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1 Introduction

Although the device modeling problem is perhaps one of the most difficult
computational problems in current research, there is a dramatic increase in

reliance on process and device simulation tools for technology development
and device optimization. The characteristic feature of early modeling was

the separation of the interior into different regions, whose treatment could
be simplified by various assumptions like special doping profiles, completion
regions and quasi-neutrality. These separately treated regions were simply

connected to produce the overall solution.
Fully numerical device modeling based on partial differential equations

which describe all different regions of semiconductor devices in a single unified
manner was first suggested by Gummel [11] for the one-dimensional bipolar Q
transistor. This approach was further developed and applied to pn-junction
theory by De Mari {7} and to IMPATT diodes by Sharfetter and Gummel

[15]. A two-dimensional numerical analysis of a semiconductor device was
first undertaken by Kennedy and O’Brien (12} who investigated the junction
field effect transistor. Since then, two-dimensional modeling has been applied
to almost all important semiconductor devices.

It is now universally accepted that device simulation tools provide a worth-
while alternative to the conventional experimental approach of running wafer
lots through a process line. We present a brief overview of the numerical

techniques which are being employed to solve the coupled system of highly
nonlinear partial differential equations which model the behaviour of electron
and holes in a semiconductor structure. We begin in Section 2 with an intro-

duction to the basic semiconductor equations in order to define the relevant

physical variables. The scaling procedures and dependent variable alternatives ;
are considered briefly in Section 3 while Section 4 concentrates mainly on the
discrete form of the mathematical equations. The nonlinear and linear solu- ;
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tion strategies as well as certain algorithmic factors are discussed in Section
5.

2 The Semiconductor Equations

The partial differential equations which model the steady-state and transient
behaviour of carriers under the influence of external fields can be derived, in
a semiclassical framework, from the Boltzmann Transport Equation. In this
way, carrier motion is considered as a series of acceleration events (described by
classical mechanics) and scattering events (described by quantum mechanics).
If we assume that the response of carriers to a change in the electric field is
considerably faster than the rate of change of the field itself, we can write the
basic equations of semiconductor transport in the most commonly used form
[16] as follows.
The Poisson equation

&V -E=—¢,Vip=0p (1)

relates the total space charge p to the divergence of the electric field E, which
defines the electrostatic potential ¥ as

E=-Vy (2)
Under the assumption of total ionization, the total space charge p is given as
p=-q(n—p+T) (3)

where T' = N} — N is the total electrically active net impurity concentra-
tion, q is the electric charge, and'n and p are the electron and hole densities
respectively. The connection between the behaviour of the carrier densities
and the electric field is given by the current equations for electrons and holes

Jn = qunnE - ¢D,Vn (4)

Jp = quppE + ¢D, Vp (5)

where u, and p, are the electron and hole mobilities and D, and D, are the
corresponding diffusion coefficients. Both mobilities and diffusion coefficients
depend on the temperature, the doping level and the electric field.
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The electron and hole concentrations may be written as

‘1(7/’ - ‘{bn)

N = Ny €Xp ————=

kT
‘1(¢p - 1/))

P = nj, exp ———=

kT

(©)

intrinsic carrier concentration n;. If we assume the Einstein relation [17] fo

both electrons and holes

D:,ulCI
q

then equations (4) and (5) can be re-written using (6) and (7) as
Jn = quanVé,

Jp = qpV e,

The continuity equations for electrons and holes are given by
on
ot
9p
ot
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where G and R represent generation and recombination processes respectively.

In some applications, generation is ignored and the Shockley-Read-Hall steady

state recombination is adopted, namely

2
pn—n;

(13)

(7)

where we have defined the quasi-Fermi potentials ¢, and #p [16]. The factor
n;. is the effective carrier concentration. For low doping, n;. approaches the

()

(%)
(10)

(1 + ni) + 7 (p + n;)

where 7, and 7, are respectively the electron and hole lifetimes.
In the time dependent case, the equation of total current continuity couples
the change in electric field strength to the current densities k

9E
v-JT:v-(e—anHp) (14)
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where Jr is the total current, which consists of both the conduction compo-
nents J, and J, and the displacement current ¢ 0E /8.

