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5. Other Business.

(1) D. O’Donovan tabled a report on his proposal to conduct a David-
style study on Irish Mathematics. It was felt that the Society could
not discuss the report without notice, and discussion was deferred to
the September meeting, when a panel discussion is to be held on the
subject. At the same time, it was thought desirable to initiate discussion
of the report in the Colleges, and to that end it was decided to circulate
the report to the local representatives. Concern was expressed that
this procedure might lead people to suppose that the Society already
endorses the report, but this was discounted.

(2) The Secretary reported on the state of the EUROMATH project.
When Phase II begins, there will be a need for substantial investment.
A sub-committee is preparing a submission to EOLAS on the report.

IRISH MATHEMATICAL SOCIETY

Ordinary Meeting

March 22, 1989

The Irish Mathematical Society held an Ordinary Meeting at 12:30 p.m.
on Wednesday, March 22, 1989.

Thirteen members were present and the President, F. Gaines, was in the
chair.

1. The minutes of the meeting of December 22, 1988 were read, approved

and signed.

. Meetings: It was noted with satisfaction that EOLAS has undertaken
to pay the airfares of two speakers at the Society’s meetings in 1989, up
to a limit of £400 apiece. The principal speakers at the September 1989
meeting, to be held in Maynooth on the 7th and 8th of September, will
be F. Almgren, S. Donaldson and J. Lewis.

It was suggested that a press release about the September meeting would
be in order.

A committee, consisting of R. Timoney, F. Gaines and D. Simms, was

set up to select and invite a speaker for a meeting in November, to be
held in Dublin.

It was agreed to accept the offer of NIHE Dublin to host the September
1990 meeting.

. The Treasurer’s Report, deferred from the previous meeting, was
considered and adopted, on the proposal of R. Timoney, seconded by M.

(3) A request for a further subvention from the Groups in Galway con-
ference was referred to the Treasurer.

(4) There was a discussion of the role of the Society in relation to the
Mathematics Contest and the Olympiads. The Society initiated the
Contest and National Olympiad. It initiated and is running a major
Olympiad preparation programine,with centres in Limerick, Cork, Gal-
way and Dublin. This involves a great deal of {(unpaid) work by the
organisers and tutors. Money is provided by EOLAS for conferencing,
books and materials, but not for the travel expenses of participating stu-
dents. The expenses of the team for the International Olympiad were
paid by the Department of External Affairs, and the organisation of the
team was carried out by a special interdepartmental committee. Apart
from other benefits, the programme is believed to have had a positive
effect on enrollments in Mathematics.

(5) The Secretary reported on the programme of exchanges for the Bul-
letin, which is developing well.

Stynes. The meeting concluded at 1:15 p.m.

4. R. Ryan reported on the status of the Bulletin. A printing schedule Anthony G. O’Farrell,
has been agreed with EOLAS. The Bulletin now makes a profit because Secretary
the use of TEX and electronic submission have brought down production
costs, while advertising revenues have grown. Proposals to improve the
journal are invited. The President observed that we should try to limit
the number of changes in the overall dimensions of the journal to one
more.




NEWS

Personal Items

Dr. Martin Mathieu of the University of Tiibingen will be visiting the
Mathematics Department in University College Cork from February 26
to April 20 1990. He will deliver a series of lectures on Operator Theory
and C*-algebras.

Professor John C. Elliott of the Mathematics Department, University
of Maine at Fort Kent, U.S.A., will visit the Mathematics Department
of University College Cork for the period January to May 1990. His
main interest is in Mathematics Education.

Professor Dan Luecking of the University of Arkansas, Fayetteville,
is a visting lecturer in Trinity College Dublin for 1989-90. Professor
Luecking’s research is in Complex Analysis.

Professor B.H. Murdoch has retired as Erasmus Smith’s Professor
of Mathematics at Trinity College Dublin. He was a Senior Fellow of
the College in 1988-89. Professor Murdoch will continue to teach in the
Department.

Dr. Kirsteen Duncan has taken up a position at Trinity College
Dublin for the year 1989-90. Dr. Duncan, who holds a Ph.D. from
Heriot-Watt University, works in Numerical Analysis.

Dr. Mark Leeney has taken up a one-year appointment in the Math-
ematics Department in University College Cork.

Pat Crehan has taken up a temporary lectureship in applied math-
ematics in the Dublin Institute of Technology at Kevin Street. Dr.
Crehan was a student of John Kennedy in UCD and has just completed
a doctorate in the area of quantum chaos.

Niall O Murchadha of the Experimental Physics Department at U ii-
versity College Cork has been promoted to Associate Professor.

NEWS 5

Professor Paddy Barry, Head of the Mathematics Dept at University
College Cork, has been appointed to the Course Commitiee for the Se-
nior Cycle in Mathematics by the National Council for Curriculum and
Assessment. ‘

FEamonn Murphy has been promoted to Lecturer in the Mathematics
Department of the University of Limerick.

Finbarr Holland is on leave of absence from University College Cork-
for the academic year 1988-89, visiting universities in Australia, New
Zealand and the U.S.A.

Robin Harte is visiting the University of Alaska at Fairbanks for the
present academic year.

J.J.H. Miller is on leave of absence from Trinity College Dublin this
year and is now Director of the Institute for Computational Mechanics
in Propulsion at the NASA Lewis Research Center in Cleveland, Ohio.

Gerard Murphy will visit.the University of Tibingen for the month
of May 1990.

Roger Dodd has left Trinity College Dublin to take up a position at
California State University at Santa Cruz, where he will join Hedley
Morris, who resigned from Trinity College Dublin in 1986.

Richard Timoney has been elected to a Fellowship of Trinity College
Dublin.

Graham Ellis of the Mathematics Department of University College
Galway, has been invited to give a lecture at the British Mathemat-
ics Colloquium in 1990. Dr. Ellis will speak on “Algebraic models of
topological spaces”.

John Flynn, a student at Univertsity College Cork, has won a travelling
studentship from the National University of Ireland.




CONFERENCES

Groups In Galway 90

In order to mark Professor Sean Tobin’s 60th birthday, the annual Groups
in Galway meeting will be expanded into a four-day conference in 1990. The
conference will take place in University College Galway on May 9-12. The

main speakers will include:

C.K. Gupta (Manitoba)
N.D. Gupta (Manitoba)
G. Higman (Oxford)
T.3. Laffey (Dublin)
P.M. Neumann (Oxford)

Further details may be had from:

Dr. 3.J. Ward
Groups in Galway 90
Department of Mathematics
University College Galway
Galway, Ireland.
(MATWARD@CS8700.UCG.IE)

Third September Meeting of the IMS
Dublin City University

The 1990 September Meeting of the Irish Mathematical Society will take place
in Dublin City University. Further details will appear in the next issue.

Conferences

IMACS 91
13th IMACS World Congress on
Computation and Applied Mathematics

This conference will take place in Trinity College Dublin on July 22-26,
1991 under the Chairmanship of Professor John J. H. Miller. Preliminary
manuscripts (original or survey papers) and proposals for the organization of
sessions are invited, and may be addressed to:

Professor J.J.H. Miller
General Chairman IMACS 91
PO Box 5, Dun Laoire, Co. Dublin.

Enquiries about all other Congress related matters should be directed to:

Ms. Paulene McKeever
IMACS91
40 Millview Lawns
Malahide
Co. Dublin
Fax: (+353-1) 802523

TEX90
University College Cork — 10-12 September 1990

The 1990 TEX meeting in Cork is the fifth European TgX conference. This is
also the first TEX Users Group (TUG) meeting to take place outside North
America. Peter Flynn of University College Cork is Programme Co-Chairman
and Local Coordinator. Further details may be obtained from:

TEX90 Office
Computer Centre
University College

Cork
(TEXQO@VAXI.UCG.IE)




ARTICLES

Godelian Incompleteness
and Paraconsistent Logics

Or: why Godel’s Paradox is really a dilemma

D.H. Cohen

There are three parts to this largely expository discussion. First, Godel’s
Incompleteness Theorem is differentiated from other sorts of questions in
mathematics. From this a classification scheme for some of mathematics’
more perplexing situations emerges!. The Incompleteness result is then pre-
sented, explained, and located in that scheme. Finally, in light of this, and

some points of language and philosophy made in passing, a new response to
Godel’s result is suggested.

1 Puzzles and other problems

Godel’s Theorem poses an altogether new sori of problem for mathemati-
cians. It establishes that some very good mathematical questions do not have
equally good mathematical answers. Moreover, the fault is not in what counts
as a mathematically acceptable question; it is in what counts as a mathemat-
ically acceptable answer. The problem is endemic to the entire mathematical
enterprise.

The idea that some good questions do not have equally good answers is
troubling but hardly new. There are many other situations involving answer-
less questions without anyone suggesting that they represent crises for human
thought. But Gédel’s proof does pose just that sort of crisis. Identifying
Just what distinguishes it from similar problems is the best first step towards
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framing a rational response. To that end, comparisons with other notable
open questions in mathematics will be made. The first part of the strategy
is to uncover the implicit theoretical framework supporting judgements that
some problems are similar to others. The results are then applied to Godel’s
Theorem in particular.

Consider “Fermat’s Last Theorem.” It might be thought similar to Godel’s
Theorem since it may be an example of an undecidable question?. A good
many subcases have been closed, but no comprehensive proof or disproof has
yet been found. Only such (dis-)proof would qualify as a definitive answer.
As a working hypothesis, however, a good assumption is that some proof or
refuting counterexample will be produced eventually. Without this assump-
tion, further progress could not reasonably be expected. It is considered a
problem with no solution yet, and problems with no solutions yet are sim-
ply unfinished business. They are like the intellectual itch of a particularly
difficult daily crossword puszzle the day before the solution is printed. Since
the same community response and attitude is present, the term PUZZLE is
appropriate. The assumption is that there is a unique solution®.

