prime p, we obtain D = p? if p = 1(mod4) and D = —p*
if p = 3(mod4). This provides us with a convenient proof of the fact that
if € is a primitive p~th root of unity in C, VP E Q) ifp = 1(mod4) and
V=7 € Q(e) if p = 3(mod4).
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There is a formula, due to R. G. Swan, [4], for the discriminant of a

trinomial, that is, a polynomial having only three non-zero terms. Let f =
2" + az® + b, where 0 < k < n. The discriminant D of f is given by

D= (_l)n(n—-1)/21)k-1(anN-K _ (_1)N(n _ k)N—KkKaN)d

where d = ged(n, k), N = n/d, K =
trinomials are frequently employed fo
We remark that when k = 1, the resu

1.3.

/d. This formula is quite useful, as
r various field-theoretic constructions.
It above is easily proved using Lemma

As an example of the use of this formula, let f = z" + qz + b, with a and
b both non-zero and let D be the discriminant of f. If n = 1(mod4), it is not
hard to see that D is a non-zero square in K if and only if

az/\?__nnun—l’ b:(n—l)au,

for non-zero elements A and pinK. Ifn=

3(mod4), the general solution for
square D is

a=-\- ntutml = (n = 1Dap.

Suppose now that 7 is a prime p with p = 3(mod4). Take

a:"l-ppﬂ9 b:(p'—l)a.u;

where 4 is an integer not divisible by p. Then we have

f=aP = (14 pu)e = (p— 1)(1 + pp)p.

As the reduction of f modulo p is well known to be irreducible in F,lz], f
is irreducible in Q[z]. The classification of finite simple groups now implies
that the Galois group of f over Q is the alternating group Ap for p> 23 (and
presumably this holds good for p=7,11, 19, 23). See, for example, Corollary
4.4 of [5]. Perhaps this can be proved purely by field-theoretic methods.
Consider now a polynomial f of degree n > 1 with real coefficients. Sup-
pose that f has exactly r real roots. The Galois group of f over R is generated
by the complex conjugation involutory mapping, o, say. In its action on the
roots of f, ¢ is represented by the product of (n — 7)/2 transpositions and
hence the sign of o is (=1)("=")/2_ Since the discriminant of f is a non-zero

square in R'if and only if it is positive, we obtain the following result from
Lemma 1.1.
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1.4 Theorem. Let f € R[z] have degree n and exactly r real roots. Suppose
t};at the discriminant of f is positive. Then n = r(mod4).

The discriminant of a monic integral polynomial has an interesting con-
gruence property modulo 4, as the next result indicates.

1.5 Theorem. Let f € Z[z] be a monic integral polynomial of degree n > 1.
L.et D be the discriminant of f. Then D =0 or 1(mod4).

Proof. Let the roots of f be a1, ..., an. As f is monic, the a; are algebraic

integers. Put
A= J] (ei+oy).
1<i<j<n
It should be clear that A is fixed by all elements of the Galois group of f ang
hence it is a rational number. However, A is also an algebraic integer an
thus it is a rational integer. We have now

D =J] ((ei + 0j)* ~ daiey) = A’ +4F,

where E is an algebraic integer. As E is clearly rational, £ is a rational
integer. Finally, the square of a rational integer is congruent mod 4 to 0 or 1

ince D = A%(mod4), the result follows. . g
o él‘his result is a special case of a result of Stickelberger, [3], on the dis

iminant of an algebraic number field. o ‘ o

Cnmgie of the nicest applications of the discriminant conéerns 1r1'e.duc1b111t§
questions for polynomials over finite fields. Let g be a power of a prime pg,nt
let ¥, denote the finite field of order g. For the sake of simplicity, we firs
proveqa special case of another result of Stickelberger, [3].

1.6 Theorem. Suppose that q is odd and let f be a polyn'omial in.Fq{z]. Il;f

h:':xs even degree > 2 and the discriminant of f is a square in Fy, f is reduci le

in F,[z]. If f has odd degree and the discriminant-of f is a non— square in
gl {

F,, f is also reducible.