The boundary conditions for semiconductor devices are given by neutrality
and equilibrium conditions, namely

pn = n} (15)
n—p+I'=0 (16)

Thus at a Dirichlet contact, the three potentials are
Y = Ve(t) + Vi (17)

bn = ¢p = Ve(t) (18)

where V3; and V.(t) are the built-in and contact voltages respectively. When
external circuit elements are applied to the device, the contact voltage becomes
an unknown and is given by

BV = Velt) + O V) = Vet + [

V.Jdl=0 (19)

where R, C and V;(t) are the resistance, capacitance and applied voltage

(11)

_ respectively and I' is an appropriate contour surrounding the contact.

(12)

The complete set of semiconductor equations is given by (1), (9), (10), (11)
and (12) together with appropriate initial and boundary conditions and, as
we will see in the next section, this set of coupled nonlinear partial differential
equations are usually written in dimensionless form appropriate for numerical
simulation.

| 3 Problem Formulation

. Before proceeding to the numerical solution, there are a number of factors

which must be considered, notably the choice of dependent variables and an
appropriate scaling of the equations. The choice of variables can crucially
affect the linearity of the equations as well as the symmetry of the iteration

- matrix. Scaling is important as the dependent variables can be of different
~ order of magnitudes and show a strongly different behaviour in regions with

small and large space charge.
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For the system with dependent variables {%,n, p}, a standard approach to

scaling was proposed by de Mari, see (8], where 1 is scaled by the thermal

voltage V; = £L. 1 and p are scaled by n; and the independent variables
g Y P

are scaled such that all multiplying constants in Poisson’s equation become
unity — all spatial quantities are scaled by the intrinsic Debye length L; =
VeskT'/qn;. This approach may be physically reasonable but suffers in that
the variables n and p are still several orders of magnitude larger than P.
An alternative “singular perturbation approach” was proposed in [1] which
effectively reduces the variables ¥, n and p to the same order of magnitude.

the net doping I and the independent variables are scaled by the characteristic
length of the device.

Following (8] for example, the basic equations can be written in normalized
form as

—V2¢+n—p—k1:O
an
En
op

E—V-Jpquz:O

91(77[’) n)p)

gQ(T/J)n)p) +V‘]n +k2 =0 (20)

93("//, n, p)

where 9, n, p, J, and Jp are the normalized electrostatic potential, car-
rier densities and current densities respectively, and k; and k, represent the
normalized impurity concentration and generation-recombination terms. We
could also write the system in terms of the normalized quasi-Fermi potentials
$n and ¢, as follows:

gl(z/J) ¢n; ¢P)
92("/); ¢n7 qsp)

— V2 fg¥=bn _ oo _ ki =0
fe¥—¢n
at
ae‘ﬁp_d’
ot

+V (ne’ Vg ) b ko =0 (21)

93(7/)1 ¢n7¢p) - V-(MP€¢’—¢V¢p)+k2 =0

There are many choices for the set of dependent variables and, in what
follows, we will refer to the arbitrary choice u, v, w as including such possibili-
ties as {4, n, p}, {9, én, dp}, {8, % — ¢, ¥ — ¢y} or perhaps {¢, $,,, ®,} where
®, = e~ % and ®, = e?» all of which have appeared in recent publications.
The first set of variables used in device simulation was the potential and carrier
concentrations but, because the continuity matrix took on a positive definite
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~ form, many workers switched to exponentials of the quasi-Fermi potentials.

The quasi-Fermi potentials themselves are now quite popular and offer the
advantage of reducing the numerical range of the dependent variables.

4 Discretization

Software for device analysis could roughly be classified in two categories. One
of these involves codes for analysis of specified device types. These codes often
utilize a regular mesh, finite difference discretization and iterative solution

In this case, the variables n and p are scaled by the maximum absolute value of methods. Since the device type is known, some behaviour of the structure

can be predicted. This information can be used to select appropriate physical
parameters and to improve the mesh generation and the equation solution
methods. The second category contains codes for analysis of an arbitrary

_ semiconductor structure. They are characterized by a high degree of flexibility
~ which makes the user more responsible for the final results. The finite element
- method (fem) has many properties which motivate its usage in this category.