The same general response seems to be called for with respect to the hu-
manly uncheckable proof of the Four-Colour Theorem. Although it introduces
an empirical component into the practice of pure mathematics, that practice
can be sufficiently distanced from theory so as not to pose any conceptual
problems. The theorem is either true or false; the proof is either valid or not.
Human capacities are not the issue. Any faith in Platonic Realism is not really
challenged.

A second sort of unanswered question does raise problems for an uncritical
realism, for the belief that there is a truth of the matter out there for us to
discover or not, depending on the acuteness of our powers and the blessings
of the mathematical muse. Cantor’s Continuum Hypothesis typifies this set.
Is the cardinality of the continuum the second transfinite cardinal? What
differentiates this problem from Fermat’s is that we know the resources at
hand are insufficient to decide it. The hypothesis is provably consistent with
but independent of the axioms of set-theory: either it or its negation can be
added to those axioms without yielding contradiction ...provided only that
the original axioms were consistent. The situation is analogous to Euclid’s
“fifth postulate”. Who knows but a range of “Non-Cantorian” set-theories
are just waiting to be developed — waiting, presumably, in the same place
that Non-Euclidean geometries were waiting for Riemann and Lobaschevsky,

wherever that was®.
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Gédel’s own position was an extreme Platonism, maintaining that the Con-
tinuum Hypothesis was either objectively true or false, depending on whether
or not it accurately described the behaviour of transfinite cardinals®. They
are out there, just like Kurdistan or Pago Pago, and it is the business of the
mathematician to be a geographer of this special realm of abstract entities.
Even the idea that there are alternative set-theories waiting to be discovered
is a kind of Realism, albeit pluralistic about the theories themselves.

This sort of situation is a DILEMMA. Several options are available, any

one of which can be developed and applied. Thus, the basis for choosing

one tather than another must be based on something ezternal to the different
systems, say, the way the world is in its ultimate metaphysical construction, or
the desiderata surrounding some specific research program or computational
context. The situation would be analogous to a jigsaw puzzle that could be
put together in two different ways or a single crossword grid and set of clues
that could be “correctly” solved in several distinct ways®. In a dillema, the
existing conceptual framework needs additional information. What is accepted
or established may be fine as far as it goes, but it simply doesn’t go far enough.

The opposite situation also arises, cases where we have, as it were, too
much “information”. In this case, something has to be discarded to resolve the
issue rather than something having to be added to settle things. The search,
then, is for a likely belief to jettison. This is a PARADOX. The common
pattern is that established and accepted theses give rise to an absurdity, or
even an outright contradiction. Russell’s Paradox is an example of this: the
set of all sets that are not members of themselves must be — but cannot be —
a member of itself. This amounts to a contradiction; something has to go. We
could, if we were so inclined, abandon the belief that the world is contradiction-
free, or that sentences cannot be both true and false simultaneously, or that
set-theory is worth pursuing. The consensus has been that the unrestricted

version of the set-abstraction axiom, although “obvious”, is the source of the *

problem. Obviousness is not always the mark of truth. Restricting its range
of applicability preserves just about all of naive set-theory. Nothing so radical
as an overhaul of the underlying logic is required. So, by an implicit appeal

to a principle of “minimal mutilation,” restricting the relevant axiom is the

change that is usually made’.

Russell’s Paradox, while forcing some revision in mathematical beliefs and

practice, presents no real threat to the main Platonist tenet of objective math-
ematical truth. It merely challenges the secondary assumption that some par-
ticular statement of the set-abstraction axiom is part of that truth. A mistake
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was made, big deal. Of course, at the time of its discovery it was not as easy
to be so blithe about revision. We know now what Russell did not know
then: effectively restricting the schema is entirely possible and not unduly
burdensome.

Ironically, this sort of Realism, which is Godel’s own position, is rather less
viable when confronted by Gédel’s Incompleteness Theorem. The theorem
presents a conceptual paradox requiring revision of very fundamental beliefs,
and possibly even the logic that holds everything together.

2 Godel’s Theorem

The theorem establishes, in brief, that there is an unavoidable mismatch be-
tween mathematical truths and mathematical theorems. The two sets cannot
coincide. No matter how arithmetic is packaged, there must be either some
truths that elude the proof-theoretic apparatus, or else some falsehoods that
sneak their way into theoremhood.

Considerations of space prevent a complete rehearsal of the details of
Godel’s proof here. However, an approximation is at hand, something a
bit easier, but still in the same neighbourhood. It can be proved (perhaps
contrary to expectations but provable nonetheless) that no mathematician is
omniscient. By “omniscient” I mean believing all and only the true sentences.
If it were simply a matter of believing everything that is true, it would be
relatively easy: believe everything. Believe that 2 + 3 is 5 but also believe
that 24 3 is not 5, that it is 6 and that it is not, that cabbages are kings and
that they are not, that taxes can be lowered and government revenues raised
at the same time, and so on. Similarly, believing only truths is also relatively
easy: don’t believe anything. Doubt that 2 + 3 is 6 and doubt that it is not,
and so on. (This may not be such a bad idea. Descartes tried it and managed
to get his co-ordinates straight.) The trick, clearly, is to manage both at the
same time, to believe all the truths and disbelieve all the falsehoods. Now
consider this sentence:

(N)  Prof. N. Ullset does not believe this sentence

gletting Prof. Ullset represent an arbitrary mathematician). If he believes it,
1t is false and he has a false belief. If he does not, it is true and there is a
truth not in his belief-set. Either way, sadly, he falls short of omniscience.
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This is what Godel managed to do for arithmetic. He showed that any
language rich enough to express what arithmetic needs to express will also
be able to express an equivalent of N-sentence, saying roughly, “Arithmetic
cannot prove this sentence”.

The proof centers on the notion of computability. The idea is that all
functions of a certain type ought to be expressible in any language suitable
for mathematics. The type in mind, recursive funciions, is conservatively
characterized: a few (rather boring) functions are taken as primitive and
means for constructing new ones are provided. The given functions are (1) the

constant zero-function, (2) the successor function, and (3) projection functions

which simply pick out the i** member of a given n-tuple. Additional functions
may be built up either by (4) function-composition or by (5) recursion. That’s
it.

The next stage involves showing that such purely syntatic concepts as term,
Junction, and well-formed formula (wff) are representable by constructible
functions. The vehicle for this is an assignment of numbers to each concate-
nation of symbols in the language. It is then shown that the sets of numbers
corresponding to terms, wils, and the rest, can be defined by recursive func-
tions. For example, a one-place recursive function can be constructed which
has the value 1 if and only if its argument is a number corresponding to a
well-formed formula; otherwise, it has the value 0.

In addition to concepts that are syntactic in the grammatical sense, some
concepts which are syntactic in the proof-theoretic sense are similarly repre-
sentable by recursive functions. These include the concepts of aziom, substi-
iution instance, and even of proof! That is, whether or not a given sequence
of formulas is a valid proof is the kind of question that can be answered by a
Tiiring machine: a program can be written which will correcting answer, after
a finite number of steps, “yes” or “no”
symbols a legitimate proof?”

Theoremhood, however, is not recursive. Given a sequence of wils, it can
be definitely decided that it does or does not constitute a proof. If it does,

then the last wil is certainly a theorem. What cannot be devised is an effective
test which starts with a single formula and correctly answers yes, it can be
the last line of a proof sequence, or not it cannot.

This means that arithmetic is undecidable. There is no alogirithm for
theoremhood. Undecidability leaves it open as to whether there might be
proofs that are undiscovered or even recursively unrecoverable for every math-
ematical truth. The proofs could be out there, alongside the undeveloped

to the question “Is this collection of

S
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non-Cantorian set-theories, waiting for discovery or doing whatever it is that

unknown truths do. However, Godel’s Theorem actually proves something
stronger than undecidability, so this picture is wrong. Gédel’s Theorem is an
incompleieness theorem, proving that at least some of those imagined proofs
for each and every truth are not there — no matter where “there” is.

The way this works is that theoremhood is an expressible concept within
the language of recursive functions, although not itself recursive. The notion
of proof is recursive, so theoremhood is easily recoverable. If ded(z,y) holds
just in case z is the number associated with a sequence of formulas that is a
proof and y is the number associated with the formula which is the last line of
that proof, then Th(y), defined as (Ez)ded(z,y), defines theoremhood. The
predicate Th holds of just those numbers associated with theorems.

The hard part is re-creating the kind of self-reference that is the N-sentence

— “Prof. N. Ullset does not believe this sentence”. The recursiveness of sub-
stitution allows that. Let sub(z, n,a) represent the substitution relation. Or,
more exactly, the value of the sub(z,n,a) is the number associated with the
formula that results from substituting the expression associated with the num-
ber n for the variable associated with the number z in the formula associated
with the number a.

Now, consider the formula:

I: ~Th(sub(ks, z, z)),

where k; is the number associated with the symbol for the variable z. This
entire formula is itself associated with some number, its “Gédel number”. Let
it be 7. Now consider the formula:

J: -Th(sub(ks,1,1)).

This says that the result of substituting the number i for the variable z in
the formula with Gddel number ¢ is not a theorem. The formula with Gédel
number ¢ is I, so this says that the result of substituting 7 for z in I is a
non-theorem. The result of that substition is precisely J, so J says in effect,
“J is not a theorem”. If it is a theorem, it’s a false theorem, if it is not a
theorem, it is a true non-theorem. Mathematics, no matter how axiomatized,
is not “omniscient”. (The notion of proof is system relative, so expanding the
system by adding the unprovable sentence as a new axiom wouldn’t help; a
new “Godel sentence could always be generated.)®
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Exactly why theoremhood is expressible but not recursive concerns the
quantifier in its definition: (Ez)ded(z,y) — there is some number answering
to a sequence of formulas which is a proof of the given formula. There is no
upper bound that can be given on the length or complexity of the proof simply
from the syntactic complexity of the putative theorem. We could, were we
so determined or demented, ask if 1 is the number of a proof of a given wff
y, then ask if perhaps 2 is, then 3, and so on. Practical considerations aside,
this method would find a proof of y, if there were one, eventually. But if there

were no such proof, it would continue indefinitely, never getting a negative

answer. There is no point at which one could say, “There has been no proof
yet so none exists”.

