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Godelian Incompleteness
and Paraconsistent Logics

Or: why Godel’s Paradox is really a dilemma

D.H. Cohen

There are three parts to this largely expository discussion. First, Godel’s
Incompleteness Theorem is differentiated from other sorts of questions in
mathematics. From this a classification scheme for some of mathematics’
more perplexing situations emerges!. The Incompleteness result is then pre-
sented, explained, and located in that scheme. Finally, in light of this, and

some points of language and philosophy made in passing, a new response to
Godel’s result is suggested.

1 Puzzles and other problems

Godel’s Theorem poses an altogether new sori of problem for mathemati-
cians. It establishes that some very good mathematical questions do not have
equally good mathematical answers. Moreover, the fault is not in what counts
as a mathematically acceptable question; it is in what counts as a mathemat-
ically acceptable answer. The problem is endemic to the entire mathematical
enterprise.

The idea that some good questions do not have equally good answers is
troubling but hardly new. There are many other situations involving answer-
less questions without anyone suggesting that they represent crises for human
thought. But Gédel’s proof does pose just that sort of crisis. Identifying
Just what distinguishes it from similar problems is the best first step towards

Godelian Incompleieness and Paraconsistent Logics 9

framing a rational response. To that end, comparisons with other notable
open questions in mathematics will be made. The first part of the strategy
is to uncover the implicit theoretical framework supporting judgements that
some problems are similar to others. The results are then applied to Godel’s
Theorem in particular.

Consider “Fermat’s Last Theorem.” It might be thought similar to Godel’s
Theorem since it may be an example of an undecidable question?. A good
many subcases have been closed, but no comprehensive proof or disproof has
yet been found. Only such (dis-)proof would qualify as a definitive answer.
As a working hypothesis, however, a good assumption is that some proof or
refuting counterexample will be produced eventually. Without this assump-
tion, further progress could not reasonably be expected. It is considered a
problem with no solution yet, and problems with no solutions yet are sim-
ply unfinished business. They are like the intellectual itch of a particularly
difficult daily crossword puszzle the day before the solution is printed. Since
the same community response and attitude is present, the term PUZZLE is
appropriate. The assumption is that there is a unique solution®.

The same general response seems to be called for with respect to the hu-
manly uncheckable proof of the Four-Colour Theorem. Although it introduces
an empirical component into the practice of pure mathematics, that practice
can be sufficiently distanced from theory so as not to pose any conceptual
problems. The theorem is either true or false; the proof is either valid or not.
Human capacities are not the issue. Any faith in Platonic Realism is not really
challenged.

A second sort of unanswered question does raise problems for an uncritical
realism, for the belief that there is a truth of the matter out there for us to
discover or not, depending on the acuteness of our powers and the blessings
of the mathematical muse. Cantor’s Continuum Hypothesis typifies this set.
Is the cardinality of the continuum the second transfinite cardinal? What
differentiates this problem from Fermat’s is that we know the resources at
hand are insufficient to decide it. The hypothesis is provably consistent with
but independent of the axioms of set-theory: either it or its negation can be
added to those axioms without yielding contradiction ...provided only that
the original axioms were consistent. The situation is analogous to Euclid’s
“fifth postulate”. Who knows but a range of “Non-Cantorian” set-theories
are just waiting to be developed — waiting, presumably, in the same place
that Non-Euclidean geometries were waiting for Riemann and Lobaschevsky,

wherever that was®.
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Gédel’s own position was an extreme Platonism, maintaining that the Con-
tinuum Hypothesis was either objectively true or false, depending on whether
or not it accurately described the behaviour of transfinite cardinals®. They
are out there, just like Kurdistan or Pago Pago, and it is the business of the
mathematician to be a geographer of this special realm of abstract entities.
Even the idea that there are alternative set-theories waiting to be discovered
is a kind of Realism, albeit pluralistic about the theories themselves.