As an illustration, we will consider the steady state case, i.e. where %—'; =

% 0 with exponentials of the quasi-Fermi levels, &, = exp(—¢,) and

ot

®, = exp(¢,), as dependent variables. Ignoring the generation term, we

_ consider the one-dimensional form

%y
 dz?
dJ,
dz
dJ,
dz

= Bpe™¥ — ¥ + I'(z)
R

-R

dd, _
Jpz—ﬁe ¥

dd,
Ip = — e?
n dz
constant space charge density results in a parabolic function for 1Y and we
erefore use a standard Taylor’s expansion to discretize (22). First we define
¢ non-uniform mesh on [0, 1]

Zg = 0
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Tjpr = zj-}-hj,OSjSN-—l
TN = 1

where the h; are suitably chosen to model rapidly varying solution behaviour
and are typically constrained by the inequality

hj hj
max( gt

, <2
i hy hj+1) -

forall 0 < j < N —1. Before linearization, the difference scheme corresponding

to Poisson’s equation has the form

— DDy = Bpe — B et + T (23)

where the difference operator D, D_ is the standard three-point difference

operator on a non-uniform mesh

2
hihi—1(hi + hi_1)

DyD_y; = [hivio1 — (hi + hio1)yi + hi—1yi41)

The standard Taylor expansion has proved inadequate however for the .
continuity equations since this approach, for the quasi-Fermi potentials for
example, would suggest exponential current density profiles. In reality current

densities are known not to vary very rapidly with respect to the spatial coordi-
nate. Hence we employ the Sharfetter-Gummel discretization (see [15]) which
incorporates approximate integrals of the basic equations into the formula-
tion of the difference equations and yields constant current densities between

adjacent mesh points. Taking the hole current for example and recalling that :

dd
o =

we integrate over the interval [z, z;1] on which we assume that the current
density is constant and that the electrostatic potential is linear. Thus we get

FTi+1 ’
o1~ Ppj Jpe¥ dz

z;

B4 d(e¥)
Jp,j+% &y

z5 dz
" e¥it+1 — e¥;
(s NE S R
e ‘/’J+1“‘¢j
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or equivalently we write

Jpj+i = e"¥iD, &, ; B(AY;)

where we introduce the notation
2i41 =~ 24
D,z = ————
+ 44 hz’

Dz = 2441 — 2
z
B(z) =
(=)=
The corresponding difference expression over the interval [z;_,, z;] may be
found analogously. The current density approximations may be summarised
as follows

Dywy = eWBAY)D,E,, (24)
Jpi-3 e i B(-At;_1)Dy &y 1 (25)
Jojer = —€YiB(=AY;)Dy&,; (26)
J, = —e¥IB(AY;-1)D1 8, ;-1 (27)

1j"‘%
Using a standard centered difference approximation, the continuity equations
can be discretized as follows
2
hj—1+ h;
2
LA o S
hj-—l + h][ ﬂ,J+-§-

[J J+E T J,

P p.j—%] = R; (28)

and, on using equations (24) to (27), these become

hij_y1—h;i) 4.
B(~A%;1)D4@y,i1 — B(AY;)D4 8y, = - =L M vs g (30)

B(AY;j-1)Dy ®nj-1— B(=AY;)D4 @p 5 = —

hi_1+h;
(hiz1+hj) 12+ i)e-vip. (31)

The difference equations (23), (30) and (31), subject to appropriate boundary
conditions provide the basis for the numerical solution procedures in one-
dimensional steady state simulations.

. Any discretization scheme for the semiconductor device equations should
possess certain desirable properties. In particular, it should
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function in arbitrary geometries
be conservative
e provide adequate treatment of drift-diffusion terms
allow convenient enforcement of boundary and interface conditions
permit adaptive mesh construction
be free of dimensional restrictions

There are a number of discretization strategies in current use — the “finite

difference method”, of which the foregoing is an example, the “finite box .
method” which is just a more general finite difference method and the “finite
element method”. No attempt is made to provide a serious mathematical

preference for one method or the other. The finite difference method and the
finite element method are frequently considered to be mutually independent
from the beginning. However it is often a matter of interpretation only and
one can sometimes obtain the exact same discrete equations from either a
finite difference approach or a finite element approach. It should be noted
however that finite difference formulae accounting for normal derivatives at
a curved boundary are extremely awkward so that, for this type of problem,
one should consider the finite element method.

