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IRISH MATHEMATICAL SOCIETY

12.15 pm on Friday, 22-12-89, in the DIAS.

There were 16 ) 5. R. Timoney presented an account of progress on the EUROMATH

ere 16 members present. The President, F. Gaines, was the chair, project. He outlined proposed arrangements for setting up a Database of
European Mathematicians, to be made available on the EUROMATH
system. It was agreed that information for this database was best col-
lected directly from mathematicians, and that people should have the

2. Elections. D.A. Tipple was proposed and seconded and elected Trea- option of refusing to participate.
surer of the Society.

Annual Meeting 4. It was agreed to revise .the rpembership fees, as follo‘ws: Qrdinary

D members: £10; AMS reciprocity members: $10; IMTA reciprocity mem- i

ecember 22, 1989 bers: £4; (It was noted that the IMTA has raised its fee to IMS members, *

The Annual General Meeting of the Trish Mathematica] Society was held at umneiil‘;)etrl;? 25;11-eement, to £3).; Institutional Members: £5O;; Student i
1

|

1. The minutes of the meeting of 7-8th September 1989 and 24th Novem-
ber 1989 were read, approved, and signed.

6. MSI Project. R. Timoney tabled a questionnaire prepared by himself

G. Ellis was proposed and seconded and elected Secretary of the Society. and Donal O’Donovan, for circulation to TCD Maths graduates. He
The following were proposed and seconded and elected to the Commit- expressed the hope that a similar questionnaire could be sent out by all
tee: the institutions, and could form the basis for completing the first task of
G. Enright. A , ) the project on the situation, potential and requirements of the Mathe-

- enright, A.G. O’Farrell, D. Simms, R.O. Watson. matical Sciences in Ireland. The questionnaire, which had been already

vetted by the committee, was subjected to some further criticism. It
was agreed that this kind of survey was best carried out by the institu-
The co-opti ¢ tions, and that the IMS could not dictate to the institutions. However,

ption of a person from Cork was suggested to the Committee, it was felt desirable that the institutions that participated should use as
The President expressed the Society’s gratitude to G. Enright for his uniform a format as possible. R. Timoney and D. O’Donovan will cit-
seven years’ service as Treasurer to the culate the final form of their questionnaire to the institutions for their

(P. Barry, BG Goldsmith, M. O’Reilly and M. O Searcéid continue on
the Committee, together with the co-opted member R. Ryan).

Society, during which time the

gnanfialtiﬁai;sdof the Society were admirably organised and conducted consideration.
¢ also thanked A.G. O’Farrell for hj i \ :
thanks was passed. or Mis service as Secretary. A vote of 7. It was reported that unavoidable delays had caused the Bulletin edito-
rial staff to miss the printer’s deadline. It is hoped to have the December
3. Thetiseasurer presented his accounts for the session 1988-89. He Bulletin by the end of January.
pointed out the encouragin ; MR
ging growth shown by the Society during his 8. Members were reminded that the September Meeting in 1990 will

period in office. The number of members has gone from 145 to 267, and

the cash turnover has tripled. be held at Dublin City University, and that proposals to host the 1991

A . September Meeting should reach the Society in good time for the Easter
N suggestion by T.T. West that the Society’s funds were large enough Meeting 1990.
that the Treasurer should consider how best to invest them was noted.

The adoption of the accounts was proposed, seconded, and passed. Anthony G. O’Farrell
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Choosing the Team

News 5

circumstances they did not take place. In the case of a number of schools
mathematically talented students had already been identified from informa-
tion supplied by the Department of Education, from the results of the Irish Na-
tional Mathematics Contest, etc., and these were invited to take part. About
three hundred students were involved in the initial stages.

Training sessions were held in the three venues — as well as discussing
techniques of problem-solving it was also necessary to teach some areas of
mathematics that are not covered in the school syllabus — number theory,
aspects of combinatorics and aspects of Euclidean geometry.Because the work
of training is purely voluntary it was necessary to have some elimination tests
which, as well as whittling down the numbers, also helped to identify the
most talented of the students. It was noticeable that students who had been
involved in the training in previous years had a distinct advantage over new-
comers. Even students who were eliminated at the earlier stages were exposed
to (for them) new mathematics which will serve them well when they compete
next time, as well as stimulating their interest in mathematics.

The Third Irish Mathematical Olympiad took place on 5 May 1990. The
top scorers in this competition were, in order,

1. Aidan Hollinshead, Blackrock College, Dublin.
Cian Dorr, Ashton School, Cork.

David Galvin, St. Fintan’s College, Ennis.
Andrew McMurray, The High School, Dublin.
. Patrick Connolly, Blackrock College, Dublin.

. Julian McCrae, The High School, Dublin.

. Stephen McInerney, Gonzaga College, Dublin.
. Eoghan Burns, Blackrock College, Dublin.

. Adrian Colley, O’Connell School, Dublin.
Ken Humborg, CBS, Roscommon.

. Edmund Roche Kelly, Ard Scoil Ris, Limerick.
Charles von Schmieder, The King’s Hospital School, Dublin.

et
<D
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T%le first three candidates were invited to take part in the IMO in Beijing
w_1th If‘ergus‘Gaines of UCD as leader of the team and Gordon Lessels 01;
Limerick Unlversity as deputy leader. At this point there was only sufficient
sponsors}pp money to fund a team of three. Subsequently, further sponsorship
was obtained and the candidates in the fourth, fifth and sixth places were
invited to join the team. All six candidates accepted the invitation.

As there were insufficient funds to run a final training session the Dublin
based students came to three afternoon sessions in UCD and Gordon Lessels
gave some further training to David Galvin in Limerick.

The Competition

The team, accompanied by the leader and deputy leader, left Dublin on Sun-
day 8 July, and arrived in Beijing on the morning of Monday 9 July, after a
ten-hour flight from Frankfurt. On arrival they were met by represe;ltatives
of the organisers and by Mr. Eamonn Robinson of the Irish Embassy. The
sth:lents were then interviewed by Chinese television. The team leader, F
Gaines, was taken to a hostel on the outskirts of Beijing, while G. Les’sels.
and th.e students were accomodated more centrally. The leaders from all 54
count‘rles taking part formed the jury whose task it was to select the six final
questions, from those shortlisted by the organisers from the questions submit-
ted by the countries concerned. Two of the questions submitted by Ireland
were s}}ortlisted, but did not make it to the final six. The'work of selection
rewording and translation into the various languages took a little over twc;
days. The formal opening took place on the afternoon of Wednesday, 11 July

The ﬁ]z'st examination took place on Thursday, 12 July and th’e second
one on Friday the 13th. F. Gaines and G. Lessels marked each of the Irish
students’ work, according to the marking scheme laid down by the hosts. On
the Saturday and Sunday they went to a team of Chinese “coordinatorg” a
separate team for each question, to agree the final marks that each stude,nt
should get.

From th.e comments of the leaders of the teams taking part it was felt that
the competition was one of the more difficult IMO’s and thus the relativel
good performance of the Irtish team was all the more commendable. Andrev}v,
McMurray won a bronze medal, a magnificent achievement, as it was the first
time Ireland had won a medal in the IMO. Cian Dorr was ’one point short of
a bronze medal and this, in its own way, was quite remarkable as Cian was

News

not involved in the training programme at all — he was specially invited to
take part in the Irish Mathematical Olympiad on the basis of his getting first
place in the Irish National Mathematics Competition. When the team scores
were totted up the final (unofficial) placings, by country, were: first, China,
second, the Soviet Union, third, USA, and ...fortieth, Ireland. Out of 308
competitors 23 won gold medals, 56 silver and 76 bronze.

The questions in the competition were graded by the organisers, “easy”,
«moderate” and “difficult”. (These are purely relative terms!). Question 1
was judged to be “easy”, but proved very difficult for many of the students.
This, perhaps, reflects the modern trend away from Euclidean geometry. It
was interesting to note that two of our students had exactly the same idea for
doing this question: pick AB and CD to be perpendicular diameters, work
out the required ratio in this case, and this gives the correct answer! — this
got 4 marks out of 7. Three of the students also had the same idea for doing
Question 2 — they considered a maximal “bad” colouring. Question 5 proved
our most successful question, as it did for most countries, and Question 4 our
worst. By far the hardest question on the exam was Question 6. Thus, for
example, one of the Chinese students who has a perfect score (7) on each of
the first five questions, could only manage to get one point on Question 6.
Thus Cian Dorr’s score of 5 on this question was all the more commendable.
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The Trainers

The mathematicians who helped with training were:

In UCD: .
F. J. Gaines, T. J. Lafey, M. O Searcéid, R. M. Timoney (TCD).

In UCG:

G. Ellis, J. J. Ward.

In Limerick:

Mark Burke (University of Limerick), Gerard Enright (Mary Immaculate Col-
lege), Alan Hegarty (University of Limerick), John Kinsella (University of
Limerick), Jim Leahy (Thomond College), Gordon Lessels (University of Lim-

erick), Marian Morrin (Ballynanty National School), Eamonn Murphy (Uni-
versity of Limerick), Pat O’Sullivan (Mary Immaculate College).

The Chairman of the Irish Participation Committee is Mr. C. C. O Caoimh
of the Department of Education.

The Results

Each question scores 7 points and thus the maximum possible score is 42.
Only four students in the whole competition scored 42. The top Irish scores
were Andrew McMurray, 16; Cian Dorr, 15 and Julian McCrae, 13; The team
scored a total of 65 points, which was almost double the previous year’s score.

To put this in perspective, China scored 230, the USSR 193 and the USA
177 to get first, second and third places respectively.

The Problems

FIRST DAY
Beijing, July 12, 1990

1. Two chords AB, CD of a circle intersect at a point F inside the circle.
Let M be an interior point of the segment £B. The tangent line at

E to the circle through D, E, M intersects the lines BC,AC at F, G
tively. If AM =t, find in fi
respectively. 45 = b find £ in terms of 1.

Nej

News

2. Let n > 3 and consider a set E of 2n — 1 distinct points on a circle.
Suppose that exactly k of these points are to. be coloured black. Shuzzlh atL
colouring is “good” if there is at least one pair of blfxck points suc ha
the interior of one of the arcs between them contains exactly n points
from E. Find the smallest value of k so that every such colouring of k
points of £ is good.

n

3. Determine all integers n > 1 such that is an integer.

n?

TIME: 4.5 Hours _
Fach problem is worth 7 points.

SECOND DAY
Beijing, July 13, 1990

4. Let Q% be the set of positive rational numbers. Constru:t a function
f:Qt — Qt such that f(zf(y)) = A:—) for all z, y in Q7.

5. Given an initial integer ng > 1, two players A and B choose integers n1,
ng, Ng, ... alternately according to the following rules.

. . i h that nag < nop41 <
Knowing noi, A chooses any integer ngg41 suc 2k —n2k+1+'

i 1 at 1s a
n2,. Knowing nsx41, B chooses any integer nak42 such th .

positive power of a prime.

Player A wins the game by choosing the number 1990, player B wins by
choosing the number 1.

For which ng does

(a) A have a winning strategy,
(b) B have a winning strategy,

(c) neither player have a winning strategy?

6. Prove that there exists a convex 1990-gon with the following two proper-
ties:

(a) all angles are equal,

1
|
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(b) the lengths of the sides are the numbers

12,22,3%,...,19892, 19902

in some order.

TIME: 4.5 Hours
Each problem is worth 7 points.

Subscription, IMTA Reciprocity

New subscription rates for IMS members come into effe
(the standard rate is now £10).

In addition, the reciprocity a, i i
ads , greement with the Irish Mathematics teachers
Assocmtlon' has befex_l renegotiated. The new agreement provides for members
of each Soc1e'ty to Join the other at half price. The previous system where IMS
members paid their reduced IMTA subscription through the IMS treasurer

(and vice-versa for IMTA members) has been di i
: r IM n discontinued, and subscripti
will be now be paid directly to each society. ubscriptions

ct in from 1990/91

CONFERENCES

1991 September Meeting

It will be held at University College Gélway on September 5th and 6th.
The details of the programme are not yet fully settled.

Operator Theory and Operator Algebras

The fifth international conference in the Cork series will be held at University
College Cork from Wednesday May 15 to Friday May 17, 1991. The principal
speaker will be Professor R.G. Douglas (SUNY, Stonybrook) and his title will
be Operator theory and algebnaic geometry. Further information from G.J.
Murphy, Mathematics Dept., UCC.

European Mathematics Congress

The European Mathematical Society (EMS) was recently inaugurated at a
meeting in Warsaw, and the Irish Mathematical Society will become a cor-
porate member. Individual members of the IMS will have the possibility of
becoming EMS members through the IMS, but detailed arrangements have
not yet been made for this. B. Goldsmith is the Society’s representative for
EMS business.

The EMS is organising a congress in Paris in 1992, probably July 6-10,
1992.

13th IMACS World Congress on Computation and
Applied Mathematics

It will be held at Trinity College, Dublin July 22-26, 1991. Further details
from JJH Miller, IMACS 91, 26 Temple Lane, Dublin 2.

11




ARTICLES

Some properties and uses
of the discriminant of a polynomial

R. Gow

Let K !
/= f(z) b: Z ;i‘;li ?Dr:)?yfzni{iglc dejn}ote the ring of polynomials over K. Let
; in .
f in‘some splitting field I, over K be‘g] of defreepr;tz 1 and let the roots of
s reey Qg

6= H (a" - aj):
C o 1Siign

so that § is an element of I, Clearly
6 # 0 and then L : K is a normal s’
that the Galois group G of f over
that fix K elementwise. The eleme
naturally be considered as a sub

The following basic result is provf

if f has a repeated root, § = 0. Otherwise
eli)a:rable extension of finite degree. Recali
K is the group of all automorphisms of I
nts of G permute the roots of f and G ma

roup of the symmetric group of degree ny
d in any standard text on Galois theory. '

1.1 Lemma, Let ¢ € G i
o € G. Consider o as a permutation on the n roots of f

o(8) = €,6
where ¢, is the sign of the permutation determined by o

We now set D = 62 and
= Il D the discrimi
follows f ca . € discriminant of th ;

s from Lemma 1.1 that D is fixed by all elements of g’ zxcilyltllcl)lrl?ali)"f t}ft
’ e

Galois corres
pondence, D € K. . -
the following result holds. V. Indeed, using the notation just introduced,

1.2 The

be the dizzzﬁinisfiﬁs; tg:: g :asthcharacteristic different from 2 and let D
! . e .

(1) IfD =0, f has a repeated root. e Galois group of f over K.