This sort of situation is a DILEMMA. Several options are available, any

one of which can be developed and applied. Thus, the basis for choosing

one tather than another must be based on something ezternal to the different
systems, say, the way the world is in its ultimate metaphysical construction, or
the desiderata surrounding some specific research program or computational
context. The situation would be analogous to a jigsaw puzzle that could be
put together in two different ways or a single crossword grid and set of clues
that could be “correctly” solved in several distinct ways®. In a dillema, the
existing conceptual framework needs additional information. What is accepted
or established may be fine as far as it goes, but it simply doesn’t go far enough.

The opposite situation also arises, cases where we have, as it were, too
much “information”. In this case, something has to be discarded to resolve the
issue rather than something having to be added to settle things. The search,
then, is for a likely belief to jettison. This is a PARADOX. The common
pattern is that established and accepted theses give rise to an absurdity, or
even an outright contradiction. Russell’s Paradox is an example of this: the
set of all sets that are not members of themselves must be — but cannot be —
a member of itself. This amounts to a contradiction; something has to go. We
could, if we were so inclined, abandon the belief that the world is contradiction-
free, or that sentences cannot be both true and false simultaneously, or that
set-theory is worth pursuing. The consensus has been that the unrestricted

version of the set-abstraction axiom, although “obvious”, is the source of the *

problem. Obviousness is not always the mark of truth. Restricting its range
of applicability preserves just about all of naive set-theory. Nothing so radical
as an overhaul of the underlying logic is required. So, by an implicit appeal

to a principle of “minimal mutilation,” restricting the relevant axiom is the

change that is usually made’.

Russell’s Paradox, while forcing some revision in mathematical beliefs and

practice, presents no real threat to the main Platonist tenet of objective math-
ematical truth. It merely challenges the secondary assumption that some par-
ticular statement of the set-abstraction axiom is part of that truth. A mistake
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was made, big deal. Of course, at the time of its discovery it was not as easy
to be so blithe about revision. We know now what Russell did not know
then: effectively restricting the schema is entirely possible and not unduly
burdensome.

Ironically, this sort of Realism, which is Godel’s own position, is rather less
viable when confronted by Gédel’s Incompleteness Theorem. The theorem
presents a conceptual paradox requiring revision of very fundamental beliefs,
and possibly even the logic that holds everything together.

2 Godel’s Theorem

The theorem establishes, in brief, that there is an unavoidable mismatch be-
tween mathematical truths and mathematical theorems. The two sets cannot
coincide. No matter how arithmetic is packaged, there must be either some
truths that elude the proof-theoretic apparatus, or else some falsehoods that
sneak their way into theoremhood.

Considerations of space prevent a complete rehearsal of the details of
Godel’s proof here. However, an approximation is at hand, something a
bit easier, but still in the same neighbourhood. It can be proved (perhaps
contrary to expectations but provable nonetheless) that no mathematician is
omniscient. By “omniscient” I mean believing all and only the true sentences.
If it were simply a matter of believing everything that is true, it would be
relatively easy: believe everything. Believe that 2 + 3 is 5 but also believe
that 24 3 is not 5, that it is 6 and that it is not, that cabbages are kings and
that they are not, that taxes can be lowered and government revenues raised
at the same time, and so on. Similarly, believing only truths is also relatively
easy: don’t believe anything. Doubt that 2 + 3 is 6 and doubt that it is not,
and so on. (This may not be such a bad idea. Descartes tried it and managed
to get his co-ordinates straight.) The trick, clearly, is to manage both at the
same time, to believe all the truths and disbelieve all the falsehoods. Now
consider this sentence:

(N)  Prof. N. Ullset does not believe this sentence

gletting Prof. Ullset represent an arbitrary mathematician). If he believes it,
1t is false and he has a false belief. If he does not, it is true and there is a
truth not in his belief-set. Either way, sadly, he falls short of omniscience.
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This is what Godel managed to do for arithmetic. He showed that any
language rich enough to express what arithmetic needs to express will also
be able to express an equivalent of N-sentence, saying roughly, “Arithmetic
cannot prove this sentence”.