5 Numerical Solution Procedures

The exponential dependency of n and p on 9 makes Poisson’s equation non-
linear and the generation-recombination mechanisms couple the two current
continuity equations and introduce strong nonlinearities. There are basically
two different solution strategies adopted for the discretized system namely (a)
the decoupled (or Gummel) and (b) the coupled (or sinultaneous) procedure.
Both require an initial guess of the solution followed by an adjustment of the
guess until an acceptable degree of accuracy is obtained.

5.1 The Decoupled Approach

This approach is sometimes referred to as the Gummel iteration [11] by elec-
trical engineers and the Jacobi / Gauss-Seidel iteration by mathematicians
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and treats the three equations independently. The iteration proceeds by asso-
ciating with each g; the highest-order differential dependent variable (e.g. for
the variables of equation (20}, taking % in the first equation and n and p in
the other two respectively). In solving g; = 0, v and w are treated as fixed
to obtain a new solution for u. Let z; = (uk,vk,wk)T. The iteration can be
written as

g1(ze — upy1) =
92(Zk,uk+1 — ‘vk+1) =
ga(zk,uk+1,vk+1 — wk+1) =

(32)

where the variables left of — are considered as input variables. This symbolic
representation of the iteration allows considerable flexibility in determining
the sequence of one-variable equations.

The partitioning of the complete PDE system into a series of three equa-
tions that can be solved independently made this procedure very popular
particularly in the early years of device modeling. The applicability of the
Gauss-Seidel approach however depends critically on the level of current flow
inside the device structure. In [4] the procedure has been found to work very
well for conditions of low to medium current flow and negligible generation-
recombination terms k. This corresponds to a weak coupling of the PDE
system where the density or quasi-Fermi potentials act as small perturbations
to the Poisson equation.

5.2 The Coupled Approach

Using the Gauss-Seidel iteration in physical situations where there is heavy
coupling between the variables (typically in high current conditions) will usu-
ally prove to be difficult and, in most cases, convergence will not be realised.
As a result, reasearchers quickly turned to a more robust procedure based
on Newton’s method. This requires both the assembly and the approximate
solution of the system

Igi
a. =Gk

B2 (33)

where g = g(ug, vk, wr) with g = (g1,92,93)7. In expanded form this leads
to the system
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992 992 992
u v dw
v dv Ow

(34)

5} ~ .
where the Jacobian matrix %9 and the right hand side arc evaluated at the k-

P
th iteration (ug, vk, w). Unlike the decoupled algorithm, the simultaneous or

coupled approach has the advantage that it is practically independent of the
applied bias conditions and injection levels in the device. If the linear algebra

modules are subsequently carefully chosen, it also proves to be sufficiently

robust for general purpose codes. However, it suffers somewhat because of
the increased requirements of CPU-performance and memory and, in this

context, the use of approximate Newton methods are becoming more popular

in an attempt to offset these factors.

5.3 Algorithmic Aspects

Assuming we wish to solve the nonlinear system of type (20) or (21) for ex-
ample. Firstly, the large sparse linearized system
Mz, = —-g(zk) = —gk (35)
is solved by the sparse direct or iterative methods (to be described) where M}
is an approximation to the exact Jacobian gf. The next iterate is taken as

Zp41 = 2p +ikTh (36)

where t; € (0, 1] is chosen to satisfy the sufficient-decrease condition

| gr+1 ||

" el 37

> ety
and € is the machine epsilon. In other words, the step-length parameter i
damps the step z) to insure that || gx41 ||<|| g& || increasing the robustness
of the nonlinear equation algorithm [3]. Moreover, t; is biased towards unity
so that a traditionally quadratically convergent method is recovered in"the
Newton-attraction region.
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A popular Newton iterative method is the Newton-Richardson algorithm
[4] which assumes that g, can be written as
9r = My — Ny (38)
with

| M N =1 T — M g |1< o < 1 (39)

for all k. In this case, M} represents a previously factored Jacobian so that
the method clearly attempts to exploit the fact that the time to factor a
sparse matrix is much larger than the CPU time to perform a backsolve with
a previously factored matrix. The z; is found by an inner iteration

a
Mi(zr,g — 1) = —('6-%:%,1—1 + gk)

(40)
where zg o = 0 and z; = =z, for some ;. This inner iteration can be
controlled by monitoring the quantities

+9&;c
el = |l gr + 522, ||

' X (41)

Note that both quantities used to compute oy are already available. The
_ inner iteration is terminated when

Il ge I|)

a1, < oo ( 42
»=2 oo ] “
where ag € (0,1) is an experimentally determined parameter. We refer the

interested reader to [3] for further details where it is shown that the resulting
procedure is quadratically convergent.