(ii) If D # 0 and D has a square root

the alternating group of dogros n'm K, G is naturally a subgroup of Ay,

12
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(iii) If D # 0 and D has no square root in K, G A, has index 2 in G and
K(\/I—D) is a quadratic extension of K contained in the splitting field of f
over K.

It should be clear that the restriction on the characteristic of K is not
required for part (i) above. We will discuss substitutes for parts (ii) and (iii)
when the characteristic of K is 2 later in the paper.

It is the purpose of this paper to discuss some properties of the discrimi-
nant of a polynomial. While the discriminant may seem to be rather a weak
invariant, we hope to show how it may be used quite effectively when inves-
tigating a number of problems. Our results are drawn from various parts of
the literature and contain nothing new.

The discriminant of a polynomial f 1s expressible as a polynomial in the
coefficients of f. However, the number of terms involved tends to be ineffably
large. For example, the discriminant of the quartic ¢! 4 az® + bz® +cz +d is

256(1° — 277%)

where b? bd ¢ a%d  ab b3
ac abe
I=d-T+3 J=F 16 16 48 216
This involves 16 terms. The discriminant of a quintic involves 59 terms. The
interested reader should consult the article by J. McKay, [2], to see some
explicit formulae and references on this topic.
One of the most useful formulae for calculating the discriminant involves

the formal derivative of a polynomial.

1.3 Lemma. Let f € K[z] be a monic polynomial of degree n > 1 and let the
roots of f in some splitting field over K beay, ..., an. Then the discriminant
of f is

(_1)n(n«1)/2 f[ f’(ai)-
i=1

If we take f = 2™ — 1, we find from this formula that the discriminant
D of fis (=1)<™m™ where ¢(m) = m(m - 1)/2 + (m — 1)%. Taking m
equal to an odd prime p, we obtain D = p? if p = 1(mod4) and D = —p*
if p = 3(mod4). This provides us with a convenient proof of the fact that
if € is a primitive p~th root of unity in C, VP E Q) ifp = 1(mod4) and
V=7 € Q(e) if p = 3(mod4).
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There is a formula, due to R. G. Swan, [4], for the discriminant of a

trinomial, that is, a polynomial having only three non-zero terms. Let f =
2" + az® + b, where 0 < k < n. The discriminant D of f is given by

D= (_l)n(n—-1)/21)k-1(anN-K _ (_1)N(n _ k)N—KkKaN)d

where d = ged(n, k), N = n/d, K =
trinomials are frequently employed fo
We remark that when k = 1, the resu

1.3.

/d. This formula is quite useful, as
r various field-theoretic constructions.
It above is easily proved using Lemma

As an example of the use of this formula, let f = z" + qz + b, with a and
b both non-zero and let D be the discriminant of f. If n = 1(mod4), it is not
hard to see that D is a non-zero square in K if and only if

az/\?__nnun—l’ b:(n—l)au,

for non-zero elements A and pinK. Ifn=

3(mod4), the general solution for
square D is

a=-\- ntutml = (n = 1Dap.

Suppose now that 7 is a prime p with p = 3(mod4). Take

a:"l-ppﬂ9 b:(p'—l)a.u;

where 4 is an integer not divisible by p. Then we have

f=aP = (14 pu)e = (p— 1)(1 + pp)p.

As the reduction of f modulo p is well known to be irreducible in F,lz], f
is irreducible in Q[z]. The classification of finite simple groups now implies
that the Galois group of f over Q is the alternating group Ap for p> 23 (and
presumably this holds good for p=7,11, 19, 23). See, for example, Corollary
4.4 of [5]. Perhaps this can be proved purely by field-theoretic methods.
Consider now a polynomial f of degree n > 1 with real coefficients. Sup-
pose that f has exactly r real roots. The Galois group of f over R is generated
by the complex conjugation involutory mapping, o, say. In its action on the
roots of f, ¢ is represented by the product of (n — 7)/2 transpositions and
hence the sign of o is (=1)("=")/2_ Since the discriminant of f is a non-zero

square in R'if and only if it is positive, we obtain the following result from
Lemma 1.1.

' 15
The discriminant of a polynomial

1.4 Theorem. Let f € R[z] have degree n and exactly r real roots. Suppose
t};at the discriminant of f is positive. Then n = r(mod4).

The discriminant of a monic integral polynomial has an interesting con-
gruence property modulo 4, as the next result indicates.

1.5 Theorem. Let f € Z[z] be a monic integral polynomial of degree n > 1.
L.et D be the discriminant of f. Then D =0 or 1(mod4).

Proof. Let the roots of f be a1, ..., an. As f is monic, the a; are algebraic

integers. Put
A= J] (ei+oy).
1<i<j<n
It should be clear that A is fixed by all elements of the Galois group of f ang
hence it is a rational number. However, A is also an algebraic integer an
thus it is a rational integer. We have now

D =J] ((ei + 0j)* ~ daiey) = A’ +4F,

where E is an algebraic integer. As E is clearly rational, £ is a rational
integer. Finally, the square of a rational integer is congruent mod 4 to 0 or 1

ince D = A%(mod4), the result follows. . g
o él‘his result is a special case of a result of Stickelberger, [3], on the dis

iminant of an algebraic number field. o ‘ o

Cnmgie of the nicest applications of the discriminant conéerns 1r1'e.duc1b111t§
questions for polynomials over finite fields. Let g be a power of a prime pg,nt
let ¥, denote the finite field of order g. For the sake of simplicity, we firs
proveqa special case of another result of Stickelberger, [3].

1.6 Theorem. Suppose that q is odd and let f be a polyn'omial in.Fq{z]. Il;f

h:':xs even degree > 2 and the discriminant of f is a square in Fy, f is reduci le

in F,[z]. If f has odd degree and the discriminant-of f is a non— square in
gl {

F,, f is also reducible.

Proof. Suppose that f is irreducible of even Qegree 2m. Then it is knowg
from the theory of finite fields that Fyam is a s:pllttxng field for f over F}‘)q an
the Galois group of f is cyclic of order 2m, being generated. by the Frobenius
mapping ¢ that sends a root « to @?. Thus, as a permutation of the roots, ¢
is represented by the cycle

(a,0(a),. .. , o™ 1(a)) .
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But it is well known that a cycle of even length has sign —1 and thus we
deduge f'rom Theorem 1.2 that the discriminant of f must be a non-square in
F,. Similar rfeg.soning gives the corresponding result when f has odd degree
Before giving the generalization of this result, we mention an applicatio;x
that is occasionally useful. Let f € K [z] be a monic polynomial of degree

n>1 angl lef, 9= f(2?). 1t is quite straightforward to show that if D and Dy
are the discriminants of f and g, respectively, then

Dy = (-1)" f(0)2** D%

Now we can prove a simple irreducibility criterion for ¢ when K is a finite

field.

1.7 Theorem. Let f € F,[z] be a monic irreducible polynomial of degree

n > 1 and suppose that q is odd. Let g = 2 is i ble i
. . g = f(z*). Th
only if (~1)" £(0) is a non-square in v, (z%) en g is irreducible if and

Proof. Suppose that g is irreducible over F,. As g has even degree it follows
from Theorem 1.6 that the discriminant of ¢ must be a non-square in F,. The
formula above for D; implies that (~1)" £(0) is a non-square. '

We consider the converse part of the theo ; .
rem. G
degree r > 1, define h* by iven a polynomial h of

h* = (=1)"h(-z).

Itushould be clear that (hhi)* = h*h? for polynomials A and hy and that
'h ;—. h. Moreoyer, suppose that A = h*. Then if 7 is even, h is a polynomial
in z2, whfargas, if r is odd, « divides h and z~'4 is a polynomial in z2. Let h
be a monic irreducible factor of g. Then we have g = hw for some po]y'nomial
w. As‘g is a polynomial in z2, we have g = g” and thus by our remarks above
g = h*w*. We see that h* is a monic irreducible factor of g. Thus we eithe;
}glave h = h* or else h and h* are relatively prime, in which case hh* divides
Suppose that A = h*. We can obviously assume tha ivi
f by t.he irreducibility of f (this only excluydes the possgbgivli?; etsh:tc,) tfd:lie
for which the result is obvious) and it follows that & does not divide Wé
conclude that h is a polynomial in z?, say h = a(z?), for some irredu.cible
monic polynomial a. But we see that w above must al;o b

22, say w = b(z?) and thus e a polynomial in

9= 1(a%) = a(z®)b(z?).
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But this entails a factorization f = ab and it follows that as f is irreducible,
f = a. Hence g is irreducible in this case.

Suppose now that h # h*. Then hh* divides g and as hh" is fixed by *,
it is a polynomial in 2%, say hh* = a(z?). Repeating the argument above we
must have f = a and hence g = hh*. We obtain

9(0) = £(0) = h(0)h"(0) = (=1)"A(0)".

1t follows that if g is reducible, (=1)" f(0) is a square and thus the converse
statement is proved.

We note that the second part of this argument applies to any field of
characteristic not equal to 2. Either g is irreducible or else g = hh™ for some
monic irreducible polynomial h. If the characteristic of K is 2, we can argue
that g is either irreducible or else g = h? for some irreducible h. This latter
condition holds if and only if each coefficient of f is a square in K. The first
part of the argument applies only to finite fields.

We now give the generalization of Theorem 1.6, due to Stickelberger.

1.8 Theorem. Let ¢ be a power of an odd prime and let f be a polynomial
of degree n > 1 in F,[z] without repeated roots. Let r be the number of
irreducible factors of f in Fy[z] and let D be the discriminant of f. Then
we have n = r(mod2) if D is a square in Fy and n = r + 1(mod2) if D Is a
non-square in F.

Proof. Let fi, ..., f- be the irreducible factors of f in F (2] and let Dy, ...,
D, be the discriminants of the f;. Elementary properties of the discriminant
show that D = D;...D, modulo squares in Fy. Let s be the number of
irreducible factors of even degree. If D is a square, Theorem 1.6 implies that s
must be even. Thus if ¢ is the number of factors of odd degree, r = t(mod?2).
But we clearly have n = t(mod2) and the result follows in this case. The
corresponding result when D is a non-square is proved similarly.

There remains the problem of finding an analogue of these results for fields
of characteristic 2. We begin by discussing Swan’s approach to this problem.
For the sake of simplicity, we restrict our attention to the field Fa. Let fbea
polynomial in Fy[z] without repeated roots. We can find a monic polynomial
g in Z[z] such that § = f, where the bar denotes reduction modulo 2. The
discriminant of g is then an odd integer. For the discriminant of f must be 1 in
F,, since f has no repeated roots, and it is easily proved that the discriminant
of f is the reduction modulo 2 of that of g (because the discriminants are given
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by the same integral polynomial in the coefficients of the polynomials). We
now consider g as a polynomial in Zy[z], where Z, denotes the ring of 2-adic
mtgge_rs. Hensel’s Lemma shows that as the discriminant of g is a 2-adic
umt‘, if f has 7 irreducible factors in Fs[z], g has r irreducible factors in Zs[z]
having the same degree as those of f. Furthermore, the splitting field of g over
the ﬁe}d of 2-adic numbers is an unramified extension (uniquely determined
up t.o 1som9rphism by its degree) whose Galois group is cyclic. Thus g has a
cyclic Galois group when considered as a 2-adic polynomial. Finally, it is well
known that a 2-adic unit u is a 2-adic square if and only if u = ’l(mod8)
Thus,' the Galois group of g over the 2-adic numbers is contained in A, if anci
only if D = 1(mod8), where D is the discriminant of g, and it follovr:rs from
Theorem 1.8 that n — r is even if and only if D = 1(mod8). (Notice that we
already know tha.t; D = 1(mod4), by Theorem 1.5.) Taking into account the
correspondence discussed above between the factorizations into irreducibles of
f and g, we obtain a result of Swan, [4]

1.9 Theorem. Let f € Fy[z] be a polynomial of degree n > 1 without
repeated roots and suppose that f has exactly r irreducible factors in Fylz]

Let g € Z[z] be a monic polynomial such that § = f. Then n — r is even ik
and only if D = 1(mod8), where D is the discriminant of g.

' This result is quite useful, as we are able to obtain a factorization criterion
again b.y means of the discriminant. Swan applied his discriminant formula for
tr¥nom}als and Theorem 1.9 to obtain information about the factorization of
trinomials over F. This information was helpful in the compilation of tables
of datahabout such trinomials. See, for example, [1]. It is apparently possible
to obtain Theorem 1.9 without the intermediary of the 2-adic numbers but
1t seems to us that this provides a good conceptual framework. If we replace
F3 by Eq, where ¢ .is a power of 2, we must work in the ring of integers of an
:ﬁzlrc());:;az? %EZiﬁﬁef_ ;xtensmn of the field of 2-adic numbers to obtain an

Fma.l]yZ we describe an intrinsic invariant of a polynomial over a field of
.cllgrac_terxstlc 2 that plays the role of the discriminant over fields of character-
istic different from 2. Let K be a field of characteristic 2 and let f € K[z] be
a non-constant polynomial of degree n without repeated roots. Let the roots
of f be @y, ..., a, in a splitting field over K. Define B = p(f) by

— a.
p- T

i<
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Then we find that § + 82 = C, where

C= ———————.,aiaj )

; o + a?
It is found that for a transposition o permuting the roots, ¢(8) = f+1. Thus,
§ is invariant under A, but not S,. The quantity C is invariant under all
permutations of the roots and hence lies in K. Moreover, the Galois group of
f is contained in A, if and only if C = A + A% for some A in K. If K is the
finite field Fom, C is expressible in the form above if and only if Tr(C) = 0,
where Ir is the trace function, defined by
m-—1

T(C) = Y C*.
Of course, if K = Fo, C satisfies this condition if and only if C' = 0. This
provides an alternative approach to Theorem 1.9. We could say that C'is -
a second discriminant of f, which is used once we know that the original
discriminant of f is non-zero. The introduction of C' and discussion of its
properties are due to Berlekamp, [1]. We remark that we have not seen any
formula for calculating C' from, say, the coefficients of f.
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Taylor Exactness
and The Apostol Jump
Robin Harte
Abstract

The middle exactness condition of Joseph Taylor is related to the zero-jump
condition of Constantin Apostol and used to derive Kaplansky’s lemma.

0. IfT:X -Y and §$: Y — Z are linear operators between complex spaces
we shall call the pair (5, T) exact iff

0.1 S7H0) € T(X),
whether or not the chain condition
0.2 ST=290

is satisfied. For example if 7' = 0 this means that S is one-one; if S = 0 this

means that 7" is onto. When S and 7' are bounded operators between normed
spaces we shall call the pair (S, T) weakly exact if

0.3 S7H0) C el T(X),

and split exact if there are bounded 77 : Y — X and S’ : Z — Y for which
0.4 S'S+TT =1.