The situation is analogous to a variation of Goldbach’s Conjecture. Let

us call an even number a “Goldbach Number” if it is indeed the sum of two
prime numbers. For any given even number n it can be determined definitively
whether or not it is a Goldbach number. Simply check all the pairs of natural
numbers whose sum if n. There are only finitely many pairs to check. Suppose,
in contrast, we wanted to know whether n is the difference of two primes
instead of the sum, a “Bach-gold Numbe:” instead of a Goldbach Number.

The quantification in this version of the conjecture is unbounded — “there .

are two primes such that ..., ” not, as was implicit in the first case, “there

are two primes less than n ...” — so there are infinitely pairs to test.
As with Bach-gold numbers, no limit can be established beforehand on

how high up the ladder of natural numbers one has to climb before one can

confidently assert that some formula is not a theorem.

3 Godel’s Dilemma.

The impossibility of an “omniscient” axiomatization of arithmetic is no less

than that of an omniscient mathematician. But just as a mathematician
is given two choices — either a false belief or an unbelieved truth — so too
arithmetic has two choices: inconsistency or incompleteness. That is, if we are

willing to consider inconsistency as a viable possibility, then the absurdity of

mathematical incompleteness is no longer paradoxical; it is more of a dilemma!
But is inconsistency a viable option? Classically, no. Standard truth-

functional accounts of implication maintain that from a single contradiction

anything whatsoever may be legitimately inferred. A set of wifs G has the wff
A as a logical consequence if it is impossible for all of the members of G to be
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true while 4 is false. When G is inconsistent, i.e., when its members cannot be
simultaneously true, trivially satisfied for every A. The proof-theory mirrors
this semantic account. A simple proof of B from A&—A4 is:

1. A&-A premiss

2. A 1, &-Elim (“Simplification”)

3. AVB 2, V-In (“Addition”)

4, -4 1, &-Elim

5. B 3, 4 V-Elim (“Disjunctive Syllogism”)

Both semantically and proof-theoretically, the admission of any inconsistency
annihilates the theory.

Recent work in “Paraconsistent Logics,” however, has shown that inconsis-
tent systems can be viable. Paraconsistent logics are logics that can tolerate
contradiction without degenerating into triviality. On the proof-theoretic side,
this involves putting some restrictions on the patterns of proof permitted. The
sermnantic innovation is to abandon the idea that the implication connective is
entirely a truth-functional one.

Paraconsistent logics have been motivated in a variety of ways. Often, the
motivation is the failure of the truth-functional analysis of if-then sentences.
It fails as a model for the use of such conditionals in ordinary discourse® and it
fails to provide the necessary conceptual framework for non-trivial reasoning
from inconsistent premisses, i.e., for reductio ad absurdum reasoning. More-
over, if a logic is to be an information processing tool, the pre-requisite of
consistency is self-defeating: it is doubtful how many human intellectual en-
deavours are consistent. And, needless to say, managing to prove consistency
prior to any use of logic would be a great acomplishment.

The two important questions to address are the how and the why of in-
consistent arithmetics. First the why: Why even consider a system that is
known beforehand to have at least this one big flaw? The answer, in part,
is that this might not be a flaw at all. It is important to keep in mind that
part of the task of describing the world consists in devising a language with
which to do so. Not even the most extreme Realist could deny it. Objective
world or not, the choice of a vocabulary is a determinant of the shape of the
resultant theory. The preliminary task of choosing or designing a language is
not trivial. It is something that can be done well or poorly. It is a task using
skills and criteria for success quite apart from those used in the subsequent
descriptive operation. Also, there is nothing at the outset of the enterprise
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that guarantees success. On the contrary, Goédel’s Theorem can be read as
guaranteeing at least partial failure!

Success or failure aside, it is a mistake to minimize the contribution that
the language makes to description. The language used makes its own apprecia-
ble contribution. Certain sentences may be certified as true by the lanaguage
itself regardless of how the world is. “If it is raining, then it is indeed raining”

is certainly true and just as certainly independent of the weather. No object
can be in two places at the same time. Of course, but is this really a profound
and a priori fact about objects or is it a perfectly natural consequence of the
way we use the word “object”, of the way we count objects, and of the way
we decide what is to count as a single object? Even if an object could be in
two places at once, we wouldn’t count it as one object in two places but as
two objects. Likewise, certain sentences are certified as false by the language

itself. Anyone seriously asserting “It’s raining but it isn’t” or “Santa Clause
does not exist although I sincerely believe he really does” would be guilty of
a kind of linguistic incompetence.

Could the set of sentences certified as true by the language and the set

certified as false by that language intersect? Nothing rules it out. This may
be what the Liar’s Paradox is all about. “This sentence is false” is both true
and false according to the rules of language (And also neither true nor false,
. But what consequences about the world should one

by those same rules)*?
be able to draw from that?

This might be crucial to understanding Gédel’s Theorem. Incompleteness

and inconsistency represent genuine alternatives for arithmetic. Inconsistency
can be accepted, if only as a pathological consequence of any language that

permits self-reference. It is indeed an avenue worthy of further exploration.
The underlying logic would have to be adapted accordingly, but that can
be done. Localise the inconsistency; contain its effects. If it turns out that
sentence J and its negation are both provable, what follows? Well, it follows
that J is a theorem; it also follows that —J is a theorem. So are both J Vv 4
and =J V A although A might or might not be deducible. There is no reason
to suppose that the consequences extend to Fermat’s conjecture or the next
general election or why the sea is boiling hot and whether pigs have wings.

But how can an inconsistency be localized? Isn’t the proof above incon- :
trovertible? Two philosophers means three opinions, so of course it is not
beyond dispute. Indeed, I think the proof is demonstrably fallacious — a case .
of “Begging the Question.” Specifically, the disjunctive syllogism (DS) is the

last line is illegitimate. Ordinarily, the reasoning from AV B and =4 to B
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is quite unexceptionable: if it is either A4 or B, and it isn’t A, then it simply
must be B. And if someone asks why it has to be B the answer is because it
isn’t A. We already know A is false. But in this particular case we also know
that it 7s A! That is, if what we are given is that A is both true and false,
then we cannot later appeal to the principle that nothing can be both true
and false. Taking A&—A as a premiss requires that we suspend the principle
of non-contradiction — and with it, the principle of disjunctive syllogism that
relies on it.

The situation is analogous to this. Suppose I said that I think if Gauss
were alive and doing his work today, he would not only be more famous than
any other living mathematician, he would even be more famous than Michael
Tyson, Michael Jackson, or Mikhail Gorbachev. You might respond that,
sure, he’s a great mathematician and would deserve it, but it’s hard to believe
that society would suddenly and at long last give mathematicians their due.
To that I'd say, “But don’t forget, if Gauss were living today, he’d be 212
years old and how many 212 years olds are any good at mathematics at all?”
The joke is obvious. Conversational implicatures demand the incorporation
of certain beliefs and the suspension of others. Violating the implicit rules
can have comic effects. If we are asked to suppose that Gauss were alive, we
are generally meant to suppose, among other things, that this is possible and
that it involves a minimal change of the result of our beliefs about the way
the world is. Some beliefs must change, such as that there is no one quite
like Gauss around, but most other beliefs need not be put aside, including the
belief that the world just doesn’t have 212 year old mathematicians in it. But
it could have someone now pretty much like Gauss was 200 years ago, even
though we may believe it does not.

The same general sort of thing is going on in the proof. If we are asked to
suppose that A&—A then we are also asked to suppose that it is possible. That
requires suspension of many other beliefs, including the universal applicability
of DS. Implicitly, there is an appeal to “It can’t be both 4 and =A” — in
spite of the fact that A&—A4 is exactly what we were asked to suppose! If the
information that A is true was used to get A V B, that forestalls using the
information that A is not true, even though the negation of A is also supposed
to be true. DS might or might not work for B vV C and —B, but it has been
set aside for A.

Would the reformulation of arithmetic with a paraconsistent logic as its
basis be workable? How much of mathematics could be recovered or recon-
structed with additional restrictions on allowable methods of proof? Largely
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that depends on the exact restrictions adopted. Intuitionist mathematics is
a relevant precedent. At the heart of Intuitionistic thought is a rejection of
Platonism and an embrace of “constructivism”. If mathematics is “identical
with the exact part of our thought” then the process of human thought is
integral to the subject. This includes, notably, the fact of human limitations

and thought’s temporal unfolding. The infinite is tolerated only insofar as
it is exactly specified. Infinite sets are countenanced, for instance, only as;,
potentialities and only if rules for construction can be given. Existence proofs
are accepted only if they include a method for constructing that mathematicalﬁi

entity; a reductio ad absurdum of a non-existence claim would not suffice.

The Intuitionistic program has had its share of success in both logic and
philosophy. For example, much work has been done on formalizing and re-
searching Intuitionistic logics, demonstrating at least that the philosophi-
Further,
the same sorts of considerations that led to some of the negative reactions
against Zermelo’s original use of the axiom of choice in 1904 to prove the well-
ordering theorem continue to play an important part in current debates in the

cal program can be given and exact and coherent formal basisl,

philopophy of language'?. Within mathematics proper, however, Intuitionism
has had mixed results. On the one hand, the restrictions Intuitionists impose

on non-constructive existence proofs undermine the whole of Cantorian trans-
finite arithmetic — as was desired. And much of classical mathematics can

be recovered within their guidelines. On the other hand, Intuitionistic proofs

can be unwieldy, and rejecting the axion of choice and its equivalents means |
forswearing perhaps more of set-theory and analysis than would be desired!3.