The proof centers on the notion of computability. The idea is that all
functions of a certain type ought to be expressible in any language suitable
for mathematics. The type in mind, recursive funciions, is conservatively
characterized: a few (rather boring) functions are taken as primitive and
means for constructing new ones are provided. The given functions are (1) the

constant zero-function, (2) the successor function, and (3) projection functions

which simply pick out the i** member of a given n-tuple. Additional functions
may be built up either by (4) function-composition or by (5) recursion. That’s
it.

The next stage involves showing that such purely syntatic concepts as term,
Junction, and well-formed formula (wff) are representable by constructible
functions. The vehicle for this is an assignment of numbers to each concate-
nation of symbols in the language. It is then shown that the sets of numbers
corresponding to terms, wils, and the rest, can be defined by recursive func-
tions. For example, a one-place recursive function can be constructed which
has the value 1 if and only if its argument is a number corresponding to a
well-formed formula; otherwise, it has the value 0.

In addition to concepts that are syntactic in the grammatical sense, some
concepts which are syntactic in the proof-theoretic sense are similarly repre-
sentable by recursive functions. These include the concepts of aziom, substi-
iution instance, and even of proof! That is, whether or not a given sequence
of formulas is a valid proof is the kind of question that can be answered by a
Tiiring machine: a program can be written which will correcting answer, after
a finite number of steps, “yes” or “no”
symbols a legitimate proof?”

Theoremhood, however, is not recursive. Given a sequence of wils, it can
be definitely decided that it does or does not constitute a proof. If it does,

then the last wil is certainly a theorem. What cannot be devised is an effective
test which starts with a single formula and correctly answers yes, it can be
the last line of a proof sequence, or not it cannot.

This means that arithmetic is undecidable. There is no alogirithm for
theoremhood. Undecidability leaves it open as to whether there might be
proofs that are undiscovered or even recursively unrecoverable for every math-
ematical truth. The proofs could be out there, alongside the undeveloped

to the question “Is this collection of

S
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non-Cantorian set-theories, waiting for discovery or doing whatever it is that

unknown truths do. However, Godel’s Theorem actually proves something
stronger than undecidability, so this picture is wrong. Gédel’s Theorem is an
incompleieness theorem, proving that at least some of those imagined proofs
for each and every truth are not there — no matter where “there” is.

The way this works is that theoremhood is an expressible concept within
the language of recursive functions, although not itself recursive. The notion
of proof is recursive, so theoremhood is easily recoverable. If ded(z,y) holds
just in case z is the number associated with a sequence of formulas that is a
proof and y is the number associated with the formula which is the last line of
that proof, then Th(y), defined as (Ez)ded(z,y), defines theoremhood. The
predicate Th holds of just those numbers associated with theorems.

The hard part is re-creating the kind of self-reference that is the N-sentence

— “Prof. N. Ullset does not believe this sentence”. The recursiveness of sub-
stitution allows that. Let sub(z, n,a) represent the substitution relation. Or,
more exactly, the value of the sub(z,n,a) is the number associated with the
formula that results from substituting the expression associated with the num-
ber n for the variable associated with the number z in the formula associated
with the number a.

Now, consider the formula:

I: ~Th(sub(ks, z, z)),

where k; is the number associated with the symbol for the variable z. This
entire formula is itself associated with some number, its “Gédel number”. Let
it be 7. Now consider the formula:

J: -Th(sub(ks,1,1)).