It is clear at once that

0.5 (8, T) split exact = (S, T) exact => (S,T) weakly exact;

conversely if S and T' are both regular in the sense that there are bounded
T":Y — X and S" : Z — Y for which

0.6 T =TT"T and S = SS*S

] 21
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then there is implication

0.7 (S,T) weakly exact = (S, T) split exact :
indeed if (0.3) and (0.6) both hold then ([10] Theorem 10.3.3)
0.8 (I -TTMN(I - S"S) =0,

giving two candidates for T” and S’ to satisfy (0.4).
Lemma 1 IfU : W — X T: X =Y and V : Y — Z are linear there is
e : ,

implication

1.1 (V,TU) exact, (T,U) exact = (VT,U) exact

and
1.2 (VT,U) exact, (V,T) exact = (V,TU) exact.

IfU, T and V are bounded there is implication

1.3 (V,TU), (T,U) split exact = (VT,U) split exact
and
14 (VT,U), (V,T) split exact = (V, TU) split exact.

Proof. These are beefed up versions of parts of Theore_rrll 10.9.2UaI;;1)'I;iiirem
10.9.4 of [10]: for example if V=1(0) C TU(W) and T (0) C U(

VTe = 0= Tz € V-10) C TUW) = z — Uw € T~1(0) C U(W)e

Lemma ! does not extend to weak exactness: to \{iolate tl}e weak;n;;lﬂogYu)e
of (1.2) take U = 0, T' dense but not onto and V~1(0) = Ce with e € Y\T(X).

Lemma 2 IfU : W — X and V : Y — Z are bounded and linear, and
T=TT"T:X — Y is regular, then

2.1 v=1(0) C T(X) = T"V=1(0) € (VT)~(0)
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and

2.2 T7H0) C U(W) = T TU(W) C U(W).
Also

2.3 VV4TT =1 = VIT" = V"V
and

2.4 T'T+ UV =1= T'\TU = UU".

Proof. The first part of this is essentially given by Mbekhta ([16] Proposition
2.4): to see (2.1) argue

Vy=0= VTT "y =VTT"Tz = VTz = Vy=0.
For (2.3) take V¥ = VIT V' + I - VV'e

It is familiar that the product of regular operators need not be regu-
lar ([10](7.3.6.17);(3]§2.8), and that regularity of the product need not imply
regularity of the factors ([10](7.3.6.16);[3]§2.8):

Theorem 3IfT: X —Y and §:Y — Z are bounded and linear and (8,7)
is split exact then

3.1 ST regular <= S, T regular.
Proof. If ST = STUST and $'S + TT' = I then
(I-TTT(I-UST)=0= (I-STU)S(I - S'S).

Conversely if S = SSAS and T = TT*T and S71(0) C I T(X) then ([10]
Theorems 3.8.3, 2.5.4)

STT"S"ST = S(TT" + $*S ~ T = STe

WhenT: X — X and §: X — X are complex linear operators on the
same space X we shall call the pair (S, T) left non-singular if

3.2 STHO)NT-1(0) = {0},
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right non-singular if
3.3 S(X)+T(X) =X,

and middle non-singular if, in matrix notation,

3.4 (-5 T)0)C (g) (X).

This last condition means of course that whenever Sy = Tz there is z for
which y = Tz and ¢ = Sz, and is a special case of (0.1)._ Each of these
conditions is symmetric in S and T, and not restricted to pairs (S,T) which
are commutative in the sense that

3.5 ST =TS.

Gonzalez ([7] Proposition) has essentially shown

Theorem 4 Necessary and sufficient for middle non-singularity of (S,T) are
the following three conditions:

4.1 S5=H0) C T S~%(0);
42 T=1(0) € S T7(0);
4.3 S(X)NT(X) C (ST) (TS - ST)~}(0).

If (4.1) and (4.2) hold then also
4.4 (ST)~1(0) + (TS)~*(0) € S~Y(0) + T~ 1(0).

Proof. Suppose first that middle non-singularity (3.4) holds: then

Sy=0=> (-5 T)(%):Oﬁ(%):(?)x,

giving y = Tz with z € $71(0); this proves (4.1), and similarly (4.2). Also

T
w:Tm:Sy:z(Z):(S>z=>w=STz:TSz,
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giving (4.3). Conversely if these conditions hold then, using first (4.3),
(g) €(-S 1) (0) = Sy =Tz = STz = TSz,

givingy—Tz € S71(0) C T 5~Y(0) and - Sz € T-1(0) C S T-1(0), so that
there are u and v for which

y=Tz=Tu with Su=0 and z-S52=5v with Tv=0:

but now (g) (z4+u+v) = (Z) , as required by (3.4). Towards the last part
we assume only (4.1), and claim

4.5 (ST)=1(0) € S~Y(0) + T~(0) :
for if (ST)z = 0 then Tz € T 571(0), giving Tz = Tz with Sz = 0, and hence
z=(z~2)+2€T7'(0)+S(0)e

The conditions (4.3) and (4.4) are not together sufficient for either (4.1
or (4.2), even in the presence of commutivity: if for example

4.6 S=T=P=P¥*%]

is a non-trivial idempotent then both (4.3) and (4.4), and of course also (3.5),
hold, while neither (4.1) nor (4.2) are satisfied. The conditions (4.1) and (4.2)
are not together sufficient for (4.3): for example take S = T to be one-one with
T(X) # T*(X). Specifically if X = ¢, we can take § = T = U the forward
shift with (Uz)n41 = 2, and (Uz)o = 0. Curto ([5] pp 71-72) has shown
essentially that, in the presence of commutivity (3.5), middle non-singularity
(3.4) is equivalent to (4.1) together with

4.7 T71S(X) C 8(X%),
and therefore also (4.2) together with

4.8 S™IT(X) C T(X).
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“Duality” considerations then suggest that (4.1.7),.(4.8) and (4.4) .migh.t to-
gether be equivalent to (3.4). This however fails w1thqut cgmmut1v1ty . if for
example X = {3 we can take T' =V, the backward shift with (Vz), = 2441,
and § = W with (Wz), = (1/n)z,, to satisfy both (4.7). and (4.8), and also
(4.4), but not (3.4). Sufficient for the non-singularity coqdltlons (3'2)T(3‘4) are
the corresponding invertibility conditions: we call the pair (S, T') left invertible
if there is another pair (S’,T") for which

4.9 S'S+T'T =1,
right invertible if there is another pair (5", 7") for which
4.10 S$S" +TT" =1,

and middle invertible if there are pairs (S’,T") and (S",T") for which, in
matrix notation,

ar (F) s o (D o=(19)

In the context of pure linear algebra it is clear that “invertibility” .and “non-
singularity” are equivalent, by the argument for (0.7); for b9unded hnear.oper)—,
ators between normed spaces we require that the “left”, “right” and “middle
inverses be made out of bounded operators. When the operatorg S e.md.T
commute and the space X is a Hilbert space then non-singularity implies in-
vertibility; for Banach spaces this question appears t(? be s.till ope‘n‘([Q] PP
73-74). In general it is sufficient for left, right and middle invertibility that
(4.9) holds for a pair (5’,7") such that

4.12 (8,9),(S", 1), (T",T),(T",S) are commutative.

The reader may suspect that there is an analogue for Theorem 4 with “in-
vertibility” in place of “non-singularity”: the author has been unable to find
it. The invertible analogues of the conditions (4.1) and (4.2), and of (4.7) and
(4.8), are not hard to find - each consists of either a column or a row from
(4.11): the reader is invited to think up invertible analogues for (4’.’3) and
(4.4). Theorem 4 should also have an analogue for “weak exactness”: thus
(3.2) is equivalent to implication
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4.13 SU=TU=0=U =0,

the weakly exact analogue of (3.3)is

4.14 VS=VT=0= V=0

b

and the weakly exact analogue of (3.4) is

415 (=S T)(‘é”):(v V')(:g):Oz(V V')("g')zo.

It is not hard, starting from the “invertible” versions of (4.1) and (4.2), and

of (4.7) and (4.8), to write down corresponding weak versions of these four
conditions . :

The next observation is again based on Gonzalez ([7] Theorem), and has

also been noted by Curto ([5] p 72):
Theorem 5 If (S1,5,,T) is commutative then there is equivalence
5.1 (515,,T) non-singular <= (51,T) and (S;,T) non-singular
and equivalence
5.2 (8515, T) invertible <« ($1,T) and (S,,T) invertible.
Proof. Consider first invertibility : if $7.8) + T!T = I = 5583 + T4T then

I=8)(S1S1+T{T)S; + T4T = (8351)5182 + (S4T1 S + TH)T;
conversely if §1,515; + T{,T = I then

(51252)S1 + T{,T = I = (81,51)S2 + T}, T.

This proves (5.2) for left invertibility, and similarly for right invertibility .
Towards middle invertibility, suppose that

53 R'S'+SR=1I with SU=U'T and W'T +WU=1:
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then U=R'SU+SRU=R'UT +UTRU

givine WR'U'T = WU(I-TRU) = (I~ W T)(I-TRU)

and hence #
5.4 (WR’U’ +WHT' + T(RU) =L .

The implication (5.3)==(5.4), which we have just proved, gives forward im-
plication in (5.2) for middle invertibility if we take

T _ T /: _ S T
5.5 T=<S1>’T,=(_Sl T),S_<5152> and S'=(-55 T)

with

I 0\ w_g w=( 1 0 >
5.6 U= 0 S ) =% - T{231 SiQSl

! —S51y
W'=<1%2>, R=(T{; Si2), RII(T{’Z '

Conversely if

_ T oy _ (10
5.7 (TSf)(—Sx T)+<Sl>(51/ Tl')—(o I)
then since again T 1o ) <T>
(5132 T\0 S /S
I o\ _(=SY,_ <T>T,, s
(0 sz>“<SQT{>( T S+ g ) (T S

0 _—'1 ~T)SH
<&>“(&ﬂ>T+<&& 1

we have

giving
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and hence

5.8 (T)Suz( {0\ (T
515, ! =-S517 I Sq

and also

5.9 (I):(—Si _ T\ o

Combining (5.8) with

5.10 (‘5,%)(42 T)+(§2)(Tz" 55')=(g_ ?)

gives

S// 0) Sl ”
5.11 ( ! = 152 T
-ST] 1 (SzT{S§+T§>(“SZ T>+(S152)S;'(T5' s4),

which combines with (5.9) to give

I T
5.12 ( ) = < ) T 1" S!St
0 5152 (T + STo51) + Sng’g’ziTiQ (=S251).

From (5.11) and (5.12) we get
5.13 (Si : 0 I> _ S15%
=51 1 0) = \smsyymy) (=% T =5:5)

T
+ < S, 52) (S{Ty SYSYy TV +S'TYS,),

from which we can read off

5.14 I 0
0 I

=( 5152 (=818 T T I
SyTIS, + T} 1% T+ g g, ) (TU+51TYS: Sysy).

Taylor ezaciness and the Apostol jump 29

This is backward implication in (5.2) for middle invertibility, and completes
the proof of (5.2). With the information displayed in the proof of (5.2), the
argument for (5.1) can be left to the reader o

For bounded linear operators between Banach spaces, (5.1) follows from
the spectral mapping theorem for the Taylor spectrum, and then (5.2) from
the corresponding theorem for the “Taylor split spectrum” ([10] Theorems
11.9.10,11.9.11). Our derivation of forward implication in (5.2) is based on the
corresponding argument for non-singularity ([9] Theorem 4.3; [6]); our deriva-
tion of backward implication in (5.2) also follows from the corresponding argu-
ment for non-singularity, which is what is given by Gonzalez [7]. The reader
may find it entertaining to try and carry out the matrix juggling in terms
of operator calculations; he may also like to try and do the non-singularity
argument (5.1) in a general ring, using conditions (4.13)-(4.15).

IfT : X — X is linear then its hyperrange and hyperkernel are the
subspaces

5.15 T(X) = ﬁ T (X)
n=1

and

5.16 T=°(0) = G T-"(0);
n=1

when T is continuous on a normed space X neither of these need be closed.
If we write

5.17 comm(T) = {S € BL(X,X) : 5T = TS}
for the commutant of T and
5.18 comm™(T") = comm(T) N BL™H(X, X)

for the invertible commutant of T, then we can collect the following
Lemma 6 If T € BL(X, X) is arbitrary then

6.1 T-1T=%°(0) € T7°(0)
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and
6.2 T essentially one — one = T™(X) C T T(X)

If S € comm(T) then

6.3 ST™%(0) CT™*(0) and S T®(X) C T®(X).
If S € comm™(T) then

6.4 (T'=8)71(0) € T®(X) and T~=(0) C (T — S)(X).

Proof. This is Theorem 7.8.3 of [10]e

We shall call th .Y . )
(0.1): e operator T': X — X self-exact if the pair (T, T) satisfies

6.5 T1(0) € T(X),
n-exact if (T, T™) satisfies (0.1):

6.6 T(0) ¢ T7(X),
and hyperexact if

6.7 T71(0) C T°(X).

There are various equivalent forms of these conditions:

Theorem 7 If T : X — X is linear and n €Nandm+k=n+1 then
71 T7H0) S TH(X) = T75(0) C T™(X) = T7"(0) C T(X)
and

-1
72 T7(0) CT(X) < T72°(0) CT(X) <= T==(0) c T(X)

IfT =TTT is regular then

7.3 T"T*(X) € T*(X) and T"T~*(0) C T~*(0).
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1f S € comm™*(T) then

74 (T — §)==(0) C T*(X) and T=(0) C (T = 5)*(X)
and 7 |
75 T-°°(0) N (T - §)~(0) = {0}

and for each m,n € N
7.6 T™X) + (T = S)"(X) = X.

Proof. Most of this comes from Lemma 1 and Lemma 2, taking U and V to
be powers of T'. For the last part factorise (I™ — S™)" in two ways to see
that (T — S)*,T") satisfies (4.9)-(4.11) for each n:

7.1 S — (T, S)T™ = (T = S) (T, S)"

for certain polynomials ¢m and rm,ne
We cannot replace m and n by oo in (7.6): for a counterexample take
T = U to be the forward shift on X = {yand S=1.