The Intuitionists’ penchant for constructivism (alternatively: their squeam-
ishness about the infinite) entails rejecting the law of the excluded middle: un-
decidable propositions are neither true nor false. Their logic has truth-value
“gluts” or inconsistencies — sentences taking both truth- values — so is not
really a paraconsistent logic. It is these logics, logics that deny the principle
of non-contradiction, that are relevant here.

The best developed paraconsistent logics are from the family of systems
Although some work has been .
done on Relevant arithmetics using Robinson’s and Peano’s axiomatisations
of arithmetic and the logic systems R, RM, and E, the work has been neither
as systematic nor as institutionalized as the Intuitionists’*4. In part, this may
be due to dissension in their ranks as to the appropriate system to use; 1% in.

known collectively as “Relevance Logics”.

part it may be simply due to the absence of a Brouwer-Heyting calibre combi
nation of mathematician and logician. Nevertheless, there has certainly been
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enough success to warrant further exploration of the “Inconsistency option”
with respect to Goédel’s Incompleteness Theorem.

Notes

1. This taxonomy of puzzles-paradoxes-dilemmas is developed in greater
detail in D.H. Cohen 1988.

2. It has been suggested (by Martin Gardner 1989, p. 26n) that if the “the-
orem” really is undecidable, then it must be true: if it were false, therc
would be a counterexample which would decide things. This assumes
the system is “omega-consistent”, which amounts to Realism of a sort.

3. This is similar to the use of “puzzle” in Thomas Kuhn 1970. Kuhn
suggests that “puzzle-solving” is the mark of a “normal” science.

4, See. P.J. Cohen and R. Hersh 1967.
5. See Kurt Godel 1964.
6. See D.H. Cohen 1985.

7. W.V. Quine offers an excellent general discussion of paradoxes in the
title essay Quine 1966.

8. E. Nagel and J.R. Newman 1959 is an excellent introduction to the
notion of incompleteness. A good, more technical account is in J.W.
Robbin 1969, pp.90-119.

9. Routley 1982 contains many counterexamples and an extended polemic
against the truth-functional model for conditionals. Other discussions
“abound.

10. See Jennings and Johnston 1983.

11. Arend Heyting’s formalization of Intuitionist logic has attracted the
most attention. See Haack 1974, pp.91-103. The Journal of Philosophi-
cal Logic special issue on Intuitionism (v. 12, no. 2, May 1983) addresses
a spectrum of the logical questions.
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Numerical Analysis of
Semiconductor Devices

John Carroll

1 Introduction

Although the device modeling problem is perhaps one of the most difficult
computational problems in current research, there is a dramatic increase in

reliance on process and device simulation tools for technology development
and device optimization. The characteristic feature of early modeling was

the separation of the interior into different regions, whose treatment could
be simplified by various assumptions like special doping profiles, completion
regions and quasi-neutrality. These separately treated regions were simply

connected to produce the overall solution.
Fully numerical device modeling based on partial differential equations

which describe all different regions of semiconductor devices in a single unified
manner was first suggested by Gummel [11] for the one-dimensional bipolar Q
transistor. This approach was further developed and applied to pn-junction
theory by De Mari {7} and to IMPATT diodes by Sharfetter and Gummel

[15]. A two-dimensional numerical analysis of a semiconductor device was
first undertaken by Kennedy and O’Brien (12} who investigated the junction
field effect transistor. Since then, two-dimensional modeling has been applied
to almost all important semiconductor devices.

It is now universally accepted that device simulation tools provide a worth-
while alternative to the conventional experimental approach of running wafer
lots through a process line. We present a brief overview of the numerical

techniques which are being employed to solve the coupled system of highly
nonlinear partial differential equations which model the behaviour of electron
and holes in a semiconductor structure. We begin in Section 2 with an intro-

duction to the basic semiconductor equations in order to define the relevant

physical variables. The scaling procedures and dependent variable alternatives ;
are considered briefly in Section 3 while Section 4 concentrates mainly on the
discrete form of the mathematical equations. The nonlinear and linear solu- ;
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tion strategies as well as certain algorithmic factors are discussed in Section
5.

2 The Semiconductor Equations

The partial differential equations which model the steady-state and transient
behaviour of carriers under the influence of external fields can be derived, in
a semiclassical framework, from the Boltzmann Transport Equation. In this
way, carrier motion is considered as a series of acceleration events (described by
classical mechanics) and scattering events (described by quantum mechanics).
If we assume that the response of carriers to a change in the electric field is
considerably faster than the rate of change of the field itself, we can write the
basic equations of semiconductor transport in the most commonly used form
[16] as follows.
The Poisson equation

&V -E=—¢,Vip=0p (1)

relates the total space charge p to the divergence of the electric field E, which
defines the electrostatic potential ¥ as

E=-Vy (2)
Under the assumption of total ionization, the total space charge p is given as
p=-q(n—p+T) (3)

where T' = N} — N is the total electrically active net impurity concentra-
tion, q is the electric charge, and'n and p are the electron and hole densities
respectively. The connection between the behaviour of the carrier densities
and the electric field is given by the current equations for electrons and holes

Jn = qunnE - ¢D,Vn (4)

Jp = quppE + ¢D, Vp (5)

where u, and p, are the electron and hole mobilities and D, and D, are the
corresponding diffusion coefficients. Both mobilities and diffusion coefficients
depend on the temperature, the doping level and the electric field.
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The electron and hole concentrations may be written as

‘1(7/’ - ‘{bn)

N = Ny €Xp ————=

kT
‘1(¢p - 1/))

P = nj, exp ———=

kT

(©)

intrinsic carrier concentration n;. If we assume the Einstein relation [17] fo

both electrons and holes

D:,ulCI
q

then equations (4) and (5) can be re-written using (6) and (7) as
Jn = quanVé,

Jp = qpV e,

The continuity equations for electrons and holes are given by
on
ot
9p
ot

1
= —-V.J,-R+G
q
1
“V.-J,-R+G
g

where G and R represent generation and recombination processes respectively.

In some applications, generation is ignored and the Shockley-Read-Hall steady

state recombination is adopted, namely

2
pn—n;

(13)

(7)

where we have defined the quasi-Fermi potentials ¢, and #p [16]. The factor
n;. is the effective carrier concentration. For low doping, n;. approaches the

()

(%)
(10)

(1 + ni) + 7 (p + n;)

where 7, and 7, are respectively the electron and hole lifetimes.
In the time dependent case, the equation of total current continuity couples
the change in electric field strength to the current densities k

9E
v-JT:v-(e—anHp) (14)
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where Jr is the total current, which consists of both the conduction compo-
nents J, and J, and the displacement current ¢ 0E /8.

The boundary conditions for semiconductor devices are given by neutrality
and equilibrium conditions, namely

pn = n} (15)
n—p+I'=0 (16)

Thus at a Dirichlet contact, the three potentials are
Y = Ve(t) + Vi (17)

bn = ¢p = Ve(t) (18)

where V3; and V.(t) are the built-in and contact voltages respectively. When
external circuit elements are applied to the device, the contact voltage becomes
an unknown and is given by

BV = Velt) + O V) = Vet + [

V.Jdl=0 (19)

where R, C and V;(t) are the resistance, capacitance and applied voltage

(11)

_ respectively and I' is an appropriate contour surrounding the contact.

(12)

The complete set of semiconductor equations is given by (1), (9), (10), (11)
and (12) together with appropriate initial and boundary conditions and, as
we will see in the next section, this set of coupled nonlinear partial differential
equations are usually written in dimensionless form appropriate for numerical
simulation.

| 3 Problem Formulation

. Before proceeding to the numerical solution, there are a number of factors

which must be considered, notably the choice of dependent variables and an
appropriate scaling of the equations. The choice of variables can crucially
affect the linearity of the equations as well as the symmetry of the iteration

- matrix. Scaling is important as the dependent variables can be of different
~ order of magnitudes and show a strongly different behaviour in regions with

small and large space charge.
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For the system with dependent variables {%,n, p}, a standard approach to

scaling was proposed by de Mari, see (8], where 1 is scaled by the thermal

voltage V; = £L. 1 and p are scaled by n; and the independent variables
g Y P

are scaled such that all multiplying constants in Poisson’s equation become
unity — all spatial quantities are scaled by the intrinsic Debye length L; =
VeskT'/qn;. This approach may be physically reasonable but suffers in that
the variables n and p are still several orders of magnitude larger than P.
An alternative “singular perturbation approach” was proposed in [1] which
effectively reduces the variables ¥, n and p to the same order of magnitude.

the net doping I and the independent variables are scaled by the characteristic
length of the device.

Following (8] for example, the basic equations can be written in normalized
form as

—V2¢+n—p—k1:O
an
En
op

E—V-Jpquz:O

91(77[’) n)p)

gQ(T/J)n)p) +V‘]n +k2 =0 (20)

93("//, n, p)

where 9, n, p, J, and Jp are the normalized electrostatic potential, car-
rier densities and current densities respectively, and k; and k, represent the
normalized impurity concentration and generation-recombination terms. We
could also write the system in terms of the normalized quasi-Fermi potentials
$n and ¢, as follows:

gl(z/J) ¢n; ¢P)
92("/); ¢n7 qsp)

— V2 fg¥=bn _ oo _ ki =0
fe¥—¢n
at
ae‘ﬁp_d’
ot

+V (ne’ Vg ) b ko =0 (21)

93(7/)1 ¢n7¢p) - V-(MP€¢’—¢V¢p)+k2 =0

There are many choices for the set of dependent variables and, in what
follows, we will refer to the arbitrary choice u, v, w as including such possibili-
ties as {4, n, p}, {9, én, dp}, {8, % — ¢, ¥ — ¢y} or perhaps {¢, $,,, ®,} where
®, = e~ % and ®, = e?» all of which have appeared in recent publications.
The first set of variables used in device simulation was the potential and carrier
concentrations but, because the continuity matrix took on a positive definite
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~ form, many workers switched to exponentials of the quasi-Fermi potentials.