This says that the result of substituting the number i for the variable z in
the formula with Gddel number ¢ is not a theorem. The formula with Gédel
number ¢ is I, so this says that the result of substituting 7 for z in I is a
non-theorem. The result of that substition is precisely J, so J says in effect,
“J is not a theorem”. If it is a theorem, it’s a false theorem, if it is not a
theorem, it is a true non-theorem. Mathematics, no matter how axiomatized,
is not “omniscient”. (The notion of proof is system relative, so expanding the
system by adding the unprovable sentence as a new axiom wouldn’t help; a
new “Godel sentence could always be generated.)®
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Exactly why theoremhood is expressible but not recursive concerns the
quantifier in its definition: (Ez)ded(z,y) — there is some number answering
to a sequence of formulas which is a proof of the given formula. There is no
upper bound that can be given on the length or complexity of the proof simply
from the syntactic complexity of the putative theorem. We could, were we
so determined or demented, ask if 1 is the number of a proof of a given wff
y, then ask if perhaps 2 is, then 3, and so on. Practical considerations aside,
this method would find a proof of y, if there were one, eventually. But if there

were no such proof, it would continue indefinitely, never getting a negative

answer. There is no point at which one could say, “There has been no proof
yet so none exists”.

The situation is analogous to a variation of Goldbach’s Conjecture. Let

us call an even number a “Goldbach Number” if it is indeed the sum of two
prime numbers. For any given even number n it can be determined definitively
whether or not it is a Goldbach number. Simply check all the pairs of natural
numbers whose sum if n. There are only finitely many pairs to check. Suppose,
in contrast, we wanted to know whether n is the difference of two primes
instead of the sum, a “Bach-gold Numbe:” instead of a Goldbach Number.

The quantification in this version of the conjecture is unbounded — “there .

are two primes such that ..., ” not, as was implicit in the first case, “there

are two primes less than n ...” — so there are infinitely pairs to test.
As with Bach-gold numbers, no limit can be established beforehand on

how high up the ladder of natural numbers one has to climb before one can

confidently assert that some formula is not a theorem.

3 Godel’s Dilemma.

The impossibility of an “omniscient” axiomatization of arithmetic is no less

than that of an omniscient mathematician. But just as a mathematician
is given two choices — either a false belief or an unbelieved truth — so too
arithmetic has two choices: inconsistency or incompleteness. That is, if we are

willing to consider inconsistency as a viable possibility, then the absurdity of

mathematical incompleteness is no longer paradoxical; it is more of a dilemma!
But is inconsistency a viable option? Classically, no. Standard truth-

functional accounts of implication maintain that from a single contradiction

anything whatsoever may be legitimately inferred. A set of wifs G has the wff
A as a logical consequence if it is impossible for all of the members of G to be
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true while 4 is false. When G is inconsistent, i.e., when its members cannot be
simultaneously true, trivially satisfied for every A. The proof-theory mirrors
this semantic account. A simple proof of B from A&—A4 is:

1. A&-A premiss

2. A 1, &-Elim (“Simplification”)

3. AVB 2, V-In (“Addition”)

4, -4 1, &-Elim

5. B 3, 4 V-Elim (“Disjunctive Syllogism”)

Both semantically and proof-theoretically, the admission of any inconsistency
annihilates the theory.

Recent work in “Paraconsistent Logics,” however, has shown that inconsis-
tent systems can be viable. Paraconsistent logics are logics that can tolerate
contradiction without degenerating into triviality. On the proof-theoretic side,
this involves putting some restrictions on the patterns of proof permitted. The
sermnantic innovation is to abandon the idea that the implication connective is
entirely a truth-functional one.

Paraconsistent logics have been motivated in a variety of ways. Often, the
motivation is the failure of the truth-functional analysis of if-then sentences.
It fails as a model for the use of such conditionals in ordinary discourse® and it
fails to provide the necessary conceptual framework for non-trivial reasoning
from inconsistent premisses, i.e., for reductio ad absurdum reasoning. More-
over, if a logic is to be an information processing tool, the pre-requisite of
consistency is self-defeating: it is doubtful how many human intellectual en-
deavours are consistent. And, needless to say, managing to prove consistency
prior to any use of logic would be a great acomplishment.