Definition 8 Call T € BL(X,X) hyper-regular if it is regular and hyper-
exact. We shall say that T is “consortedly regular” if there are sequences (Sn)
in comm~(T) and (T%) in BL(X, X)) for which

81 |ISall+ T2 = T — 0 and T = Sp = (T = Sa)T2 (T = Sa),

and “holomorphically regular” if there is § > 0 and a holomorphic mapping
TA . {|2| < 6} — BL(X, X) for which

8.2 T — M = (T = A\I)T (T — M) for each || <6.

Mbekhta ([16] Theorem 2.6) has essentially proved
Theorem 9 If X is complete and T € BL(X, X) then

9.1
T consortedly regular == T hyper — regular. = T holomorphically regular.
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Proof. If T is consortedly regular then, using (6.4), there is inclusion 77%(0) C
(T = Sp)(X) for arbitrary k and n, where S, satisfies (8.1), and hence if
T*z = 0 then z = (T — S,)T2« giving

(I-TT")z = (T - Sa)Tr —=TTM)z — 0 as n —> 0,

and hence z = TT"z € T(X). This gives, without completeness, the first
implication of (9.1). Conversely suppose T' = TT”T is hyper-regular and S €
comm(T’) with [|S||||T"|| < 1: using (6.3) and (7.3) and expanding (I-T* S)~!
in the geometric series gives

S(I =T S)'T=1(0) C el T~%(0) C el T(X)

and hence
(I-TTMSI -T"S)y™Y(I -T"T) =0,
which by (3.8.4.3) from the proof of Theorem 3.8.4 [10] says

9.2 T-S=(T-9I-T"S)"'TNT - S).

Specialising to scalar S = Al gives the second implication of (9.1)e ’

The derivation of (9.2) is based on Caradus [4]; cf also Theorem 3.9 of
Nashed [18]. If we observe

. TNT - 8)+ (I-T T) = I -T"S

that I — T"S sends the null space of T'— § into the null space of T, then we
can see that for Fredholm T" and one-one I —T"S we have dim(7T'— S)~1(0) <
dim T-*(0) ([10] Theorem 6.4.5). Conversely if T = TTAT is hyperregular
and S € comm(T’) has small enough norm,

9.4

(T=-S*"T+I—-(T-S)"(T-S) = I+(T-S)"S with (T-9)* = (I-T"8)~'1*,

furnishing an invertible operator which sends the null space of T' into the null
space of T'— S. In the Fredholm case this is the Apostol zero jump condition
[1},[22],[19].

Theorem 9 says that the hyper-regular operators form an open subset of
BL(X,X), and hence that a certain kind of “spectrum” is closed in C We
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may also observe that the topological boundary of the spectrum is contained
in this “hyper-regular spectrum”:

95  {T € cleommBL (X, X) : T hyper —regular} C BL™Y(X, X).

We are claiming that if hyper-regular T is the limit of a sequence T - Sn Qf
invertible operators which commute with 7" then T must a}so bg invertible. l‘t
follows from (9.4) that if (T — S)" and I — T"S are both lnvert'lble t.hen 50 1s
T since this argument extends to TATTN this also makes T invertible.

The spectral mapping theorem for polynomials extends to the “hyper-
regular spectrum”:

Theorem 10 If ST = TS then

10.1 ST self — exact => S, T self — exact
and

10.2 ST hyper — regular => S, T hyper — regular
IfST = TS and (S,T) is middle exact then

10.3 S, T self — exact => ST self — exact
and

10.4 S, T hyper — regular = ST hyper — regular.

Proof. The first part is an extension of Mbekhta ([17] Lemma 4.15): if
(ST)~1(0) C (ST)(X) then

T=1(0) C (ST)™}(0) € (ST)(X) = (TS)(X) € T(X),

and similarly for S and powers T" and S™. This gives (10.1) and most of
(10.2): the regularity of S and T' come from (3.1). Conversely, for (10.3), use
(4.1)-(4.4):

(ST)=1(0) € S1(0) + T71(0) € S(X) NT(X) € (STHX).

This gives (10.3) and most of (10.4): the regularity of ST is (3.1) againe
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One situation in which all the i ibili
: ne 1nvertibility and non-si i it1
for (5,T) are satisfied is when we can write ’ ereingularity conditions

10.5 S = q(A),T = r(4)

f .V ' .

n(?ll(‘) :I}aoieratfr A:X — X and }?olynomlals ¢ and r without non-trivial com-
mon {2 chor. n general polynomlals ¢ and r have a unique “highest common
actor” hef(g, r) determined by the logical equivalence

10.6 {g,7} C (Poly)p <= p € (Poly)hei(q, r),

together wit i i ¢ i
g with the requirement that it be “monic” (unless either ¢ or r is 0,

in which case also hef = i ili
gorition so hef(q,r) = 0). It is now familiar that, by the Buclidean

10.7 hef(g, ) € (Poly)q + (Poly)r,

50 tl}at there are polynomials ¢’ and # for which hef(q,7) = ¢'g+ #'r. Ifin
f;ﬁ::lii :cf (.q, ri: 1, so that ¢ and r have no common non-trivial co;nmon
conditi’o ns (131 S()l)r}(i ;1?lg§bra, Poly) the pair (g, r) satisfies all the invertibility

o =.( @ (smce_the alllalogue of (4.12) holds). This extends to the
f)s - o;)erator‘q(th), 7"(fA)), with (8, T") = (¢’(A), »'(A)) whenever A4 : X — X
o o Sa”tist;le(i‘us if (10.5) holds then the non-singularity conditions (3.2)-

Lemma 11 If A : X — X is linear there is equality

11.1 D (A=AD)™(0) = U »(4)(0)
AEC 0#p€Poly

and

11.2 () (A= rD)>(x) = A)(X
AeC 0¢p@olyp( X ;

. b 1 usl I d y
1 fyele) he le t a. d de (0 ) 1S ObVv10 ( lr;c u ed in the I’lght COIlVeISBI

11.3 p(A)71(0) = q(4)71(0) + r(A)~1(0).
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More generally if p = q1¢2...qn 15 @ finite product of factors ¢; of which no
pair has any common factors then the null space of p(A) is the sum of the null
spaces g;j(A)~1(0); but by the fundamental theorem of algebra p is a product
of polynomials of the form (z — A)E for distinct complex numbers A. This
proves (11.1). Similarly, the right hand side of (11.2) is included in the left,
and the opposite inclusion follows by the inductive extension of equality (4.3):

11.4 p(A)(X) = q(A)(X) Nr(A)(X)

if p= qr with hef(q,r) = 1e

The operator A : X — X is described as algebraic if there exists a non-
trivial polynomial p € Poly for which

11.4 p(A)~0) =X,
and as Jocally algebraic if

18 U )0 =X.
0#p€Poly

The intermediate notion is that A is boundedly locally algebraic if there is
k € N for which ’

11.6 X = U{p(A)“l(O) : 0 # p € Poly, degree(p) < k}.

For bounded linear operators between Banach spaces, an application of Baire’s
theorem says that (11.5)== (11.6) ([13] Theorem 15; [20] Theorem 4.8 ; [21]
(3.4)); our interest here is to expound Kaplansky’s lemma ([13] Lemma 14;
[20] Theorem 4.8; [21](3.5)), which says that (11.6)= (11.4):

Theorem 12 If A : X — X is boundedly locally algebraic then it is algebraic.
Proof If A is locally algebraic in the sense of (11.5) then by (11.1) there is
equality

12.1 D (A=AD)TE(0) = X;
: AeC ' )
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for a locally algebraic operator to be algebraic it is necessary and sufficient
that it have a finite set of eigenvalues
12.2

T A) = A€ C(A-ADT0) £ {0} = { € C : (A= AD)"(0) £ {0)).

We claim that if the set 7'*(A) is infinite then the condition (11.6) must fail:
forif Ay, As, ..., A, are pairwise distinct eigenvalues of 4, with corresponding

eigenvectors €1, &3,...,2, ,and p € Poly is a polynomial, we claim that there
is implication

12.3 P(A)Q2) =0== {21,23, ..., 22} C p(4)1(0)
j=1

== {)‘1’ ’\2) B ’\m} (_: p-l(o):
forcing degree(p) > m. To see why the first part of (12.3) holds argue that

12.4 hcf(q,r):l,q(A)yzr(A)z:O,y+z:O=>y=z=0:

this is because the pair (5,T) = (g(A),7(A)) satisfies the condition (3.2) so
that equality y+2z = 0 puts y = —z in a(A)~1(0)Nr(A4)~1(0) = {0}. To apply
(12.4) to the first part of (12.3) take

y:zjaz=zxi;q=2~—)j,'l':nz_,\{.
i#] i#]

To see why the second part of (12.3) holds observe that
12.5 p(3) # 0 = hef(p, 2= X;) = 1 = p(4) " (0)N (A=) I)~1(0) = {0}e

When the operator A is algebraic then (12.1) becomes a finite direct sum de-
composition of the space X : this decomposition makes it clear, as is observed
by Aupetit [2], that if k € N satisfies the condition (11.6) then (11.4) can be
satisfied with degree(p) < k . When A is algebraic then each existing inverse
(A= AI)~! is expressible as a polynomialin A4 : when X is finite dimensional
this is one of the familiar applications of the Cayley-Hamilton theorem. We
may also observe, as in the finite dimensiona] case (12], that when (A —\I)-!
does not exist, then all the eigenvectors z € (A = AI)71(0) lie in the range
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of a related polynomial in A4 : the simple observation is that if p(A) = 0 and
p = qr with hef(g,7) = 1 then

12.6 g(A)7H0) = r(A)(X).

i izati f Kaplansky’s
We conclude by expounding another generalization o .
lemma; the unpublished argument is due to Laffey ([15] Lemma 1; [20] (3.5)):

Theorem 13 If the operator A : X — X is boundedly Ioc:'dIy algebraic
modulo a finite dimensional subspace Y C X, then it is algebraic.

Proof The assumption is that there is k € N for which, for each z € X, there
is a non-trivial polynomial p, € Poly for which

13.1 degree(p;) <k and p (A)zeY.

We are not assuming that the finite dimensional subspace Y is "‘inv?uriant”
under A in the sense that A(Y) C Y, but immediately replace it with the
(possibly infinite dimensional) invariant subspace

13.2 V= {J pa@)=y+ Y axy)

pePoly neN

generated by it, together with the induced quotient opeﬂre}t'or A XY —
X/Y. Applying Kaplansky’s lemma (Theorem 12) to A gives a non-trivial
polynomial (of degree < k) po € Poly for which

13.3 po(A)X)C Y.

,Ym), then again by as-
y @m (Of degree S k) for

If Y is of dimension m , with basis y = (y1,¥2, -
sumption there are non-trivial polynomials g1, ¢z, ...
which

13.4 g(AAy; €Y (i=1,2,...,m),

and hence complex numbers (A;;) = B for which

m
13.5 G(A)Ay =Y Xy (i=1,2,...,m).
. j=1

4
j
i
o
B
|
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This gives
13.6 QA)y=0eY™,

treating the basis y € Y™ as a colu i
mn mat (X)) i
the “operator matrix” et where Q) € KL A)™ is

13.7 QA)=B®I-qA)IeA)

)\111 —q1 (A)A /\12] e /\1mI
/\21] )\221 - QQ(A)A “es )\Zm-[

Amil Ama
It follows ([8] Problem 70; [11](2.0.4)p.108)

Amm = gm(A)A

138 q(A)y; =0 (7=1,2,...,m) with go(A)=detQ(A) € L(X, X) :

since all the entries of Q(A) commute we can wri .
. ite adjQ(A). =
exactly as in the numerical case. It now follows JQ( ) Q(A) qU(A)®I)

20(A)Y =0 and hence go(A)Poly(A)Y = {0}

and hence

13.9 90(A)pe(A)X C go(A)Y = {0}.

Our final observation explains why (13.5)

e was not replaced by something sim-

13.10 degree(qo) > m,

which ensures 0 # gop, € Polye
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Dimension Theory and Stable Rank

Gerard J. Murphy

1. Topological Dimension Theory

The theory of dimension in topology grew from attempts to establish the
topological invariance of the dimension of Buclidean spaces. The first proof
that the spaces R™ and ™ are homeomorphic only if n and m are equal was
given by Brouwer in 1911. His proof did not explicitly involve a property that
might serve as a topological definition of n, but in the same year Lebesgue
suggested an approach which led to the covering dimension. If I is the closed
unit interval of R it was observed by Lebesgue that the cube I can be covered
by arbitrarily small closed sets in such a manner that not more than n+ 1 of
them meet (in a common point). This is illustrated in the 2-dimensional case
by the usual pattern of brickwork, where a maximum of 3 bricks can meet.

To define the covering dimension we introduce a preliminary concept. If
® = (Un)ren is a family of subsets of a topological space: X and .z € X the
order of ® at z, denoted ord.(®), is defined to be the number of elements A of
A such that Uy contains z (if there are infinitely many such elements A then
ordg(®) = 4+00). The orderof @ is defined to be the supremum of all ordz(®)
where z runs over X. Thus for the brickwork family of sets mentioned above
the order is 3. If X is a topological space the (covering) dimension of X,
denoted dim(X), is the least integer n such that every finite open covering of
X has an open refinement of order not greater than n + 1. If no such integer
n exists then we set dim(X) = +oo. Here is an alternative, very useful,
formulation: For any topological space X, the inequality dim(X) < n holds if
and only if for each open covering Uy, . .., Uns2 of X there is an open covering
Vi,...,Vnyo such that V; C Uj forj=1,...,n+2and Vin...0Vag =10,
For the classical spaces such as R", I" and S™ (the n-sphere) the covering
dimension is the number one would expect. It is however non-trivial to show
that dim(R") = n. The proof involves the well known theorem of Brouwer
which asserts that for all n the sphere gn-1 is not a retract of the closed unit
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ball of R”. There is a nice easily-stated criterion to determine if a subspace
X of a Euclidean space R™ has dimension n. This is true if and only if X
contains a non-empty open set of R".

The case where the covering dimension is zero is easy to interpret in direct
topological terms. If X is Hausdorff and dim(X) = 0 then X is necessarily
normal and totally disconnected. For compact Hausdorff spaces being zero-
dimensional is equivalent to being totally disconnected, but this is not true
for arbitrary spaces, as we shall see in an example below.

Incidentally, there are other concepts of dimension, such as the large and
small inductive dimensions. For metric spaces the large inductive dimension
is the same as the covering dimension, and all three dimensions agree on
separable metric spaces. The covering dimension appears to be preferred for
the analysis of general topological spaces.

There is a very nice connection between dimension theory and the prob-
lem of the existence of continuous extensions of certain continuous functions:

1.1. Theorem. If X is a normal space then dim(X) < n if and only if
for each closed set A of X and continuous function f: A — S™ there exists a
continuous extension f': X — S,

Dimension theory also has useful applications to topological K-theory.
The latter topic can be viewed as the algebraic aspect of the theory of vector
bundles, and one of the questions it investigates is the extent to which the
cancellation property holds for (Whitney) direct sums of bundles. This is
controlled in part by the dimension of the base space.