Proof. Suppose that f is irreducible of even Qegree 2m. Then it is knowg
from the theory of finite fields that Fyam is a s:pllttxng field for f over F}‘)q an
the Galois group of f is cyclic of order 2m, being generated. by the Frobenius
mapping ¢ that sends a root « to @?. Thus, as a permutation of the roots, ¢
is represented by the cycle

(a,0(a),. .. , o™ 1(a)) .
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But it is well known that a cycle of even length has sign —1 and thus we
deduge f'rom Theorem 1.2 that the discriminant of f must be a non-square in
F,. Similar rfeg.soning gives the corresponding result when f has odd degree
Before giving the generalization of this result, we mention an applicatio;x
that is occasionally useful. Let f € K [z] be a monic polynomial of degree

n>1 angl lef, 9= f(2?). 1t is quite straightforward to show that if D and Dy
are the discriminants of f and g, respectively, then

Dy = (-1)" f(0)2** D%

Now we can prove a simple irreducibility criterion for ¢ when K is a finite

field.

1.7 Theorem. Let f € F,[z] be a monic irreducible polynomial of degree

n > 1 and suppose that q is odd. Let g = 2 is i ble i
. . g = f(z*). Th
only if (~1)" £(0) is a non-square in v, (z%) en g is irreducible if and

Proof. Suppose that g is irreducible over F,. As g has even degree it follows
from Theorem 1.6 that the discriminant of ¢ must be a non-square in F,. The
formula above for D; implies that (~1)" £(0) is a non-square. '

We consider the converse part of the theo ; .
rem. G
degree r > 1, define h* by iven a polynomial h of

h* = (=1)"h(-z).

Itushould be clear that (hhi)* = h*h? for polynomials A and hy and that
'h ;—. h. Moreoyer, suppose that A = h*. Then if 7 is even, h is a polynomial
in z2, whfargas, if r is odd, « divides h and z~'4 is a polynomial in z2. Let h
be a monic irreducible factor of g. Then we have g = hw for some po]y'nomial
w. As‘g is a polynomial in z2, we have g = g” and thus by our remarks above
g = h*w*. We see that h* is a monic irreducible factor of g. Thus we eithe;
}glave h = h* or else h and h* are relatively prime, in which case hh* divides
Suppose that A = h*. We can obviously assume tha ivi
f by t.he irreducibility of f (this only excluydes the possgbgivli?; etsh:tc,) tfd:lie
for which the result is obvious) and it follows that & does not divide Wé
conclude that h is a polynomial in z?, say h = a(z?), for some irredu.cible
monic polynomial a. But we see that w above must al;o b

22, say w = b(z?) and thus e a polynomial in

9= 1(a%) = a(z®)b(z?).
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But this entails a factorization f = ab and it follows that as f is irreducible,
f = a. Hence g is irreducible in this case.

Suppose now that h # h*. Then hh* divides g and as hh" is fixed by *,
it is a polynomial in 2%, say hh* = a(z?). Repeating the argument above we
must have f = a and hence g = hh*. We obtain

9(0) = £(0) = h(0)h"(0) = (=1)"A(0)".

1t follows that if g is reducible, (=1)" f(0) is a square and thus the converse
statement is proved.

We note that the second part of this argument applies to any field of
characteristic not equal to 2. Either g is irreducible or else g = hh™ for some
monic irreducible polynomial h. If the characteristic of K is 2, we can argue
that g is either irreducible or else g = h? for some irreducible h. This latter
condition holds if and only if each coefficient of f is a square in K. The first
part of the argument applies only to finite fields.

We now give the generalization of Theorem 1.6, due to Stickelberger.

1.8 Theorem. Let ¢ be a power of an odd prime and let f be a polynomial
of degree n > 1 in F,[z] without repeated roots. Let r be the number of
irreducible factors of f in Fy[z] and let D be the discriminant of f. Then
we have n = r(mod2) if D is a square in Fy and n = r + 1(mod2) if D Is a
non-square in F.

Proof. Let fi, ..., f- be the irreducible factors of f in F (2] and let Dy, ...,
D, be the discriminants of the f;. Elementary properties of the discriminant
show that D = D;...D, modulo squares in Fy. Let s be the number of
irreducible factors of even degree. If D is a square, Theorem 1.6 implies that s
must be even. Thus if ¢ is the number of factors of odd degree, r = t(mod?2).
But we clearly have n = t(mod2) and the result follows in this case. The
corresponding result when D is a non-square is proved similarly.