The two important questions to address are the how and the why of in-
consistent arithmetics. First the why: Why even consider a system that is
known beforehand to have at least this one big flaw? The answer, in part,
is that this might not be a flaw at all. It is important to keep in mind that
part of the task of describing the world consists in devising a language with
which to do so. Not even the most extreme Realist could deny it. Objective
world or not, the choice of a vocabulary is a determinant of the shape of the
resultant theory. The preliminary task of choosing or designing a language is
not trivial. It is something that can be done well or poorly. It is a task using
skills and criteria for success quite apart from those used in the subsequent
descriptive operation. Also, there is nothing at the outset of the enterprise
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that guarantees success. On the contrary, Goédel’s Theorem can be read as
guaranteeing at least partial failure!

Success or failure aside, it is a mistake to minimize the contribution that
the language makes to description. The language used makes its own apprecia-
ble contribution. Certain sentences may be certified as true by the lanaguage
itself regardless of how the world is. “If it is raining, then it is indeed raining”

is certainly true and just as certainly independent of the weather. No object
can be in two places at the same time. Of course, but is this really a profound
and a priori fact about objects or is it a perfectly natural consequence of the
way we use the word “object”, of the way we count objects, and of the way
we decide what is to count as a single object? Even if an object could be in
two places at once, we wouldn’t count it as one object in two places but as
two objects. Likewise, certain sentences are certified as false by the language

itself. Anyone seriously asserting “It’s raining but it isn’t” or “Santa Clause
does not exist although I sincerely believe he really does” would be guilty of
a kind of linguistic incompetence.

Could the set of sentences certified as true by the language and the set

certified as false by that language intersect? Nothing rules it out. This may
be what the Liar’s Paradox is all about. “This sentence is false” is both true
and false according to the rules of language (And also neither true nor false,
. But what consequences about the world should one

by those same rules)*?
be able to draw from that?

This might be crucial to understanding Gédel’s Theorem. Incompleteness

and inconsistency represent genuine alternatives for arithmetic. Inconsistency
can be accepted, if only as a pathological consequence of any language that

permits self-reference. It is indeed an avenue worthy of further exploration.
The underlying logic would have to be adapted accordingly, but that can
be done. Localise the inconsistency; contain its effects. If it turns out that
sentence J and its negation are both provable, what follows? Well, it follows
that J is a theorem; it also follows that —J is a theorem. So are both J Vv 4
and =J V A although A might or might not be deducible. There is no reason
to suppose that the consequences extend to Fermat’s conjecture or the next
general election or why the sea is boiling hot and whether pigs have wings.

But how can an inconsistency be localized? Isn’t the proof above incon- :
trovertible? Two philosophers means three opinions, so of course it is not
beyond dispute. Indeed, I think the proof is demonstrably fallacious — a case .
of “Begging the Question.” Specifically, the disjunctive syllogism (DS) is the

last line is illegitimate. Ordinarily, the reasoning from AV B and =4 to B
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is quite unexceptionable: if it is either A4 or B, and it isn’t A, then it simply
must be B. And if someone asks why it has to be B the answer is because it
isn’t A. We already know A is false. But in this particular case we also know
that it 7s A! That is, if what we are given is that A is both true and false,
then we cannot later appeal to the principle that nothing can be both true
and false. Taking A&—A as a premiss requires that we suspend the principle
of non-contradiction — and with it, the principle of disjunctive syllogism that
relies on it.