Although the covering dimension gives the expected answer in many clas-
sical situations, it has a number of paradoxical and even pathological features.
For instance, the set X = {1,2,3,4} can be endowed with a non-Hausdorff
topology making it a topological space of covering dimension 1. This illus-
trates the point that dimension theory does not work too well for “strange”
topological spaces. A mininum assumption appears to be normality to get
some kind of reasonable theory. But even for compact Hausdorff spaces and

metric spaces unexpected things can happen. For instance, the “logarithmic
product rule”

(*) dim(X x Y) = dim(X) + dim(Y)

fails spectacularly. To illustrate this denote by @ the separable metric space
of all square-summable sequences of rational numbers with the metric defined

3
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by . 2
d((@a), () = (O (@n = )2
n=1

One can show that dim(Q) = 1 and that Q is homeomorphic to @ x @,
o (*) fails for X =Y = Q. (We promised above an example of a totally
fiiscormected space not of dimension zero. The space Q is sucilj arl exau.npller.c)3
1 1 ils even for compact spaces. Pontryagin has
The logarithmic product rule fai : onrvagin s
ibi ir of compact metrisable spaces of dim
exhibited an example of a pair o : 2
i 1 In a number of important cases one ge
whose product has dimension 3. :
useful inequality instead of (¥). If X and Y are arbitrary compact Hausdorff

th '
shares e dim(X x Y) < dim(X) + dim(Y).

This inequality also holds in the case that X and Y are metrlg spaczi.dimen-
Perhaps one should not really be surprised by these. para 1oxes Jmen-

sion theory. After all, as is well known, one can continuously map

2 .

a There are many more aspects to dimension theory, a full accognt ottl'1 w}lﬁi

can be found in [5] and [6]. We turn now to the problem of dﬁ?mg dfadates

mension” of a C*-algebra. We shall see thelje a number‘ of pos511 e .caxll dlimen_

for the position, and all have connections with the classical topologica.

sion.

2. The Bass Stable Rank and the Real Rank

One of the great sucesses in recent years in operator. algebra theory i]:i
been the development of K-theory of Q*-algebras (for an mtroductt}ory ;}:51 o
tion see [3]). Recall that a C*-algebra is a Banach alzgebrafli togeAlerIf ith an
isometric involution @ — a* such that ||a*a|| = ||a||* for al. a € A His e
Hilbert space and B(H) denotes the algebra of all bounded lm’ez.a.rtopeéalo;bra
H then B(H) is a C*-algebra, as is every norm-closed s.elf-ad‘]ox}lz. su t;} g are:
A theorem of Gelfand and Naimark asserts that up to isomorphism these

* .
! t}};hfre ?;g:: Eransportant connection with topology given as itollows: If X llzxa—
locally compact Hausdorff space then C'o.(X),' the‘set of all contm'uou(sjioril;;bra
valued functions on X that vanish at infinity, 1s a ?ommutatlve -a grm)
(the operations are pointwise-defined and t'he norm is the sué)rgmumrnc})lism,
Conversely every commutative C*-algebra is of this form up to isomorp .
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Thi

H:lss gg;rfezg:zxjegce .betvs‘lee(ril commutative C*-algebras and locally compact
s has mspired an approach to the th * i

et o8 ha : eory of C*-algebras which

jefti:,es nl}i; ;Lz] nlc))n. commutative t.opology”, with the finitely-generated pro-

Joctt theoremezf ;mg t)he ;ﬁpropn&te generalisation of vector bundles (based

wan). is point of view has b i

the motivation for introduci i eebue thoory. From to
. ucing K-theory into C*-algebra th i

perspective it is natural to tr DA

y to develop some co “di ion”

x ‘ ncept of “dimension” f
tCemaultgedbli)a an.alogous to the dimension of a topological space. This wa,sO;te-1
fer kpo? ) g*lefgﬂ'il [10’]1,‘ }yho introduced the concept of the topological stable

-algebra. This was soon seen to be identical witl
rank already known to al 1 1 o vestigate the stoble
gebraists. Rieffel was led to investigate t}
: : t
:?Onk lby a %ues‘tlon concerning a certain class of C*-algebras. ng g isu;nS iilr)al:
b nal number in [0,11 then t‘here is (up to isomorphism) a unique C*-algebra
mi gen:;ated by a pair of unitaries u, v such that uv = "™ yu (u is a unitar
a M T
e Il;soti ‘::t:u =u"1). These algebras, called irrational rotation algebras arZ
doveony b;ntghex;{nfdles in ;hle non-commutative differential geometry b’eing

. e Fields’ medalist Alain Connes. Th i i

Rl e Flelds’ m ' . The question that interested
ellation property for jecti
the atiom] ox the ca ! y projective modules holds for
gebras. This can be reformul i
X ra atio : ulated in more concrete
eerurinj.llf E};voTpro‘]ectlons in Ay have equal trace are they necessarily unitarily
quivalent? The answer turns out to be affirmative, as was shown by Rieffel

using the stable rank. He was led to hi 1
. . s notion of t i
the following theorem of classical dimension the(;)ry:opologlcad stable rank by

2.1.T <
P i;;:orem. IfX isa com;?act Hausdorff space then its dimension is the
ger n such every continuous function from X to R™*! can be uni-

formly approximated arbitrari i
ormly rbitrarily closely by continuous functions which never

Interpreting this in terms of th

: ' e algebra Cp(X), and then slightly re-

fcoim;lla}t)mg, one arrives at the definition of stable rank. Let A bega u}:liz:xl
-algebra, and for each integer n let L, (A) be the set of n-tuples (a

generating A as a left ideal, that is, such that e tn)

Aay + -+ Aa, = A.

’i{‘lhil:i?ble }:a'nk sr(A) of A is the least integer n such that Ln(A) is dense
or the product topology. If no such integer exists sr(A4) = +oco. If
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A = Co(X) where X is a compact Hausdorff space, and if [t] denotes the
integer part of ¢, then sr(A) = [dim(X)/2]+ 1.

Except in the lowest rank case, it is not easy to interpret the stable rank
directly in terms of properties of the algebra A. It can however be proved
without difficulty that a unital C*-algebra A is of stable rank 1 if and only if
the set of invertible elements of A is dense in A. The question of whether this
is true for the irrational rotation algebras was open for a number of years, and
has only recently been determined (in the affirmative) [9].

As in classical dimension theory, there are a number of surprising results
in the theory of the stable rank. For instance, stable C*-algebras can have
rank either 1 or 2 only. (A C*-algebra A is stable if it is isomorphic to the C*-
tensor product A®, K, where K is the C*-algebra of all compact operators on
the Hilbert space £2. These algebras occur frequently in C*-theory.) If Ais an
arbitrary C*-algebra and M, (A) denotes the set of square matrices of size n
having entries in A, then My (A) is a C*-algebra in a natural way. 1f sr(A) =1
then st(Mn(A)) = 1, that is, if the invertible elements of A are dense in A
then the invertible elements of My, (A) are dense in M, (A). If sr(A) = +o0
then s7(Mp(A)) = +oo also. If 1 < sr(A) < n+ 1 then sr(M,(A)) = 2.

Following along lines set down by Rieffel, Brown and Pedersen [1] intro-
duced another concept of rank for C*-algebras. If A is a unital C*-algebra
then its real rank is defined to be the smallest integer, RR(A), such that for
each n-tuple (a1, ...,an)of self-adjoint elements of A for which n < RR(A)+1
and each € > 0 there is an n-tuple of self-adjoint elements (b, ..., bp)in A
such that Y7 _, b% is invertible and

HZ(ak — bl <e.
k=1

(The element a is self-adjoint if a* = a.) If X is a compact Hausdorff space and
A = Co(X) then it is easy to show that RR(A) = dim(X). For an arbitrary
unital C*-algebra A the real and stable ranks are related by the inequality

RR(A) < 2s7(A) - 1.

However these two ranks can be very far apart. There is a C*-algebra A such
that RR(A) = 0 and sr(A) = +0o0. Based on previous experience one would
expect the lowest real rank case to be easiest to interpret directly in terms of
the algebra, and this is indeed true. One has RR(A) = 0 if and only if every
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self-adjoint element of A is the limit of a sequence of such elements having
finite spectra. Algebras satisfying this condition had already been extensively
analysed by Pedersen (8], and have some very interesting properties.

3. The Analytic Rank

Motivated by results in classical dimension theory the author has intro-
duced a third concept of rank. If A is a unital C*-algebra a C*-subalgebra
B is defined to be analytic if B contains the unit 1 of 4 and a2 € B implies
a € B for all self-adjoint elements ¢ €A IfSisan arbitrary subset of 4 then
there is a smallest analytic subalgebra of 4 containing it, and if this is 4 itself
and the elements of S are self-adjoint then $ is called an analytic base of A.

Every analytic subalgebra contains all the elements with finite spectrum,
in particular all the projections. If A is of rea] rank zero then its only analytic
subalgebra is 4 itself. The field C is an analytic subalgebra of an arbitrary
C*-algebra 4 if and only if the only projections of 4 are 0 and 1. In particular
if A= Cy(X) then C is an analytic subalgebra if and only if X is connected.

The analytic rank, ar(A), of a C*-algebra A is defined to be +00 if 4 has

no finite analytic base, and to be n if A has an analytic base of this (finite)

cardinality but none of smaller cardinality. If X is a compact metric space
then by classical dimension theory results one has ar(A) = dim(X). The
analytic rank, considered purely as a C*-algebra Invariant, seems to behave
better in a number of respects than the stable rank and the real rank, although
like these it has some paradoxical properties.

Here is an example of nice behaviour. Associated with each locally com-
pact group G there is a C*-algebra, C*(G) having the same representation
theory as G (thus the representation theory of these groups is contained in
the representation theory of C*-algebras). If F,, is the (discrete) free group
onn > 1 generators then the stable rank of C* (Fn) is +00, so the stable rank
is unable to distinguish between these algebras. However ar(C*(F,)) = n.

There are a number of properties that one would like a “rank” function
to have. For instance, if 4 r(A) is a rank function it is desirable that it
should satisfy the following conditions:

(1) f A= A; ® A, then r(A) = max{r(4,), r(42)}.
(2) If B is a quotient algebra of A then r(B) < r(4).
(B)IfA=A4, ®, Az, that is, A is the (spatial) C*-tensor product of A; and

Az, then T(A) < T’(Al) -+ T(Az).

(4) If A = B x, G, that is, A is the C*_crossed product of the unital
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C*-algebra B and the countable discrete abelian group G, then r(A) <
r(B) + dim(G), where G is the Pontryagin (cllulal grou}; gf G.lved o
1 1 it1 the proofs invo -
nk satisfies all four conditions, an oc :
"I\};eti?j l;,rt;clfgt difficult. However, some of these conditions are difficult, or
in

for the stable and real ranks. . .
unkn’?‘;v: )an(;rlytic rank seems to be a natural invariant. However the concept of

alytic C*-subalgebra is rather mysterious, an_d it would be useful t(:i bztz(x)l;lg
?Cl)l re);ormulate the definition of analytic rank in terms of better under

*- ic ideas. '
¢ a}fe:;;:;rls that (at least some of) these various concepts of rank may be

f great future importance. As yet however the theory is only in itsdutntlbael
Otagias It is desirable to compute the ranks of many more e)'(amy;le}sl, ar; i ;r >
Zbli té interpret the ranks more directly in terms of properties of the alg .
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MATHEMATICAL EDUCATION

Mathematics at Third Level — How
We Teach

F.D.T. Dickenson, E.S. Gillespie & S.K.
Houston

Courses combining mathematics, statistics and computing at the
University of Ulster are described. Innovative methods of teaching,
learning and assessment are discussed.

Introduction

This paper describes degree and sub-degree courses combining mathematics,
statistics and computing at the University of Ulster and discusses the non-
traditional approaches taken to teaching, learning and assessment. It has been
written in response to a recent article in the Bulletin by Maurice O’Reilly [1]
which questions how we teach mathematics at third level.

The University is required by its Charter to offer coursés at degree and at
sub-degree level. Hence we offer an honours degree, an ordinary degree and
a Higher National Diploma (which is validated by the University and by the
Business and Technician Education Council). These are linked courses which
means that students enter the course most appropriate to their entrance qual-
ifications (usually A levels, but about 10% offer the Irish Leaving Certificate)
but can subsequently transfer between courses if their progress so dictates.

The suite of courses was designed only after an extensive market research
exercise. All U.K. firms known to advertise regularly for graduates of com-
bined degrees in mathematics, statistics and computing were contacted in an
attempt to assess their needs as regards knowledge and skills, the desirabil-
ity of a sandwich year, and the potential availability of sandwich placements.
Detailed information was received from 100 of the 246 firms contacted.

Each course comprises applicable mathematics, statistics, computing and
operational research, and aims principally to produce graduates (or diplo-
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tical career in industry, commerce or the pub-
mates) pre%’cllf: (tiofoirc: slzfgil;?rze there because they are useful in the solution
e 1 roblzrns Students are encouraged to look as much at the prob-
of pracgl(':: pontext a,.s at the mathematical methods they will use to'solve it.
}1%1111 zLnon—]tiacditional methods of teaching, learning and assessment which the

courses embrace include:
(i) an emphasis on the development of enterprise,
(i) group project work, |
(iii) a unifying theme of mathematical modelling,

(iv) an industrial placement year.

These are discussed below together with details of the course units in which

they especially feature.

1 Enterprise

Business today calls increasingly for enterprising employ.ees, that 1s',t‘hvelty,
us{urceful adaptable people able to recognise and exploit oppprtum 161? tg
221(; risks yand respond to challenges, to innovate, to commumcat‘e V.vee ,and
work effectively either alone or as a member of a team, and to organis
ivate others. '
mOt’}“;laisesuite of courses aims to develop these personal .and 1nterpersfo§11aél3
skills through the various group project b‘as’ed umtsvand in ;hi casehoS an:;l_
degrees through conventional final year individual projects an t rO}lbg sane
wei%lrl placement. Industry and commerce clearly make alrgggog cont.rll u 10}1)10rt
i October nancial sup
i during the placement year. Fr?)m ctobe :
;hlinpg}(:; eSSK Entgerprise in Higher Education Initiative w11Lendable them also
o cor i i f the degree courses.
i the college- based years o ourse
to make a contribution during . . egree courses.
i bout a dozen seminars given by g
nach year students will attend a by »
gla;;triilists These will both address selected aspegts of enterprise 1rzi butsn::f(si
and serve to introduce particular firms to prospective placement students

prospective graduate employees.
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2 Group Project Work

Grou ] ' 1
p project work plays a key role in the following units of these courses

(i) A workshop unit, (HND Year 1).