5.4 Linear Equation Solution

The set of linear equations which must be solved at each iteration of the
Newton procedure (outer iteration) is large and sparse. It may be symmetric

- or unsymmetric depending on the choice of dependent variables. The efficient

'Iution of systems of linear equations is the key to any successful device
S}mu}ator where typically the solution of a system of 6000 equations may be
required. In terms of CPU and memory, the linear algebra portion of the




34 IMS Bulletin 23, 1989

overall solution process dominates. Iterative techniques are usually preferred

since they can fully exploit the sparsity of the equation set. Equally important,

they can exploit the fact that the linear equations are part of the outer loop
and only need to be solved sufficiently accurately to ensure that the outer loop

converges rapidly.

In simulating an arbitrarily shaped structure, the box integration tech-

nique is often used with the finite difference method. Using this method, the
solution of Poisson’s equation and the current continuity equations can be
reduced to the solution of linear systems of equations involving symmetric
band matrices. The symmetry of the coefficient matrix not only saves mem-
ory but also enables the application of the highly popular ICCG (Incomplete
Cholesky-decomposition and Conjugate gradient) [13] method which results
in a very high speed simulation.

For unsymmetric matrices, both preconditioned ORTHOMIN [2] and pre-
conditioned conjugate gradient squared have been studied with the latter
showing a slight advantage. The conjugate gradient iteration (inner itera-
tion) is continued until the norm monitored in the outer loop has decreased
and the residuals of the preconditioned equation set has been reduced by a
factor of typically 10°.

To obtain the required convergence whilst exploiting the sparse structure,
the choice of preconditioner is critical. The preconditioner employed relies
heavily on the method in which the equations are ordered. To ensure that
the coupling between the three equations is taken into account, the equations
and variables associated with a given node are ordered sequentially. In this
way, the coupling between the equations is represented by 3 by 3 submatrices
distributed within the matrix. In addition, the nodes are ordered in a way that
nodes with strong coupling are neighbours — this is achieved by numbering
the nodes sequentially along a path through the mesh that always advances by
moving to the closest node which is not yet ordered. Thus strong coupling of
nodes is assumned to be correlated with a close spacing of the nodes. With this
ordering of the equations, the matrix describing the set of linear equations is
dominated by the components in the 3 central diagonals of 3 by 3 submatrices.
An exact inverse of this “tridiagonal block” structure can be economically
calculated and used to precondition the lincar system.
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6 Conclusion

We have attempted to provide a simple overview of some of the techniques
and issues which are involved in the numerical analysis of semiconductor de-
vices. During the last several years, the modeling of basic semiconductor
device structures has grown in importance as integrated circuit complexity
has increased. To reduce risk and enable aggressive circuit design, efficient
and accurate compact models are required for the simulation of circuits con-
taining hundreds and thousands of devices. These compact models must be
fully characterized for the target fabrication process and be valid over a wide
range of operating conditions including temperature variations. The predic-
tive capabilities of detailed numerical device and process simulators can be
used to enhance device characterization techniques and to form a basis for
technology optimization.

Simulators that can perform DC-analysis of specific device types in two
space dimensions are today in use at many process development facilities and
this level may be considered state of the art. With a reduction in the geomet-
rical dimensions of, for example, the MOSFET, there is an increasing necessity
for three-dimensional device simulators and current research is rapidly provid-
ing the building blocks. In addition to three-dimensional device analysis, the
simulator must also be capable of (a) treating irregularly shaped structures;
(b) one- and two-dimensional simulations and (c) device parameter calcula-
tions. Two three-dimensional simulators in current use are FIELDAY [5] and
TRANAL [18], both of whom first appeared in 1980 and, since then, attention
has been focused on reducing the large memory capacity and computing time
required for the simulation.
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