The quasi-Fermi potentials themselves are now quite popular and offer the
advantage of reducing the numerical range of the dependent variables.

4 Discretization

Software for device analysis could roughly be classified in two categories. One
of these involves codes for analysis of specified device types. These codes often
utilize a regular mesh, finite difference discretization and iterative solution

In this case, the variables n and p are scaled by the maximum absolute value of methods. Since the device type is known, some behaviour of the structure

can be predicted. This information can be used to select appropriate physical
parameters and to improve the mesh generation and the equation solution
methods. The second category contains codes for analysis of an arbitrary

_ semiconductor structure. They are characterized by a high degree of flexibility
~ which makes the user more responsible for the final results. The finite element
- method (fem) has many properties which motivate its usage in this category.

As an illustration, we will consider the steady state case, i.e. where %—'; =

% 0 with exponentials of the quasi-Fermi levels, &, = exp(—¢,) and

ot

®, = exp(¢,), as dependent variables. Ignoring the generation term, we

_ consider the one-dimensional form

%y
 dz?
dJ,
dz
dJ,
dz

= Bpe™¥ — ¥ + I'(z)
R

-R

dd, _
Jpz—ﬁe ¥

dd,
Ip = — e?
n dz
constant space charge density results in a parabolic function for 1Y and we
erefore use a standard Taylor’s expansion to discretize (22). First we define
¢ non-uniform mesh on [0, 1]

Zg = 0
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Tjpr = zj-}-hj,OSjSN-—l
TN = 1

where the h; are suitably chosen to model rapidly varying solution behaviour
and are typically constrained by the inequality

hj hj
max( gt

, <2
i hy hj+1) -

forall 0 < j < N —1. Before linearization, the difference scheme corresponding

to Poisson’s equation has the form

— DDy = Bpe — B et + T (23)

where the difference operator D, D_ is the standard three-point difference

operator on a non-uniform mesh

2
hihi—1(hi + hi_1)

DyD_y; = [hivio1 — (hi + hio1)yi + hi—1yi41)

The standard Taylor expansion has proved inadequate however for the .
continuity equations since this approach, for the quasi-Fermi potentials for
example, would suggest exponential current density profiles. In reality current

densities are known not to vary very rapidly with respect to the spatial coordi-
nate. Hence we employ the Sharfetter-Gummel discretization (see [15]) which
incorporates approximate integrals of the basic equations into the formula-
tion of the difference equations and yields constant current densities between

adjacent mesh points. Taking the hole current for example and recalling that :

dd
o =

we integrate over the interval [z, z;1] on which we assume that the current
density is constant and that the electrostatic potential is linear. Thus we get

FTi+1 ’
o1~ Ppj Jpe¥ dz

z;

B4 d(e¥)
Jp,j+% &y

z5 dz
" e¥it+1 — e¥;
(s NE S R
e ‘/’J+1“‘¢j
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or equivalently we write

Jpj+i = e"¥iD, &, ; B(AY;)

where we introduce the notation
2i41 =~ 24
D,z = ————
+ 44 hz’

Dz = 2441 — 2
z
B(z) =
(=)=
The corresponding difference expression over the interval [z;_,, z;] may be
found analogously. The current density approximations may be summarised
as follows

Dywy = eWBAY)D,E,, (24)
Jpi-3 e i B(-At;_1)Dy &y 1 (25)
Jojer = —€YiB(=AY;)Dy&,; (26)
J, = —e¥IB(AY;-1)D1 8, ;-1 (27)

1j"‘%
Using a standard centered difference approximation, the continuity equations
can be discretized as follows
2
hj—1+ h;
2
LA o S
hj-—l + h][ ﬂ,J+-§-

[J J+E T J,

P p.j—%] = R; (28)

and, on using equations (24) to (27), these become

hij_y1—h;i) 4.
B(~A%;1)D4@y,i1 — B(AY;)D4 8y, = - =L M vs g (30)

B(AY;j-1)Dy ®nj-1— B(=AY;)D4 @p 5 = —

hi_1+h;
(hiz1+hj) 12+ i)e-vip. (31)

The difference equations (23), (30) and (31), subject to appropriate boundary
conditions provide the basis for the numerical solution procedures in one-
dimensional steady state simulations.

. Any discretization scheme for the semiconductor device equations should
possess certain desirable properties. In particular, it should
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function in arbitrary geometries
be conservative
e provide adequate treatment of drift-diffusion terms
allow convenient enforcement of boundary and interface conditions
permit adaptive mesh construction
be free of dimensional restrictions

There are a number of discretization strategies in current use — the “finite

difference method”, of which the foregoing is an example, the “finite box .
method” which is just a more general finite difference method and the “finite
element method”. No attempt is made to provide a serious mathematical

preference for one method or the other. The finite difference method and the
finite element method are frequently considered to be mutually independent
from the beginning. However it is often a matter of interpretation only and
one can sometimes obtain the exact same discrete equations from either a
finite difference approach or a finite element approach. It should be noted
however that finite difference formulae accounting for normal derivatives at
a curved boundary are extremely awkward so that, for this type of problem,
one should consider the finite element method.

5 Numerical Solution Procedures

The exponential dependency of n and p on 9 makes Poisson’s equation non-
linear and the generation-recombination mechanisms couple the two current
continuity equations and introduce strong nonlinearities. There are basically
two different solution strategies adopted for the discretized system namely (a)
the decoupled (or Gummel) and (b) the coupled (or sinultaneous) procedure.
Both require an initial guess of the solution followed by an adjustment of the
guess until an acceptable degree of accuracy is obtained.

5.1 The Decoupled Approach

This approach is sometimes referred to as the Gummel iteration [11] by elec-
trical engineers and the Jacobi / Gauss-Seidel iteration by mathematicians
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and treats the three equations independently. The iteration proceeds by asso-
ciating with each g; the highest-order differential dependent variable (e.g. for
the variables of equation (20}, taking % in the first equation and n and p in
the other two respectively). In solving g; = 0, v and w are treated as fixed
to obtain a new solution for u. Let z; = (uk,vk,wk)T. The iteration can be
written as

g1(ze — upy1) =
92(Zk,uk+1 — ‘vk+1) =
ga(zk,uk+1,vk+1 — wk+1) =

(32)

where the variables left of — are considered as input variables. This symbolic
representation of the iteration allows considerable flexibility in determining
the sequence of one-variable equations.

The partitioning of the complete PDE system into a series of three equa-
tions that can be solved independently made this procedure very popular
particularly in the early years of device modeling. The applicability of the
Gauss-Seidel approach however depends critically on the level of current flow
inside the device structure. In [4] the procedure has been found to work very
well for conditions of low to medium current flow and negligible generation-
recombination terms k. This corresponds to a weak coupling of the PDE
system where the density or quasi-Fermi potentials act as small perturbations
to the Poisson equation.

5.2 The Coupled Approach

Using the Gauss-Seidel iteration in physical situations where there is heavy
coupling between the variables (typically in high current conditions) will usu-
ally prove to be difficult and, in most cases, convergence will not be realised.
As a result, reasearchers quickly turned to a more robust procedure based
on Newton’s method. This requires both the assembly and the approximate
solution of the system

Igi
a. =Gk

B2 (33)

where g = g(ug, vk, wr) with g = (g1,92,93)7. In expanded form this leads
to the system
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u OJv Ow
992 992 992
u v dw
v dv Ow

(34)

5} ~ .
where the Jacobian matrix %9 and the right hand side arc evaluated at the k-

P
th iteration (ug, vk, w). Unlike the decoupled algorithm, the simultaneous or

coupled approach has the advantage that it is practically independent of the
applied bias conditions and injection levels in the device. If the linear algebra

modules are subsequently carefully chosen, it also proves to be sufficiently

robust for general purpose codes. However, it suffers somewhat because of
the increased requirements of CPU-performance and memory and, in this

context, the use of approximate Newton methods are becoming more popular

in an attempt to offset these factors.

5.3 Algorithmic Aspects

Assuming we wish to solve the nonlinear system of type (20) or (21) for ex-
ample. Firstly, the large sparse linearized system
Mz, = —-g(zk) = —gk (35)
is solved by the sparse direct or iterative methods (to be described) where M}
is an approximation to the exact Jacobian gf. The next iterate is taken as

Zp41 = 2p +ikTh (36)

where t; € (0, 1] is chosen to satisfy the sufficient-decrease condition

| gr+1 ||

" el 37

> ety
and € is the machine epsilon. In other words, the step-length parameter i
damps the step z) to insure that || gx41 ||<|| g& || increasing the robustness
of the nonlinear equation algorithm [3]. Moreover, t; is biased towards unity
so that a traditionally quadratically convergent method is recovered in"the
Newton-attraction region.
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A popular Newton iterative method is the Newton-Richardson algorithm
[4] which assumes that g, can be written as
9r = My — Ny (38)
with

| M N =1 T — M g |1< o < 1 (39)

for all k. In this case, M} represents a previously factored Jacobian so that
the method clearly attempts to exploit the fact that the time to factor a
sparse matrix is much larger than the CPU time to perform a backsolve with
a previously factored matrix. The z; is found by an inner iteration

a
Mi(zr,g — 1) = —('6-%:%,1—1 + gk)

(40)
where zg o = 0 and z; = =z, for some ;. This inner iteration can be
controlled by monitoring the quantities

+9&;c
el = |l gr + 522, ||

' X (41)

Note that both quantities used to compute oy are already available. The
_ inner iteration is terminated when

Il ge I|)

a1, < oo ( 42
»=2 oo ] “
where ag € (0,1) is an experimentally determined parameter. We refer the

interested reader to [3] for further details where it is shown that the resulting
procedure is quadratically convergent.