(ii) An introductory unit i
Y unit in mathematical modelli
to Year 2 of the HND and Year 1 of b:tll(l) diélrtis;;nd models {common

(iii) A more advanced unit in mathematica) model

to Year 2 of both degrees). g casestudics, (common

(iv) A final year group project unit, (HND Year 2).

The first three of these units share a common

group project content. The class is initial i
§tudents per group seems to work best
involving the solution of a
usually, but not necessarily,

‘g'a,nisational feature as regards
; Ii divided into small groups, (four
» and each group is assigned a proj

: ‘ ect
practical real-life problem. Different grofszare

frou thom ot neces: lloursa;seigrv;zdldifﬂerex}t projects. The members of each
€k for a few weeks in which to investi
1gate

the bacl

o mor;i;?;lﬁgnto thz problem, analyse the problem systematically, find one

o e WritLens, an .then present their results in the form of inc’iividuall
reports to the supervisor and (usually) a seminar delivere(}il

IepOItlllg. hIa,IkS are awar ded iy l(:al[y fO I]let Od a d organ SathIl COIlteIlt
p T h n g 1 ) 3

oral . .

o erstand expeciadatnd wn.tt.en clarity and presentation, and initiative. The

O re xp e o.exhlblt conclusions in a form comprehensible b :

ope proces.s N r:p;atssd is Fhen reorganised into different groups of fogrn:zii
cess ed using a different set of proj

reorganisations and sets of group projects thenpflc‘jfssvt = One or more forther

A final written examination is i
A mination is involved i i
unit in mathematical modelling and modelc;nly B e

2.1 HND Workshop Unit

This unit i :

It aims toc?lilfg:Zii 0111113’ group project work, albeit very closely supervised

and numerionl et a Lc‘ompone'n@ of the HND course, that is, a.nalyticai

Computing o1 emaucs, statistics, computing and operational researcl
§ Piays an important role in every project and practical guida;;
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is given in the use of mainframe and microcomputers in the solution of real-
life problems. However, only later will the students be introduced to the
methodology of mathematical modelling,and so here the emphasis is on the
systematic analysis of the problem rather than a detailed investigation of its
background. Each student participates in several projects but only delivers one
(joint) seminar. The audience for this usually includes a visiting industrialist.

2.2 Introductory Unit in Mathematical Modelling and
Models

This unit looks at the philosophy and methodology of mathematical modelling
and is taught by a single member of staff. It is essentially a unit abouf
applying mathematics. After an introductory lecture on the modelling process
each student takes part in several group projects designed to emphasise and
give practical experience of this process. The problems posed can be tackled
reasonable satisfactorily using the students’ existing mathematical knowledge.
Each student writes an individual report and jointly delivers a seminar on each
project undertaken.

The “models” section of this unitis a study of some standard mathematical
models such as Newtonian mechanics and population dynamics. Emphasis 1s
placed on the development and understanding of the models. This section is
assessed both by coursework and by a final written examination.

Students are encouraged to read mathematical articles and comprehend
them to the extent that they can satisfactorily explain them to others and
answer questions about them. To help achieve this objective an article on
some aspect of applied mathematics is copied and given to the students in
advance of a timed written comprehension test relating to it. An example
of such a test is given by Houston [2]. (It is worth noting that in Northern
Treland a comprehension test also forms part of the assessment for a Further

Mathematics A-level examination [3].)

2.3 Mathematical Modelling Case Studies

This unit aims further to develop interpersonal skills and expertise in math-
ematical modelling, and to integrate the various components of the degree
courses. It consists almost entirely of group project work. The problems dif-
fer from those of the introductory modelling unit in length and difficulty, in
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the breadth of skills needed to solve them, in the standard of reporting re-
quired, and in the extent to which the groups are expected to work without
close supervision. By the end of this unit the students should be confident
public speakers and ready within reason to make worthwhile contributions to
their sandwich placements no matter what tasks they are given.

The unit commences with a short lecture course in communication skills.
This includes, for example, instruction in the preparation of formal written
reports and a detailed comparative study of well written and poorly written
articles taken from mathematical research journals.

Each student then participates in three group projects in mathematical
modelling. The first of these requires only first year mathematical methods,
the second is a case study in applied statistics, and the final one is based on
operational research and computer simulation. Different groups are always
assigned different projects. Each problem is posed by a different member of
staff who both plays the role of an industrial client and acts as supervisor and
assessor. Most probably the case-study has been designed by him. He simu-
lates problems of communication, (for example by feigning a total ignorance
of mathematics), and probably withholds some essential facts initially. It is
up to the group to seek further information from him as they think necessary.
The group then has one full day per week for four weeks in which to solve
the problem and produce a single written report. Throughout this period the
supervisor monitors progress and intervenes with guidance if necessary but

Mathematics al third level

1 1 t a monitoring, assessment and ma
. es one design and implemen . : 1 me ’
0 HOW jc(i}eme which is as objective as possible, which properly discrimi-
mgtes between different members of the same group, and which ensures
I;iiformity of marking of case-studies of differing length and difficulty

by different assessors?
these matters are the subject of ongoing research, the final results of

Whlch W 111 be I‘epor ted mn a Subsequent ar tlcle. I() date ‘ WO (I 110e (1] ie]‘ent
SeSSIIlent scl‘lelnes ha\f € been tr led, I J elther ha»S pro \ ed entlrel y atls a.CtO Y
as S ( T

and a third will be used in the academic year 1990-91.

Both

2.4 HND Final Year Group Project

. Alls,
Final year HND students are unlikely to have fully deve}op:d e;lltetrfgzs:tsé\e:ll{ :s
] ] indivi ect each s

: dertaking an individual final year project € .
>0 rtthe;. tghrzr:q‘)u;rf)ject g1“his lasts for the entire acader(iucbyear, \gl}temu ralulli
e 1 milas rojects discussed above. 1

ts is similar to the group proj ' ;

O'ther tre?r)x(:nz lthat HND students, particularly those w1t110}1t relel\’/acrlxt' W(erlle
aleriche are given the opportunity to learn how theory is applied 1
exp )

solution of realistic large-scale problems.

3 Industrial Placement

otherwise the group is left to its own devices. Each case-study involves about
the same amount of work as a conventional final year degree project. This
places fairly severe pressure on each group as regards time, and forces the four
members properly to plan their schedule of work and share out the various
tasks. After submitting their written report the group members deliver a joint
seminar on the project during which they are subjected both to a viva-voce
examination of content and to a critical appraisal of their oral and visual com-
munication skills, the rest of the class being encouraged to contribute to both
of these exercises. Finally the group members meet with the supervisor to
receive detailed feedback on all aspects of their performance.

Two important questions have arisen in connection with the organisation
of this unit.

‘ ;( ot l (ie ree Ccourses arl € Ol fOUI ears duratlon Years 1 2 alld 4 are Spen
y 9

on Campus and Year 3 mn lndustrlal placement‘ The alims and a,dvanta.ges

Of Sand W lch placement as Iegards bot}l Students and employers are tOO Well

known to need reiterating here. Nevertheless, placement is still very much a
{No

iti ined degrees in mathematics, statis-
non-traditional component as far as combin g e el

tics and computing are concerned. This is possibly due to
beliefs.
(i) Employers place no value on the sandwich ele
of such degrees.

ment when hiring graduates

(ii) Undergraduates of such courses are very hard to place.

i i i ly in com-
(iii) Those placements which are available involve experience only

(1) How does one distribute the students between groups, (and later redis- X
tribute them twice), so that all groups have as nearly as possible the puting.
same overall academic ability?
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commerce sector, (about 32%
sponded), the opposite wag to
sandwich placement. '
. At the time of writing of
Just completing their sandwic
all have reported in glowing ¢
these 23 placements: 4 (17‘7g .
extensive use of mathemat(;
and 7 (30%) involved extens
na.tur.ally involved some co

principal element,.

this article our firs
h year. All were pl

rms on the value of
) were in fi

t cohor‘t of 23 students are
aced with relative ease and
the experience obtained. Of

n
o5 O)ar;;i (;xizdczr;mer.ce, 8 (35%) involved
ensive use of statistj

cs,

use Of p I'atl naI 41‘. p ents
1ve ope O resear Ch‘ H 23 laceln
Inl: u tulg’ E ut n :D'JS E (: E O)

4 Conclusion

In his paper O’Reilly [1]

the University of Ulster b stions.
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Use of MACSYMA and MAPLE in
Mathematics teaching in UCG

Raymond A. Ryan

Introduction

Several years ago the Honours Mathematics program in UCG began to un-
dergo major reform. At the centre of the changes which our courses are still
undergoing was the introduction of modern computing techniques, and in
particular the use of symbolic computation software. There were a number
of reasons for this reform; two in particular stand out — a desire to reverse
a trend of falling numbers of good Mathematics students, and a process of
reeducation among members of the Mathematics Department themselves.

The number of students taking honours degrees in Mathematics in UCG
had been decreasing through the late 70’s and early '80’s. Departments like
Electronic Engineering and Medicine were full of frustrated mathematicians,
but it was not just the distorting effects of the points system that robbed us
of students. There was — and still is — an image problem associated with
Mathematics. This problem has several facets. On the one hand, most school
leavers could picture themselves in the role of an Engineer or Accountant or
Solicitor, but few could imagine themselves as a Mathematician. Also, the
divorce between Mathematics and Computer Science meant that many Math-
ematics programs were frozen in outdated modes of content and presentation,
lacking the vital interplay with computing which would have ensured growth
and change.

The second factor was the changing attitudes of the members of the Math-
ematics Department. Of course, computers had been used, and taught, for the
past 25 years or so, but “Pure” Mathematics had remained largely untouched.
Then, over the course of a few years, people became acquainted with Pascal,
Lisp, electronic mail, TEX, CAYLEY, REDUCE, MACSYMA, and so on. The
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computer had really arrived in Mathe

began to find ;
a place in our o .
would eventuall wn research, it became cle
constantly of th}; hafve to reflect this new fact of mathe?r: i}}at a?l our courses
reform of Calculus in the USA, and ifz ical life. ?ne read
) ne was still scepti-

Cal, theIe was the Spectacle Of seeing our own Stude]lts Wlth CalculatOIS WhICh
g

could sketch

graphs and com .

. pute de :

though these devices were, they were“c‘;:zlr\]'es and invert matrices. Primitive

tionS began to b y a Si .
e gn of th
such as: why shoua&kids;haz wouldn’t have made sense ffll\:fsyz:rcome’ 'QueS-
when my students pend several weeks teachin S .preleUSly,
v are going to get their i g methods of integrati
calculator in “real i g to get their integrals fi gration
ife’? or: if I rom a computer or cal
structure of this © 1f T use CAYLEY to hel alculus
The responsegzgutp}; ShOUI.d n't my students have theps;rnne uﬂderstan.d the
ese stimuli took place at various le\?e(l)pp?ftm}l]lty?
s. In this ac-

ics!
matics! And as computing techniques

MACSYMA and MAPLE

MACSYMA was i

as introduced i
REDUCE was in the first year Analysi :

also . nalysis co :
MACSYMA was soirjafﬁ:iel,)t?: manuals were so crypti:1 T:: ::)1 ;287' WI})I;Ie
Y ' ¢ better in thi : unusable.

r ISJZf:i; a:jvnte o;;u' own introductory mal,Illsuzi(lespeCt, but it was still necessary

re suc i )
as this can be taught at two levels. The first is to vi
A o view it

as a sort of symbolic
. : supercalculator. .
language, in which the user will writi tThe second is as a full programming

environments et heir own proced .
level. Our aim ViaSAtt the ﬁrsﬁ year level we conczntrat;l;e;a(_ie?ne their own
with MACSYMA with I:uaﬂl;e o fossible for the student to be able fo e Tt
tions that they w fhicient ability to be able to ca e to 1n§eract
Calculus o ly quld be likely to meet in their co Iy put the manipula-
pplications only; in our sec urses. Initially we dealt with

the Algebra cou ond year we bro
The effoct onrzi :sthll, dealing mainly with matrixiilllat,twcllACSYMA.mto
students was remarkable. Mathematics Zu;:;mfuzatlon&
enly became

something immedia
. te, rather th
daunting exa : er than a sequence of
mples. T . nce o theorems alt i ;
calculations meant thathrensgléFy to cut quickly through tediozznztel;lgt VZ'Ith
the calculatio : ime could be spent i ) TepErenve
ns. To give one si pent exploring the ideas behind
expansion of  ration .smlple example, consid . ehin
. . al functio : ’ 1der the partial fracti
situation, th ; . n. This can be ¢ i cron
e various tricky cases outlined and so Zl;gh]:u;‘ns a }foltmal lecture
) uch knowledge is

MACSYMA and MAPLE

best absorbed when acquired actively. It was in precisely such a sitﬁa,tu‘)ﬁk
that MACSYMA came 10 the fore. The student could now compute these
expansions at will, and could experiment freely with changes n the structure

of the function to see how they would affect the expansion. Similarly, it

became possible to deal with more interesting problems in Linear Algebra.

No longer were we confined to 3 x 3 matrices! The courses themselves began
mputer, and the effect of this

to change to reflect the new presence of the co
has been invigorating for all concerned. Our first year Analysis and Algebra

are, in their philosophy and content, and in the way they are taught, quite
different from what they were in 1986. There are also implications for the way

courses are examined. The traditional three-hour written exarm is giving way

to a combination of written and computer work.
Unfortunately, 1t was not all plain sailing, as those who have experience

of MACSYMA in a multi-user environment will understand. Fach user es-
CSYMA is invoked, and

sentially loads a full copy of the program when MA
this places great strains on the computer. Qur experience was that once seven
or eight students had started to do computations in MACSYMA, the whole
system (a VAX 11 /785 in this case) was reduced to a snail’s pace, leading to
great frustration on the part of our own students and other users. The follow-
ing year, we tried working with smaller groups of students. This still did not
eliminate the problem with speed of response, and the additional supervisory
burden created its own problems.
MACSYMA is an excellent progrart, but is not suitable for simultane-
ous use by groups of students. Alternatives were sought. MATHEMATICA
looks very promising, but the cost, under present circumstances, is prohibitive.
MAPLE was acquired instead, and installed on the same computer, alongside
MACSYMA (and REDUCE). Its outstanding advantage 1 its adaptability to
a multi-user situation. Each user is given only those parts of the program
which are required at the time, other modules being loaded as needed. The
capabilities at the level at which we use this software seem to be at least as
good as those of MACSYMA, and the Jevel of documentation is also good. S0,
within the next year or two, we foresee a situation in which all our Honours
students will learn to use MAPLE in their first year, and will continue to

develop their skills in its use in succeeding years, and will come to take it for

granted as a normal mathematical skill which is available when needed.
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Conclusions

As aresult of these and other changes, enrolment in the honours Mathematics
programs began to increase sharply in recent years, and the first year numbers
are now three times their previous levels. Although there are other factors at
work here, the introduction of symbolic computation in first year has certainly
contributed to this development. There is a noticeable improvement in the
attitude of the students to Mathematics. The computer is clearly acting as
a bridge for them into an area that they otherwise would not feel they could
reach.