The situation is analogous to this. Suppose I said that I think if Gauss
were alive and doing his work today, he would not only be more famous than
any other living mathematician, he would even be more famous than Michael
Tyson, Michael Jackson, or Mikhail Gorbachev. You might respond that,
sure, he’s a great mathematician and would deserve it, but it’s hard to believe
that society would suddenly and at long last give mathematicians their due.
To that I'd say, “But don’t forget, if Gauss were living today, he’d be 212
years old and how many 212 years olds are any good at mathematics at all?”
The joke is obvious. Conversational implicatures demand the incorporation
of certain beliefs and the suspension of others. Violating the implicit rules
can have comic effects. If we are asked to suppose that Gauss were alive, we
are generally meant to suppose, among other things, that this is possible and
that it involves a minimal change of the result of our beliefs about the way
the world is. Some beliefs must change, such as that there is no one quite
like Gauss around, but most other beliefs need not be put aside, including the
belief that the world just doesn’t have 212 year old mathematicians in it. But
it could have someone now pretty much like Gauss was 200 years ago, even
though we may believe it does not.

The same general sort of thing is going on in the proof. If we are asked to
suppose that A&—A then we are also asked to suppose that it is possible. That
requires suspension of many other beliefs, including the universal applicability
of DS. Implicitly, there is an appeal to “It can’t be both 4 and =A” — in
spite of the fact that A&—A4 is exactly what we were asked to suppose! If the
information that A is true was used to get A V B, that forestalls using the
information that A is not true, even though the negation of A is also supposed
to be true. DS might or might not work for B vV C and —B, but it has been
set aside for A.

Would the reformulation of arithmetic with a paraconsistent logic as its
basis be workable? How much of mathematics could be recovered or recon-
structed with additional restrictions on allowable methods of proof? Largely
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that depends on the exact restrictions adopted. Intuitionist mathematics is
a relevant precedent. At the heart of Intuitionistic thought is a rejection of
Platonism and an embrace of “constructivism”. If mathematics is “identical
with the exact part of our thought” then the process of human thought is
integral to the subject. This includes, notably, the fact of human limitations

and thought’s temporal unfolding. The infinite is tolerated only insofar as
it is exactly specified. Infinite sets are countenanced, for instance, only as;,
potentialities and only if rules for construction can be given. Existence proofs
are accepted only if they include a method for constructing that mathematicalﬁi

entity; a reductio ad absurdum of a non-existence claim would not suffice.

The Intuitionistic program has had its share of success in both logic and
philosophy. For example, much work has been done on formalizing and re-
searching Intuitionistic logics, demonstrating at least that the philosophi-
Further,
the same sorts of considerations that led to some of the negative reactions
against Zermelo’s original use of the axiom of choice in 1904 to prove the well-
ordering theorem continue to play an important part in current debates in the

cal program can be given and exact and coherent formal basisl,

philopophy of language'?. Within mathematics proper, however, Intuitionism
has had mixed results. On the one hand, the restrictions Intuitionists impose

on non-constructive existence proofs undermine the whole of Cantorian trans-
finite arithmetic — as was desired. And much of classical mathematics can

be recovered within their guidelines. On the other hand, Intuitionistic proofs

can be unwieldy, and rejecting the axion of choice and its equivalents means |
forswearing perhaps more of set-theory and analysis than would be desired!3.

The Intuitionists’ penchant for constructivism (alternatively: their squeam-
ishness about the infinite) entails rejecting the law of the excluded middle: un-
decidable propositions are neither true nor false. Their logic has truth-value
“gluts” or inconsistencies — sentences taking both truth- values — so is not
really a paraconsistent logic. It is these logics, logics that deny the principle
of non-contradiction, that are relevant here.

The best developed paraconsistent logics are from the family of systems
Although some work has been .
done on Relevant arithmetics using Robinson’s and Peano’s axiomatisations
of arithmetic and the logic systems R, RM, and E, the work has been neither
as systematic nor as institutionalized as the Intuitionists’*4. In part, this may
be due to dissension in their ranks as to the appropriate system to use; 1% in.

known collectively as “Relevance Logics”.

part it may be simply due to the absence of a Brouwer-Heyting calibre combi
nation of mathematician and logician. Nevertheless, there has certainly been
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enough success to warrant further exploration of the “Inconsistency option”
with respect to Goédel’s Incompleteness Theorem.
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