5.4 Linear Equation Solution

The set of linear equations which must be solved at each iteration of the
Newton procedure (outer iteration) is large and sparse. It may be symmetric

- or unsymmetric depending on the choice of dependent variables. The efficient

'Iution of systems of linear equations is the key to any successful device
S}mu}ator where typically the solution of a system of 6000 equations may be
required. In terms of CPU and memory, the linear algebra portion of the
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overall solution process dominates. Iterative techniques are usually preferred

since they can fully exploit the sparsity of the equation set. Equally important,

they can exploit the fact that the linear equations are part of the outer loop
and only need to be solved sufficiently accurately to ensure that the outer loop

converges rapidly.

In simulating an arbitrarily shaped structure, the box integration tech-

nique is often used with the finite difference method. Using this method, the
solution of Poisson’s equation and the current continuity equations can be
reduced to the solution of linear systems of equations involving symmetric
band matrices. The symmetry of the coefficient matrix not only saves mem-
ory but also enables the application of the highly popular ICCG (Incomplete
Cholesky-decomposition and Conjugate gradient) [13] method which results
in a very high speed simulation.

For unsymmetric matrices, both preconditioned ORTHOMIN [2] and pre-
conditioned conjugate gradient squared have been studied with the latter
showing a slight advantage. The conjugate gradient iteration (inner itera-
tion) is continued until the norm monitored in the outer loop has decreased
and the residuals of the preconditioned equation set has been reduced by a
factor of typically 10°.

To obtain the required convergence whilst exploiting the sparse structure,
the choice of preconditioner is critical. The preconditioner employed relies
heavily on the method in which the equations are ordered. To ensure that
the coupling between the three equations is taken into account, the equations
and variables associated with a given node are ordered sequentially. In this
way, the coupling between the equations is represented by 3 by 3 submatrices
distributed within the matrix. In addition, the nodes are ordered in a way that
nodes with strong coupling are neighbours — this is achieved by numbering
the nodes sequentially along a path through the mesh that always advances by
moving to the closest node which is not yet ordered. Thus strong coupling of
nodes is assumned to be correlated with a close spacing of the nodes. With this
ordering of the equations, the matrix describing the set of linear equations is
dominated by the components in the 3 central diagonals of 3 by 3 submatrices.
An exact inverse of this “tridiagonal block” structure can be economically
calculated and used to precondition the lincar system.
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6 Conclusion

We have attempted to provide a simple overview of some of the techniques
and issues which are involved in the numerical analysis of semiconductor de-
vices. During the last several years, the modeling of basic semiconductor
device structures has grown in importance as integrated circuit complexity
has increased. To reduce risk and enable aggressive circuit design, efficient
and accurate compact models are required for the simulation of circuits con-
taining hundreds and thousands of devices. These compact models must be
fully characterized for the target fabrication process and be valid over a wide
range of operating conditions including temperature variations. The predic-
tive capabilities of detailed numerical device and process simulators can be
used to enhance device characterization techniques and to form a basis for
technology optimization.

Simulators that can perform DC-analysis of specific device types in two
space dimensions are today in use at many process development facilities and
this level may be considered state of the art. With a reduction in the geomet-
rical dimensions of, for example, the MOSFET, there is an increasing necessity
for three-dimensional device simulators and current research is rapidly provid-
ing the building blocks. In addition to three-dimensional device analysis, the
simulator must also be capable of (a) treating irregularly shaped structures;
(b) one- and two-dimensional simulations and (c) device parameter calcula-
tions. Two three-dimensional simulators in current use are FIELDAY [5] and
TRANAL [18], both of whom first appeared in 1980 and, since then, attention
has been focused on reducing the large memory capacity and computing time
required for the simulation.
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MATHEMATICAL EDUCATION

The Dynamic Role Of Mathematics
In Business

Dr. Con Power

This article comprises the text of a talk given by Dr. Con Power,
Director of Economic Policy, Confederation of Irish Industry, at
a Seminar on “Mathematics : Industry-RTC-University Interac-
tion” , organised by the National Sub-Commission for Mathemati-
cal Instruction of the Royal Irish Academy and held in the offices in
the Royal Irish Academy, 19 Dawson Street, Dublin 2, on Wednes-
day, 13th September 1989.

Where did it all begin?

Historians claim that mathematics can trace its origins back about 6,000 years
to the Middle East. The Babylonians and the Egyptians used elementary
mathematical applications in their everyday life. Mathematics was a key el-
ement in the early application of science by the more advanced among the
prehistoric people who were curious enough to try to ascertain the workings
of the world around them. The Egyptians are probably the first recorded
people to have used arithematic and geometry perhaps as long ago as 4,000
B.C. and this led to the Egyptians developing expertise in areas such as civil
and structural engineering, medicine and astronomy. The Greeks made many
advances on the intellectual side of geometry, physics, astronomy and biology.

Mathematics was used in ancient times not only for intellectual and scien-
tific pursuits but also for accounting purposes. The Egyptians considered this
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task so important that they entrusted the keeping of accounts to a hereditary
class of scribes.
A historian could undoubtedly trace the history and development of math-

ematics from the early times of Babylon, Egypt, Greece, Rome and Byzantium

hrough the Dark Ages to the new beginning from about the fifteenth century
awards. The new beginning in a commercial sense owes a lot to the Ital-
ans who set about the problems of keeping accounts, calculating compound
aterest and solving insurance problems which were part and parcel of their
rowing international trade. It is at this stage that we meet the man who is
cclaimed as the Father of Accountancy — an Italian Franciscan friar, Luca
Pacioli — who is credited with the publication in 1494 of a book on algebra
nd who is also revered as the Father of Double Entry Book-Keeping.

Economic development is the key

The major motivating force in the development of mathematics from the ear-
iest stages seems to have been a desire by man to understand the workings of
the world about him and to harness those workings to improve his own well-
being. In modern language, the desire would be expressed as a desire to earn
more jobs and higher living standards. Modern man would probably claim
that the motivating force for scientific discoveries, including mathematical
discoveries, is ultimately that of economic development. This can be brought
up-to-date in terms of the Programme for the Completion of the EC Internal
Market by the end of 1992. One of the primary objectives of the integration
of the economies of the 12 Member States of the EC is to strengthen the EC’s
capacity in science and technology. This is to meet competition in the inter-
national marketplace mainly from the USA, Japan and some of the dynamic
emerging nations in the Pacific basin.

Science and Technology is an area in which Ireland can fully participate
in the completion of the EC Internal Market and in which we can gain a
major advantage because of our highly qualified and well educated workforce.

1t is also an area in which there can be even greater partnership between

ducation and industry. This partnership needs to be founded to a far greater
egree on the reality that it is the business enterprises in both the private
nd the public sectors which transform scienisfic and technological knowledge
nd advancement inio economic and social progress. In other words, it is the
rivate and public sector enterprises which provide the mechanism whereby
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the work in the schools, colleges and universities is ultimately translated into
viable long-term jobs and higher living standards for the entire community.

The challenge to Ireland

The National Development Plan 1989-1993 which was submitted by the Irish
Government to the EC Commission on 22nd March 1989 and published on 31st
March 1989 acknowledges that the Irish GNP per capita measured in current
prices and purchasing power standards amounted to only 58% of the EC aver-
age in 1987. The problems in Ireland are accentuated by high unemployment
and by a demographic structure which results in a high dependancy ratio.
Unemployment is currently more than 17% in constrast to the EC average of
less than 11%, and Ireland is second after Spain in the high unemployment
league.

Ireland’s present situation poses an enormous challenge. An increase in
living standards and a fall in unemployment will both depend upon economic
development. In order to achieve higher living standards and provide more
jobs, it is essential to increase the output and added-value of goods and traded
services which are produced by private and public enterprises. There is no es-
caping the reality that Ireland must and can achieve a far higher level of
industrial and commercial output. This places an emphasis on competitive-
ness in terms of the general environment for enterprise, in terms of specific
business input costs, in terms of innovation and in terms of management ex-
pertise. The main focus must be upon making optimum use of our natural
resources with particular reference to our high quality workforce. In this con-
text, the Confederation of Irish Industry in a number of submissions made
to the Government as part of the consultative process for the preparation of
the National Development Plan 1989-1993 sought significant up-grading in
the following areas of public economic infrastructure — transport, energy, ed-
ucation and training, environmental services and telecommunications. The
Confederation of Irish Industry also sought infrastructure investment related
to three major areas of natural resource development — the food industry,
forestry and tourism.
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There is a growing emphasis on developing the skills of Irish people in various
nternatio?aﬂy traded service areas such as finance and consultancy. These
are areas in which Ireland does not necessarily suffer from the infrastructure
ost disadvantages which attach to the development of heavy manufacturing
ndustry on a broad basis in a small island nation. An emphasis is being placed
on compl.xter services, data processing, health services, educational services
and architectural and engineering consultancy as well as on an extremel);
wide range of financial services activities. The engincering and applied science
mphasis is on high technology and high added-value areas which tend towards
he arena of skills and software rather than towards bulk materials utilisation.
The greater emphasis on high technology and the utilisation of high level skills
s already bearing fruit in manufacturing industry which is reporting stron
emand for engineers, computer, marketing and financial staff. ;

Mathematical awareness

Mathematics has a key role to play in the development of a modern high
echnology economy. . It is essential to create an awareness of the value of
mathematics not only as an intellectual discipline in itself but also in terms of
t‘s cont'ribution to the generation of higher living standards and more jobs. A
iscussion document issued by the Curriculum and Examinations Board (now
he National Council for Curriculum & Assessment) in November 1986, was
ntitled “Mathematics Education: Primary & Junior Cycle Post-Prin;ary”
nd this contained a clear set of desiderata for mathematics teaching and
syllabus content which, if realised, would lead to a wonderful increase in
he level of mathematical awareness in society. It is vital, in this context
N f'aware.ness creation, that mathematics be presented in as attractive and
stimulating a way as possible to young people in their early formative years.

ecuring the educational base

he Qonfederation of Irish Industry believes that in order to optimise the
o_ntrlbution which mathematics can make to the development of the economy
is gs:?'ential to provide a very secure base in terms of mathematical education)
t the junior cycle level. The Confederation made a submission to the Syllabus
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Committee for Mathematics of the Department of the Education in May, 1983.
The recommendations contained in that submission are as valid to-day as when
they were first made. A repitition of those recommendations here will give
a comprehensive view of the attitude of industrialists towards mathematics
education during the formative years of junior cycle post-primary.