Finally, the Mathematics courses themselves are changing, and the use
of software such as MAPLE is driving this change. New types of problems
are now accessible which could not be tackled by hand. Some parts of our
courses have become obsolete, and must be ruthlessly pruned. New branches
of Mathematics are emerging. The long-term effect of this will be interesting
to see. One thing is clear: if we are not preceived by our students as leading
in this revolution rather than being dragged along, then Mathematics will, by
the turn of the century, be a neglected backwater.

A pubhc key cryptosystem as hard
as factorisation

M. Christopher W. Jones

atroduction

ea of a public-key cryptosystem was first put forward by Diffie & Hell-
n their 1976 paper [7]. Since then various descriptions of it have ap-
‘ [3 11,14,24,27] including a recent Bulletin article [10]. The idea behind
ic-key cryptosystem is that it allows secret messages to be sent across
en channel without it being necessary for some additional piece of infor-
to be previously exchanged between sender and receiver.

iefly, the idea is this. If Mr. X wishes to receive secret communications
structs an encryplion function E and a decryption funciion D. These
possess the following properties: (i) D(E(m)) = m for all messages m,

th ' and D should be easily computable, (iii) it should not be possible

ermine D from a knowledge of £ alone, (iv) E(D(m)) = m for all
ges m. (Actually property (iv) is not absolutely essential, but is useful

rposes of authentication - for more details consult the above references.)
. X then publishes the encryption function £ (the public key) and keeps
decryption function D to himself (the secret key). Anyone wishing to send
‘@ message m then transmits the encrypted message E(m). On receiving
Mr X is able to recover the original message using D and property (i).
ver any eavesdropper who intercepts E(m) is unable, because of property
o discover m, even if he knows the encryption function F.

order to put the above scheme into practice it is necessary to construct
le encryption/decryption functions. One way this has been attempted is
use of a “trapdoor” function f: this is a function for which it is easy to
ute f(z) but very difficult to compute f~!(z) without some additional

R T —————————

comtus
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“trapdoor” information. However with the knowledge of the “trapdoor”
~ information f~!(z) should be easy to compute.

Most attempts to construct “trapdoor” functions consist of puttmg some
computationally hard problem between f and f~!. Then to quote from [10],
“... solving the hard problem implies breaking the cryptosystem and it is
hoped that ... the cryptosystem cannot be broken without solving the hard
problem. In no case has this been proved ...”

It is the purpose of this note to describe a cryptosystem, due to Rabin
(16], which has the property that breaking it is equivalent to solving a compu-
tationally hard problem, specifically that of integer factorisation. In this re-
spect, Rabin’s scheme bears certain similarities to the well-known RSA scheme
(10,20,27]. However Rabin’s scheme possesses the important difference that
breaking it is known to be equivalent to factorising an integer; whereas in the
case of the RSA scheme, all that is known is that no-one has yet been able to
devise a method of breaking it which does not involve factorisation.

The problem of factorisation of large integers has received much attention
in the last twenty years, ever since the use of computers became common-
place. At present the most efficient algorithms for factorising a number n
have average running times of order exp(log nloglogn)!/? (see [8,9,26]). Riesel
[18,19] states that the present upper limit for factorisation is 107 and he esti-
mates that with the most sophisticated technology available, factorisation of
a hundred digit number would take one year. However, it may be noted that
few theoretical results above the difficulty of factorisation, are known - it is
not, for instance, known whether the factorisation problem is N P-hard (see
(12,23,27)).

To conclude, perhaps we should note that the factorisation problem should
not be confused with the primality problem which is to determine whether a
given integer is prime or not. This problem is much easier and there are
algorithms ([2,5,9,15,17,25]) by means of which a computer can determine the
primality of a 200 digit number in ten minutes. Indeed, as we shall see, in
order to implement the Rabin cryptosystem it is essential that we can easily
generate large (say 100 digit) primes. In passing, readers might be interested
to learn that a new largest known prime has recently been discovered. The
largest known prime is now 391581 x 226193 _ 1 and was discovered by a
group working in the Amdahl Corporation, Sunnyvale, California [4,6]. (This
compares with the previous largest known prime which was 2216991 _ 1 4
record which has stood since 1985.) ’

A public key cryplosystem

2 Number Theoretic Preliminaries

In this section we give a brief account of the number theory necessary for a
description of Rabin’s method. For proofs of the results stated, see almost
any book on number theory, for instance [13,21,22].

Let n be a positive integer greater than 1 and let y be an integer which
is non-zero (mod n). Then if the congruence z? = y (mod n) is soluble, y is
said to be a quadratic residue (mod n). Given y and n, it is straightforward
to discover whether or not y is a quadratic residue (mod n) by means of the
celebrated law of quadratic reciprocity. Now suppose n = p, an odd prime.
Then exactly half of the non-zero integers (mod p) are quadratic residues in
which case the congruence z? = y (mod p) has precisely two incongruent (mod
p) solutions which may be written 2o and p — zo. In the special case when

p is of the form 4k + 3, we have the result that zo = yz?:—l (mod p). (This
follows from Euler’s criterion which states that y is a quadratic residue (mod
p)ifand only if y*5 =1 (mod p).)

In the case when n = pq, a product of two primes, it may be shown that y is
a quadratic residue (mod n) if and only if y is a quadratic residue (mod p) and
y is a quadratic residue (mod ¢). When this is true, and in the particular case
when p and ¢ both have the form 4k + 3, there is a straightforward procedure
for solving 2% = y (mod n) (provided the factorisation of n is known).

To find the solutions, first determine integers a and b such that ap—bg = 1.
(Such integers must exist because the greatest common divisor of p and ¢ is
1 and they can easily be found by the Euclidean algorithm.) Now denote the
solutions of 2 = y (mod p) by v and p — u and the solutions of z? = y (mod
¢) by v and ¢ — v. Then it is a routine calculation to verify that the four
solutions of the original congruence are

z, = bqu+ apv, 22 = bg(p — u) + apv,

z3 = bg(p — u) + ap(g —v), z4=bgu+ap(q—v).

These four solutions are clearly incongruent (mod n) and it is not hard to
show that they are the only solutions (mod n) of z? =y (mod n).

We may now give a description of the Rabin cryptosystem, the security of
which depends essentially on the fact that solving 2?2 = y (mod n) is equivalent
to factorising n.
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3 The Rabin Cryptosystem

A user of the Rabin system who wishes to receive messages first picks two
primes p and ¢ both of which are of the form 4k + 3. He also picks a positive
integer a < n = pg. Then the integers n and @ are made public while the
primes p and ¢ are kept secret. In order to encrypt a message m, which must
be an integer between 0 and n — 1, a sender calculates

E(m)=m(m+a) (modn).

If the resulting encrypted message is e, the receiver, who knows the factorisa-
tion of n, can easily decipher it by means of the following procedure:
It is required to find m which satisfies

m’+am=e¢ (mod n).
Multiplying through by 4 this becomes

4m® + 4am = 4e  (mod n),

which may be written

(2m + a)? = 4e + o? (mod n).

Now, since the factorisation of n is known, it is straightforward to solve 22 =
4e +a® (mod n) by means of the method outlined in §2. When this has
been done m may be determined by solving the linear congruence 2m =z —a
(mod n). Note that there will be, in general, four values of & and hence four
possible messages m. This illustrates a weakness of the Rabin scheme in that
the deciphering process does not lead back to a unique value of m. However,
assuming the original message was written in English, it will normally be
obvious which of the different possibilities for m is the correct one.

(It may be noted here that property (iv) of the list given in §1, that
E(D(m)) = m for all messsages m, does hold in the Rabin system, whichever
value is taken for D(m).)

It is clear from the description given above that breaking the Rabin system
cannot be harder than factorisation. To show that it is in fact equivalent it
will be sufficient to show that if there were an efficient algorithm for solving
z? = y (mod n), where n = pq, then it would be possible to factorise n. To
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see that this is indeed so, suppose that it were possible to solve 2% = y (mod
n). Then by §2 the solutions are:

r1 = bqu + apv, zg = bg(p — u) + apv,

z3 = bq(p — u) + ap(q — v), z4 = bgu + ap(q — v).

(Note that z; = —z3 (mod n) and z, = —24 (mod n).) Then z; + zy =
p(bg + 2av) and so p is the greatest common divisor 9f zy + 2 and n. Since
g.c.d.’s can be found easily using the Euclidean algorithm, this factorises n.

Rabin’s original cryptosystem was rather more sophisticated than the sim-
plified version given here. He relaxed the condition that p and ¢ have the form
4k + 3. This means that another more complicated method, due to Ad%eman
et al, for solving quadratic congruences has to be used. For more details see
[1,15,16].

4 An example

We illustrate this system with an example. Let p = 59, ¢ = 47, n = 2773 and
a = 1371. Now suppose we wish to send the message

TRINITY COLLEGE

The first step is to convert this into numerical form using the sc.he‘me A =
00,B =01...Z = 25, space = 26. The message then becomes, divided into
blocks of four,

1917 0813 0819 2426 0214 1111 0406 0426.
To encipher the first block, we calculate
E(1917) = 1917(1917 + 1371) = 0067 (mod 2773).
In this way the whole message enciphers as
0067 0872 2252 2389 0884 1140 0482 0174.
To decipher this, it is required to find m such that

m? + 1371m = 0067 (mod 2773).

i

e
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Completing the square this becomes -
(2m +1371)* = 2588  (mod 2773).

The next step is to solve u* = 2588 (mod 59), which simplifies to u? = 51
(mod 59). By a result contained in §2, u = (51)!® (mod 59). This can be
calculated more quickly by writing it as u = ((51%)2)?(512)251251 (mod 59)
and hence we obtain that u = 46 or 13 (mod 59). Similarly the solutions of
v® = 2588 = 3 (mod 47) are v = 35 or 12 (mod 47).

Now, the Euclidean algorithm yields that 4.59-5.47=1 and so the solutions
of
(2m + 1371)% = 2588 (mod 1773) are

3 12 2432
2550

Hence 2m = 1743, 353,10610r 1179  (mod 2773) and so m = 2258, 1563,1917
or 1976 (mod 2773). The only value of m which corresponds to a pair of let-
ters is 1917 which leads back to TR. The rest of the decryption is accomplished
similarly.

341
9m + 1371 = 5.47 { ;16} +4.59 { 35} = 1724 (mod 2773).
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An Elementary proof that periodicity
and generalized-periodicity are
equivalent in nilpotent groups

Gary J. Sherman

Let S be a non-empty subset of the group G. An element z of G is said
to be S-periodic if there are elements g1, ..., ¢n in S for which

n
Hgi—la:g = €.
i=1

If S = {e}, then S-periodicity is the usual notion of group periodicity. If
S = G, then S-periodicity is referred to as generalized-periodicity, a concept
which occurs naturally in the theory of partially ordered groups. Indeed, a
group admits a partial ordering relation compatible with the group operation
if, and only if, the group contains an element which is not generalized-periodic
[1]. Another case of special interest is when S = P(G), the set of periodic
elements of G. It was shown in [5] that P(G) is a subgroup of G if, and only
if, each P(G)-periodic element of G is periodic.

If G is abelian, then generalized-periodicity and P(G)-periodicity are equiv-
alent to periodicity. Thus, when presented the class of nilpotent groups as a
natural generalization of the class of abelian groups one asks: “Is generalized-
periodicity equivalent to periodicity in the class of nilpotent groups?” Hollister
[3] has shown that the answer to this question is yes. His proof makes use of a
deep result from the theory of partially ordered groups and the fact that the
periodic elements of a nilpotent group form a subgroup [4]. In this paper we
give an elementary proof of Hollister’s result and obtain, as a corollary, the
fact that P(G) is a subgroup for nilpotent G.

To this end the following two observations are useful. Let = and y be
elements of the group G.

Fact 1. If z and y are periodic then zy is generalized-periodic.

Proof. Let z and y be of orders m and n, respectively. Then

mn-—1
H e ryzt = xymn:cmn—l = e.

1=0
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Notice that if generalized-periodicity is equivalent to periodicity, then
P(G) is closed with respect to taking products and inverses; i.e., P(G) is
a subgroup.

Fact 2. If a non-trivial power of £ commutes with y, then the commutator
[z,y] = 271y~ 'zyis a generalized-periodic element of the subgroup generated

by z and [z,y].
Proof. Let "y = yz™ for some positive integer n. Then

n

[ ale™ = ()"
i=1

x—-ny—l
€.

z"y

Notice that [z, y] is conjugated by powers of z.

Theorem. Generalized-periodicily is equivaleni to periodicity in a nilpotent
group.

Proof. Recall that a group, G, is nilpotent of class n if it possesses a series
of normal subgroups, G = Go D G1 D ... D Gn = {e}, in which Gi/Gi41 is
the center of G/Giy1. Such a series is referred to as the upper central series
of G. We proceed by induction on the class of the nilpotent group G.

If G is of class one, then G is abelian and the result is obvious.

Now suppose that G is nilpotent of class n and that generalized-periodicity
is equivalent to periodicity in nilpotent groups of class less than n. Let  be a
generalized-periodic element of G — Gn-1 (Each generalized-periodic element
of Gp_1 is periodic since Gn-1 is the center of G.). For some positive integer
k there are y1,...,yr in G for which

k
Hyi_lwyi = €.
i=1

Applying the identity y7 'zy; = [z, 3] to (i) we obtain

H z[z,yi]=e.