There remains the problem of finding an analogue of these results for fields
of characteristic 2. We begin by discussing Swan’s approach to this problem.
For the sake of simplicity, we restrict our attention to the field Fa. Let fbea
polynomial in Fy[z] without repeated roots. We can find a monic polynomial
g in Z[z] such that § = f, where the bar denotes reduction modulo 2. The
discriminant of g is then an odd integer. For the discriminant of f must be 1 in
F,, since f has no repeated roots, and it is easily proved that the discriminant
of f is the reduction modulo 2 of that of g (because the discriminants are given
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by the same integral polynomial in the coefficients of the polynomials). We
now consider g as a polynomial in Zy[z], where Z, denotes the ring of 2-adic
mtgge_rs. Hensel’s Lemma shows that as the discriminant of g is a 2-adic
umt‘, if f has 7 irreducible factors in Fs[z], g has r irreducible factors in Zs[z]
having the same degree as those of f. Furthermore, the splitting field of g over
the ﬁe}d of 2-adic numbers is an unramified extension (uniquely determined
up t.o 1som9rphism by its degree) whose Galois group is cyclic. Thus g has a
cyclic Galois group when considered as a 2-adic polynomial. Finally, it is well
known that a 2-adic unit u is a 2-adic square if and only if u = ’l(mod8)
Thus,' the Galois group of g over the 2-adic numbers is contained in A, if anci
only if D = 1(mod8), where D is the discriminant of g, and it follovr:rs from
Theorem 1.8 that n — r is even if and only if D = 1(mod8). (Notice that we
already know tha.t; D = 1(mod4), by Theorem 1.5.) Taking into account the
correspondence discussed above between the factorizations into irreducibles of
f and g, we obtain a result of Swan, [4]

1.9 Theorem. Let f € Fy[z] be a polynomial of degree n > 1 without
repeated roots and suppose that f has exactly r irreducible factors in Fylz]

Let g € Z[z] be a monic polynomial such that § = f. Then n — r is even ik
and only if D = 1(mod8), where D is the discriminant of g.

' This result is quite useful, as we are able to obtain a factorization criterion
again b.y means of the discriminant. Swan applied his discriminant formula for
tr¥nom}als and Theorem 1.9 to obtain information about the factorization of
trinomials over F. This information was helpful in the compilation of tables
of datahabout such trinomials. See, for example, [1]. It is apparently possible
to obtain Theorem 1.9 without the intermediary of the 2-adic numbers but
1t seems to us that this provides a good conceptual framework. If we replace
F3 by Eq, where ¢ .is a power of 2, we must work in the ring of integers of an
:ﬁzlrc());:;az? %EZiﬁﬁef_ ;xtensmn of the field of 2-adic numbers to obtain an

Fma.l]yZ we describe an intrinsic invariant of a polynomial over a field of
.cllgrac_terxstlc 2 that plays the role of the discriminant over fields of character-
istic different from 2. Let K be a field of characteristic 2 and let f € K[z] be
a non-constant polynomial of degree n without repeated roots. Let the roots
of f be @y, ..., a, in a splitting field over K. Define B = p(f) by

— a.
p- T

i<
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Then we find that § + 82 = C, where

C= ———————.,aiaj )

; o + a?
It is found that for a transposition o permuting the roots, ¢(8) = f+1. Thus,
§ is invariant under A, but not S,. The quantity C is invariant under all
permutations of the roots and hence lies in K. Moreover, the Galois group of
f is contained in A, if and only if C = A + A% for some A in K. If K is the
finite field Fom, C is expressible in the form above if and only if Tr(C) = 0,
where Ir is the trace function, defined by
m-—1

T(C) = Y C*.
Of course, if K = Fo, C satisfies this condition if and only if C' = 0. This
provides an alternative approach to Theorem 1.9. We could say that C'is -
a second discriminant of f, which is used once we know that the original
discriminant of f is non-zero. The introduction of C' and discussion of its
properties are due to Berlekamp, [1]. We remark that we have not seen any
formula for calculating C' from, say, the coefficients of f.
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