1.

There should be some emphasis on “traditional” mathematics, but the
syllabus should also include logical puzzles which would be solved by
discovering the underlying logical pattern.

. There should be a certain amount of drawing to scale and construction

of solids. Geometry is important from the viewpoint of graphical literacy
which is the cornerstone of many professions in the field of engineering
and architecture. In this context, there is a case for the introduction of
a basic technical drawing programme as an adjunct to mathematics.

. There should be an elementary introduction to matrices based on shop-

ping lists and on the prices of normal household commodities. The
examples should include addition and multiplication of matrices.

. There should be more emphasis upon applied problems, and less em-

phasis upon iheorems. This approach should make the subject more
interesting and stimulating for young pupils.

_ The course should include library assignments on the history of math-

ematics with a particular emphasis on the role which mathematics has
played in the development of science.

. Topics which would relate to everyday experiences could include trans-

lating situations into mathematical sentences, identifying problems with
too little or too much information, conjunction of sentences, translat-
ing to conjunctions, solving conjunction of equations, lever or torque
problems, motion problems and problems connected with dynamic situ-
ations.

. Tt is important to introduce the young mathematics student to comput-

ing.

. Mathematics cannot be adequately taught in isolation from other sub-

jects. Mathematics should be related to science, applied science, business

:
.
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10.

11.

12.

:c)ubjects, and to all other aspects of the work of the school which relate
in any way to numeracy.

. The use of a standard textbook and workbook for mathematics should be

considered by teachers and the Department of Education. It is essential
that' some guidance be given to teachers on the pedagogical approach in
addition to guidance on syllabus content.

The use of.' audio-visual aids, including film and video, should be encour-
aged. This will help to relate the subject, mathematics, to the world
outside the classroom.

Mathematics should cover at least three important areas in which the
student will be involved after school:

e personal and social
e vocational and work-related, and

e leisure.

In nﬁelation to employment, the course should include the use of mathe-
matics in areas such as:

e bank accounts

e wage and salary calculations

e invoices, discounts and VAT

e income tax

e services bills, such as electricity
o interest rates

e profit and loss

e the keeping of all types of statistical records

13. In relation to society, the course should cover such topics as:

e higher purchase and loans
e energy utilisation in the home

e insurance and life assurance

social welfare benefits
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e expenses in relation to home ownership
e everyday household outgoings
o the expenses of owning and running a car

o all other aspects relating to living in a modern industrial society

14. The course should cover the whole range of basic competency areas such
as the ability to add, subtract, multiply and divide, and also the use of
decimals, graphs, simple formulac, basic statistics and a knowledge of
shape, area, volume and other related matters. The basic competency
areas should also be related primarily to the needs of the pupil in the
three areas: personal & social, vocational and leisure.

- Some emphasis should be placed upon concepts such as neatness and
layout. The presentation of information is often marred by inadequate
layout or by the lack of neatness, and the effective communication of
data is thereby lost. The concepts of neatness and layout should be
emphasised within the mathematics syllabus from the earliest possible
stage.

Those were the observations of the Confederation of Irish Industry about
the junior cycle syllabus in May 1983. They are relevant not only to junior
cycle but also to the teaching of mathematics at any higher level.

Applications oriented Mathematics

The Confederation of Irish Industry while recognising the need for a balanced
curriculum, and while recognising the need to prepare young people for entry
to higher education, must necessarily place some emphasis on the educational
preparation of the majority of post-primary pupils who immediately enter the
workplace directly from the post-primary school. In this context, the Confed-
eration of Irish Industry has for a number of years financially supported the
Applications Oriented Mathematics Project which has been developed
by the North Tipperary Vocational Education Committee in co-operation with
Thomond College of Education in Limerick. Not only has the Confederation
given financial assistance to this project but the Confederation has been rep-
resented from the initiation of the project on an Advisory Committee which
was established by the North Tipperary Vocational Committee to promote

The Dynamic Role of Mathematics

the development of this prototype mathematics course at senior cycle which
is intended to meet the direct immediate needs of young people entering em-
ployment. This course is now recognised by the Department of Education
and the validation process involves people from education and from industry.
The Confederation of Irish Industry endorses the aim of the course which is
to equip pupils who will directly thereafter enter employment with a sound
educational experience which is mathematically significant and which is ap-
propriate to their needs. The specific objectives of this course are worth
mentioning:

e provide pupils with a systematic approach, viz., modelling which is com-
prehensive enough to fit every situation including work situations

promote mastery of selected mathematical topics including concepts,
techniques, know-how and applications

promote computational facility and use of electronic calculators and as-
sociated skills

build the pupils’ confidence in their ability to understand mathematics
and to use mathematics

provide an appropriate industrial /commercial context for the pupils’ use
of mathematics through practical applications, case studies and indus-
trial visits.

. Calculators and Computers

The Confederation of Irish Industry believes that there is a need for some

. memorisation of basic results but wishes to stress that, in modern circum-
- stances, there is a wider role for the electronic calculator in taking the tedium

out of more involved numerical manipulations and this role extends even to
the primary school level. The Confederation believes that the calculator can
be used creatively to explore relationships between numbers and to experi-

. ment with numerical patterns and procedures. At a more advanced stage,

the Confederation believes that there is not sufficient stress on the role of the
computer in mathematics education integrated with related applied areas. A

~ great number of schools now have computer facilities and many of these have
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good graphics capabilities. These are ideal for llustrating mathematical no- |
tions and results in the form of graphs, charts and other visual displays and |
are also useful for the implementation of excellent teaching and assessment i
programmes. The role of the computer even from the every earliest stages |

of education is vital as computers are now becoming so cheap and so power-

ful that they are a part of the total home and societal environment of many
children.

Mathematics as a communications tool

The two subjects which are essential for any school leaver who enters business |

and industry are the language which is used in the workplace and the subject,

mathematics. These are the tools with which people in industry communicate

— those tools are required in order to learn, to understand, to evaluate, to
plan, to record and to measure. In this context, it must be stressed that math-
ematics is a “language” and its great virtue is that, when properly applied, the
communication in terms of mathematics is concise, unambiguous, and read-
ily understood internationally. Mathematical symbols in common usage and
mathematical symbols in the highest reaches of science are as readily under-
stood in Paris, Washington and Tokyo as they are in Dublin and London. A
message in terms of mathematical symbols can frequently be delivered much
more concisely and precisely than a similar message given in terms of words.

Mathematics for the employee

Mathematics in terms of wage and salary calculations and in terms of wage
negotiations are important to every person in employment. The new entrant
to business and industry will find that the modern payslip contains so many
items that it sometimes resembles more of a scientific computer printout and
this can lead to misunderstanding and to grievances if the content of the
payslip is outside of the mathematical experlence of the young person. In
order to competently analyse a payslip the young person requires a knowledge
of basic arithmetic, a familiarity with percentages, cumulative totals, overtime
multipliers, bonus calculations, net and gross figures, and other numerical
concepts. The conclusion is that tuition in the intricacies of PAYE, PRSI and
wage calculations should not be confined to business subjects alone but should
be included in the general mathematics syllabus at junior cycle level.
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Mathematics for the young worker

Young people who leave the post-primary school may well start production
work in batch or process operations and all the stages of the young person’s
work will be measured in mathematical terms. This means that times will be
recorded, weights and volumes will be recorded, there will be records of units
produced, percentage unproductive waiting time, bonus ratings and other
quantified information. In addition, the young worker would probably obtain
instructions from the supervisor which are sometimes expressed in mathemat-
ical terms — degrees, weights, speeds, times, volumes and percentages. If
the young worker is unable to correctly interpret these instructions, not only
will production suffer but there may be safety risks. This latter point means
that the young worker must not only be trained to understand the written
instructions in the work schedule but must also be motivated to actually read
and to act upon those instructions.

Promotion within Industry

Promotion for the young worker within industry from the shopfloor level to
supervisory and first line management posts invariably requires that th‘e young
person should undertake some element of clerical work. This work includes
recording daily/shift outputs, requisitioning materials from stores and record-
ing other information in relation to work of operatives. The young person who
is weak at mathematics may well find that his or her promotional prospects
are limited on this account. One of the best ways in which to help a pupil
who is still at school appreciate applied mathematics in an industrial sense is
to involve pupils in group projects within the school. These projects ca,n-be
part of subjects such as home economics, woodwork, metalwork and building
construction. There are many examples of this type of group project run on
a “mini company” basis in the post-primary schools.