=

An elementary proof

It also follows from (i) that

k
H(yi_1Gn—1)(xGn—1)(inn—l) =Gn-1

§=1

in the factor group G/Gn—1. Since G/Gy 1 is a nilpotent group of class less
than n the induction hypothesis implies that zG,_1 is periodic in G/Gn-1.
Thus there exists a positive integer m for which ™ € Gn-1, the center of
G. Fact 2 implies that each of [z,11],..., [z, yx]is generalized-periodic so for
i=1,...,k there is a positive integer s; and there are z,,..., %,, in G such
that

8
Hzij[w)yi]zij =€ (1“)
i=1

S
ie, [[lzvllle, vl zl=e (iv)

j=1
Reasoning with (iii) as with (i), we find [[z, %], z,] to be generalized-periodic
in the subgroup generated by [z,:] and [[z,y], zi;]. But [z,¥] € G and
[z, ¥, 2;,] € G2 so [[z, 4], 2] is generalized-periodic as an element of Gi.
By the induction hypothesis and Fact 1, [z, v, 2:;] € P(G3) = P(G) NG,
which is a normal subgroup of G . From (iv) we have [z, %]’ P(G2) = P(G2)
in the factor group G1/P(G3). Thus, since [z, y]° is periodic, [z, y;] must be
periodic; i.e., [z,4] € P(G1) = P(G)N Gy, whichis a normal subgroup of G.
From (ii) it follows that z¥ P(G1) = P(G1) in the factor group G/P(Gy). We

conclude that z is periodic since z* is periodic. ,

Corollary. The periodic elements of a nilpotent group form a subgroup.
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Note on the Diophantine Equation

xmyy = 5%

James J. Ward.

In a letter to the Editor of the Irish Times, Dr. Des McHale issued the
challenge of finding any solution (z,y, z), with none of z, y, z = 1, of the
Diophantine equation

=y = 2°.

This had appeared as a problem in the first Irish Universities Mathematical
Olympiad and apparently none of the contestants found a non-trivial solution.

The purpose of this note is to indicate a method for generating solutions to
this equation.

Lemma: Suppose X,Y, Z, ¢ are natural numbers such that
(i) X+Y~Z=1and
(i1) ¢ > 2 and
(ii}) = 22 /(XXYY);
then z = p X,y = ¢Y, = ¢Z have the property that
z%yY = 2%,
Proof: Consider z%yY: this equals
(X)X (pY)#Y = pPE ) (x XYYy,
On the other hand z* equals

2 (27"
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Ty = 2*

So z®y¥ = z* if and only if

(ptp(X+Y)(XXyY)w - SosoZ(ZZ)w
& PRI XyYye - (z2ye
& e?(XXYYY = (29)% since X+Y-Z=1
& oX*YY =27 which follows from (iii).

No;\;js;lppose X =22 and Y = p?# where p is odd and «, 8 > 1. Consider
(2% - p#)2. This is

e 4p¥ 2t =X 1Y~ 2
say for Z = 2%t1pP In this case one has X +Y — Z = 1 if and only if
(2% ~pf) = %1 (*)

Subject to this we want to ensure that ZZ/XXYY is an integer > 2. Now
¢:=Z%/XXYY in this case can be written as

(et )[2°F1pP] | pp(2°+pP)

<P - 2a22u+1 . pgppmﬁ

The power of 2 in ¢ equals
(o + 1)[29F . pP] — a2%et! (D
The power of p in ¢ equals
p2e+1pf — 2% (2)

Equation (2) is > 0 < 2% — p? > 0 (on dividing (2) by 268p?). Therefore
in (*) we shall require 2* — p# = +1. Inserting this condition into (1) we get

(o + D[2°H (2% ~ 1)) - a2®*T 3)
Dividing by 2**!, for (1) to be non-negative we require

(a+1)[2% ~1) —a2® > 0

S2-1>a.
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However this holds for all « > 1. Using 2% —pf = 1, (2) becomes 28p° and
(3) simplifies to 29+1(p? — «). From this, it is apparent that ¢ > 2.
Since 2! — p = 1 implies ¢ = 1 we shall now assume a > 2,6 > 1.

Examples:
(i) Choose o = 2, then 22 —pf = 1 givesp =3, = 1.
Then X = 22¢ = 16,Y = 3% = 9 and Z = 2°*'pf = 8.3 = 24. Note
that X +Y - Z =1.

Letting ¢ = ZZ /XXYY | the power of 2 in ¢ equals 2%+ (p? — 2) which
in this example is 8. The power of p in ¢ equals 28p® which equals
2.1.3=6, so
o = 2835,
Hence
z=22.35y=2%.3% and z=21.%7

is a solution of the Diophantine equation

¥y =2".

(i) Choose any power of 2, say 2% where k > 2. Then p = 2% — 1 is always
odd and clearly 2¥ — p = 1. So we can take

X=2%7Y=p> and Z=2!p

and compute ¢ as before. For instance if we take 2* then p = 15 and we
get

X=2% Y =22 and Z =480

o= 2352(15)30 etc.
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THE SU‘BGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS
London Mathematical Society Lecture Note Series 129

By PETER KLEIDMAN and MARTIN LIEBECK: Cambridge Univer-

sity Press, 1990, pp.313. £17.50 stg. LMS members’ price £13.10, ISBN 0521
35949 X.

The classification of finite simple groups revealed that non—
simple groups fall into three distinct families:

(1) the alternating groups A,, with n > 5;
(2) the simple groups of Lie type;
(3) 26 sporadic simple groups.

The alternating groups are well known to anyone who has studied group the-
ory at the most elementary level but the sporadic groups are less accessible
to non-specialists. Chevalley showed in 1955 how certain simple groups (in-
cluding finite simple groups) can be constructed as automorphism groups of
Lie algebras over arbitrary fields. Chevalley’s construction was modified by
Steinberg, Ree, Hertzig and others to provide further simple groups (so—called
twisted groups). The groups obtained by these procedures are cal
groups of Lie type. While certain of the finite simple groups of Lie
unknown until these constructions were introduced in the 1950’s and early
1960’s others turned out to be versions of groups that had been well known
since the work of C. Jordan in 1870 and L. E. Dickson in 1901. These are the
finite classical simple groups, which are derived from certain groups of auto-
morphisms of vector spaces over finite fields. The groups of automorphisms
in question fall into four families: special linear, symplectic, unitary, orthog-
onal. It may be argued that these four families of linear groups provide the
best introduction to the study of finite simple groups and to finite groups in
general. Certainly, the techniques of linear algebra, field theory and permuta-

tion groups learnt in most undergraduate courses find wide application in the
analysis of the classical groups.

abelian finite

led simple
type were

The term finite classical group encompasses various groups derived from
certain progenitors that we shall now try to describe. Let V be a vector space
of dimension n > 2 over the finite field Fy of order ¢, where ¢ is a power of a
prime. The group of all automorphisms of V is called the general linear group
of degree n over F, and is denoted by GL(n,q). The normal subgroup of
GL(n,q) consisting of all automorphisms of determinant 1 is called the special
linear group of degree n over F, and is denoted by SL(n,q). The centre Z of
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SL(n,q) consists of all scalar matrices of determinant 1 and thf t;zactog gf&tlliz
SL(n,q)/Z is a non-abelian simpl'e group unless n = 2 and ¢ = o}; .and s
group is called the projective special linear group of degree n over 1tq o
denoted by PSL(n,q). Suppose now that f is a non—degenerate a erna ! g
form defined on V x V. In this case, n mu_st be even, say n = 2m. An isometry
of f is an automorphism o of V that satisfies

flou,ov) = f(u,v)

for all u and v in V. The set of all isometr‘ies‘ of f forms a group calle(sl .thz
symplectic group of degree 2m over Fy and it is denoted by Sp(Ith, qg..ff 1nrc1t
all non—degenerate alternating forms de.ﬁned on V x V are equiva en2, 1 er;e :
choices of f lead to conjugate groups of isometries. The centre. of Sp( ?1) tq) ha:
order 2 if ¢ is odd and order 1 if ¢ is even and the group obtained by fac orglg
out the centre is called the projective symplectw. group of degree QWi over _qé
It is denoted by PSp(2m, ¢) anditisa ngn(;ab(;l1anSsI1Jraple)gi?::petige;s;siozs_tO
= orn=4and ¢g=2. As Sp(2,q) = ,q), > :
:i?;lpgl{icits jvrhgn n = 2 are explained by the' results f(?r PS’L(‘..Z,q)i Sp(4,2)Als
isomorphic to the symmetric group Ss, which contains the sxmpde 1g;zoupb Z
as a subgroup of index 2. Suppose we now replace F? by Fg an le f teies
non-degenerate hermitian form defined on V x V. V\.e may .define isome -lr1 ;
of f as in the alternating case and the group of all isometries of f 1; ca ez)
the unitary group of degree n over qu.. It is denoted by U(n,q) (.)1‘1 (7?;(1r
(the differences are occasionally confusing). We .deﬁne the spe}alaa uni ?};
group SU(n,q) to be those isometrieg of determinant 1 and t e.pm]ect zl1tJS
special unitary group PSU(n, q) is obtained from SU(n, ¢) by factorlngt.ou b
centre. As SU(2,q) is isomorphic to SL(2,¢), we have the usga] e?‘:cepl 1onsu
simplicity for PSU(2,q). If n > 3, PSU(n,q) is a non—abelian simple group
=3 and ¢ =2.
unlesgigallygwe tfrn to the orthogonal groups. Le? Q be a non—dlegeneratef
quadratic form defined on V. An isomet?y of () 1s an automorphism aL o
V that satisfies Q(ov) = Q(v) for all v in V. If n = Qm', there ared.wo
inequivalent classes of quadratic forms defined on }/ and thelrhcorresponh;zi
isometry groups are denoted by O*(2m, q) gnd 0~ (2m,q). The %rgups ave
different orders. O%(2m,q) is called the splz?! orthogonal group o degree :
over Fy and O (2m, q) is called the noQ—splzt orthogonal group of e}%ree. m
over Fy. Suppose now that n =2m+11s odd. If ¢ is a power of 3, t e{f 1sn§
single equivalence class of non—degenerate quadratic forms defined on V a

"
b
[
|
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the corresponding isometry groups turn out to be isomorphic to Sp(2m, q). If

¢ 15 odd, there are two equivalence classes of non-degenerate quadratic forms
defined on V, but their corresponding isometry groups are isomorphic and
are denoted by O(2m + 1, q)- Suppose now that n is arbitrary but ¢ is odd
It can l?e shown that the commutator subgroup 0% (2m, ¢) or Q(2m +1 qj
of a finite orthogonal group has index 4 in the group and the centre of £he
Q suvbgrou;.) has order 1 or 2 if dim v/ 2 3. On factoring out the centre, we
obtain projective groups PQ%(2m, ¢) and PQ(2m +1,q). If dimV > 5 ’ the
groups so obtained are non-abelian simple groups. Suppose next that n :, 2m
is exi/en and g is a power of 2. It can be shown that O%(2m, ¢) has a subgroup
SO=(2m, q).of index 2. If 2m > 6, SO%(2m,q) is a non-abelian simple
gr;)up It might be added that if q 1s a power of 2, both orthogonal groups
0*(2m, q) are Sp(2m,q) and there is a rich interplay between orthogonal
anc@ symplectic geometry in this case. Unfortunately, this material is often
Fmptted fI.'OITl standard texts, such as ‘Geometric Algebra’ by Artin, although

odd characteristic theory. The book

01) develops most of this theory and

concerning classical groups are due to

Dickson. The proofs in Dickson’s book are rather computational for modern
tasteg, and some of his nomenclature has become obsolete, but the book still

remains a remarkable source of information on the finite classical groups.
. After this rather long introduction, we turn now to the book under re-
view. The aim.of the book is to determine the maximal subgroups of the
early an extremely difficult problem,

tha'xt the problem is even approachable without invoi<ing the classification of
ﬁmte simple groups. In an analogous piece of work, E. B. Dynkin (1952) clas-
sified the maximal subgroups of the classical complex linear groups SL(n,C)
Sp(?m, C) and O(n, C). Dynkin’s work made essential use of the classi,l'icaj
t1.0n of.sm]ple Lie groups over C and of the theory of their irreducible finite
dlmel‘lsmnal complex representations. While some analogies with Dynkin’s
technique may be drawn for the finite classical groups, the finite problem
seems to 'be considerably harder. Dickson’s book made a first inroad into the
classxﬁca@on of maximal subgroups of finite classical groups by including a
chapter listing all subgroups of PSL(2,q). H. H. Mitchell (1911, 1914) and

R. Ww. Hartley (1926) extended these Investigations to certain three and four
dimensional classical groups.,

Book Reviews 7

The authors’ starting point is a paper of Aschbacher (On the maximal
subgroups of the finite classical groups, Invent. Math. 76 (1984), 469-514). In
this paper, Aschbacher introduces a natural collection of geometrically defined
subgroups C(G) of a finite simple classical group G. These fall into eight
families, C1 —Cs, which include maximal parabolic subgroups (well known from
permutation actions), certain classical groups of smaller degree over extension
fields of Fy, tensor products of classical groups acted on by symmetric groups
(related to wreath products) and extensions of symplectic-type r—groups (r
being a prime) by symplectic groups. Aschbacher also introduces a family &
of almost simple groups that have an irreducible projective representaion on
the underlying vector space V. His main result is that if H is a subgroup of
G, then either H is contained in C(G) or in S. Moreover, the great majority
of subgroups lie in C(G). The authors undertake an intricate analysis of the
collection C(G) and their main theorem is as follows:

(A) the group-theoretic structure of each member of C(G) is known;
(B) the conjugacy amongst members of C(G) is known;
(C) for H € C(G), all overgroups of H in C(G) U Sare known.

In fact, a more general result is proved, as G is allowed to be a group
satisfying Go 9 G < Aut(Go), where Gy is a classical group and C(G) is a
collection of subgroups of G obtained from C(G,). The precise details of
the main theorem are difficult to summarize and Chapter 3 is devoted to
explanation. Various tables are required to present the information. Because
of the complexity of the solution to the problem, it requires a certain amount
of effort to interpret these tables and some instructive examples are provided.
Determination of the maximal subgroups of the classical groups still requires
the knowledge of when a subgroup in S is maximal in G. This is an area
where much work is in progress. However, it does not seem at present that
a non-specialist can expect a quick answer to such questions as whether the
Conway group is a maximal subgroup of SO* (24, 2).

The second chapter of the book provides an introduction to the classical
groups and their properties. This material might prove useful to someone
wishing to have a rapid survey of these groups. Chapter 5 is a particularly
welcome summary of less familiar properties of finite simple groups. There are
tables giving information on the minimal degree of a non—trivial permutation
representation of a finite classical group, the containment of alternating and
classical groups in sporadic simple groups and lower bounds for the degree of
a non-trivial irreducible projective representation of a group of Lie type over
a field of characteristic coprime to the underlying characteristic of the group.
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There is also substantial i i i
characteristic, with specila}l r;fr(;lr}i?l:si:no;z;?rf rrlfpresentatlons ol g
Chapters 6, 7 and 8 are concerned with findin O
§ubgroups In C(G). These chapters are dens
Interest mainly to specialists.
I feel that this book would be a val
— : uable asset for anyone in i
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