EC Developments

If Irish industry is to continue to expand then it must continue to modernise
and to introduce improved production techniques. There will be a growing
emphasis on R & D and upon applied research. Research and development
is one of the important factors in the integration of the EC Internal Market.
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Special emphasis is being placed on areas such as biotechnology, information
technology, mariculture and high technology areas of engineering.

The largest single EC Programme in the area of research and development
is ESPRIT (European Strategic Programme for Research & Development in
Information Technology) which will be worth more than IR.£1 billion in its
second phase, 1988 — 1992, and new applications programme will cover the

information technology aspects of medicine, transport and education. Ireland

is well placed to share in ESPRIT.

The most recent annual report of a second EC Research & Development |

Programme, SPRINT (Stralegic Programme for Innovation & Technology
Transfer) noted that the Irish Robotics Project is progressing smoothly. There
is another programme called RACE (Advanced Telecommunications) which
has recently added 40 additional projects in its second phase.

A wide range of other programmes were adopted by the Research Ministers
of the EC at their meeting on 20th June, 1989, and these include areas such
as preventative medicine and agri-research.

The Commission has put forward a 7.7bn ECU budget for the Third Re-
search Framework Programme which covers the period to 1994. The French
want Ministers to agree to this ambitious plan by the end of the current year.
The proposed budget is likely to be challenged by some Member States. Una-
nimity is needed before the plan can be adopted. Resources will focus on six
specific programmes whose proposed budget (in million ECUs) is as follows:

ECUs(m)
3,000
1,200

700
1,000
1,100

700

Information and communications technologies
Industrial and materials technologies
Environment

Life sciences and technologies

Energy

Human capital and mobility

Existing and potential Irish beneficiaries should become acquainted with the
significant new orientation of the EC’s research strategy.

The ECLAIR research programme which relates to agriculture has a bud-
get of 80 million ECUs for the five years 1989 to 1993. The EC Commission
is promoting six lines of action designed to develop an EC policy for space
research. The EC Commission recently announced details of new research
and development programmes in the field of marine science and technology.
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Relevant areas of rescarch and development being promoted by the EC Com-
mission include:

e scientific research
technological development
diffusion of research results
strategic economic analysis
databases

e technical standards

e Higher Education

Higher education has an extremely important role to play in order to ensure
that Ireland can participate to the full in the EC programmes. On a wider
basis, it is obvious that an increasing number of production and administra-
tive staff will be required to master the use of “microchip” projects which
will depend upon digital and numerical information for their operation. The
Confederation of Irish Industry is acutely aware that investment in education
and in training in Ireland is needed in order to enable Irish industry to offset
the disadvantages of being an island nation on the periphery of Europe with
a low per capita income.

The Confederation is recommending to the Government in a Pre-Budget
Submission 1990 that public expenditure on education should at least be main-
tained at current levels in real terms. The Confederation is recommending that
any funds which would otherwise be saved because of the anticipated phased
drop in primary school enrolements by up to 20% should be redeployed to
increase the Irish participation rate in third level education to 50% of the rel-
evant age cohort compared with about 25% at present. This increase should
focus particularly on qualifications in greatest demand for economic develop-
ment purposes, such as engineering, computer science and business studies.

The Confederation in ranking the priorities for investment in Ireland with
aid from the EC Structural Funds placed special emphasis on investment

_in higher education which should include post-graduate work and research

and development. The Confederation emphasised links between industry and
higher education not only in terms of the direct educational input but also in
areas such as industrial parks, innovation centres, research parks and science
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parks. The Confederation placed a focus not only on technological educat%onk
but:also on business education and on all faculties in the higher education
institutions on the grounds that all faculties contribute to intellectual devel-
opment. :

Three Major Points

There are three major points which need to be emphasised from a business
viewpoint in relation to mathematics.

1. It is essential to inculcate a positive attitude towards mathematics in all
school leavers and, in order to do this, it is essential that parents, teach:
ers and employers must have a positive attitude towards mathematics.
Points which need to be emphasised in this context include:

e basic mathematics is essential as a skill which, just like riding a bi-
cycle, can only be developed through individual effort and through
practice.

e Mathematics is not just a subject for the “boys”; if girls are to
avail of the increased range of careers now opening up to them, it
is essential that they be able to compete on an equal footing with
boys in the area of mathematics. This implies that there must
be a new approach particularly to the availability of higher level
mathematics at senior cycle in “traditional” single sex girls schools.

e Mathematics is just as important in the private life of the individual
as it is in the workplace. Calculations in relation to the monthly
mortgage payment or in relation to the economics of using a motor
car are acquiring a new importance in the life of the individual.

2. The presentation of mathematics in the schools should, in so far as pos-
sible, be related to the applied subjects which are studied by students.
Problems based upon examples from home economics, woodwork, metal-
work, chemistry, physics, business organisation, accountancy and other
applied subjects should be introduced as an integral part into the math-
ematics syllabus. An increased emphasis should be placed upon graph-
ical presentation of information in recognition of the fact that there is
a growing emphasis upon chart and diagram format of presentation of
information. This is seen in the print and television news media where
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there is a growing use of flow.charts, histograms, and pie-charts which
are intended to enable the reader or the audience to rapidly assimilate
statistical data. Mathematical applications are also seen in the growing
sophistication of computer games and toys.

3. Teachers should be encouraged to maintain and to strengthen links with
business and industry. This type of contact is important not only for
the guidance counsellor but should extend for the benefit of all teachers,
including teachers of mathematics. In this context, the Confederation
of Irish Industry established an education trust in December 1983, to
financially assist research and development work undertaken by teach-
ers’ subject associations. Financial assistance has, to-date, been given
for projects in chemistry, physics, junior science, biology, mathematics,

geography, history, computer studies, art and design, business subjects
and modern languages.

The business community fully recognises the dynamic role which education
plays in the development of a modern industrial economy and recognises the
centrality of mathematics for this purpose within the education process. The
important role which mathematics plays in the curriculum needs to be con-
tinuously reinforced by keeping syllabuses up-to-date, by researching “state
of the art” practices and procedures and by the implementation of a planned
programme of in-service training for teachers with appropriate mechanisms
to link the teaching of mathematics to its application in business and in the
wider general community. Progress does not stand still in the workplace or
in economic development; it cannot be allowed to stand still in the world of
the mathematics and in the classroom of the mathematics teacher and of the
mathematics student.

Confederation of Irish Industry
Confederation House
Kildare Street, Dublin 2.




NOTES

Venn Diagrams: A Combinatorial Comment

T. B. M. McMaster

When, in tender years, we all first learned how to draw Venn diagrams,
those in charge of our education insisted that these be depicted as in Fig. 1;
and if, through inquisitiveness, amnesia or sheer cussedness, we produced a
deviant hieroglyph such as those in Fig. 2, they generally informed us that
(i) We were silly, and
(ii) even though some examples could be devised which fitted into our ‘wrong’
diagram, the vast majority of instances could only be accomodated on the
‘general case’ picture which we had been told to emulate.

Now a detailed analysis of proposition (i) may not perhaps be appropri-
ate at this juncture, but assertions such as (ii) have a habit of surfacing in
the mind after lying dormant for years. So it has come to pass that several
members of our Department have recently been exploring some of the combi-
natorial/probabilistic questions which are raised by subjecting it to scrutiny

and generalization. This brief note presents a report on one of these investi-
gations.

Figure 1: ‘right’ Venn diagrams

Venn Diagrams

Figure 2: ‘wrong’ Venn diagrams

The problem to which we here address ourselves is this: given a finite ‘set
X (with n elements say), a (small) positive integer s, and a random se}ectlon
of s distinct subsets of X, how likely is it that the ‘general case’ Venn diagram
is the only correct one to describe their relationships? As the number of such
random selections is easily obtained, namely

T(s) = 2n(2, = 1)(2n = 2)...(2n — s + 1)/s!

the equivalent combinatorial problem is: how many selections (of s subsets)
does the general case diagram alone depict? .
Since the feature which distinguishes the gene.ral case hel’*e from th.e vari-
ous degenerate ones is non-emptiness of the dist}nt ‘reglon? on the dxagrain
(except perhaps for the ‘outer zone’), it is convenient to begin erxt}} a fo.rr.m:l a
for the number of ways of choosing a specified number of pairwise disjoint
non-empty subsets of X (not necessarily covering the whole of X).




54 IMS Bulletin 22 1989

Lemma Consider a positive integer k < n. The number (k) of ordered
choices of k pairwise disjoint non-empty subsets of X is given by

a(k) = é(—l)j (’;) (k+1- ),

and the number of unordered choices is Q(k)/k!

Proof The formula claimed for £2(1) gives 2™ — 1, which is evidently correct.
Assuming now its validity for integers from 1 to k — 1, observe that there
are (k + 1)™ ways of distributing the elements of X across k& boxes and one
wastepaper basket, and that we shall determine (k) by subtracting from this
total the number of distributions in which one, two, three, ...k of the boxes
remain empty. This gives

Qk) = (k+1)" - (’;)ﬂ(k—l)— (ﬁ)ﬂ(k~2)~...(kf1>ﬂ(l)—1,

and when we substitute in the assumed formulae for Q(k — 1), Q(k — 2),
...,82(1), the coefficient of (k + 1 — 7)™ in the resulting expansion is

{62 -G) G o () (7))

which is easily evaluated as (—1) (f) Induction completes the demonstra-

tion.

Let us now return to the simplest case (s = 2) of the original problem.
There are T(2) = 2"71(2™ — 1) ways of selecting an (unordered) pair 4, B of
subsets of X, and this selection will be non-degenerate in the Venn diagram
sense if and only if none of the three sets AN B, 4N B’, A’ N B is empty.
Now there are 2(3)/3! ways of selecting three non-empty disjoint subsets (call
them K, L, M) of X, but each such selection resolves itself into three distinct
choices of {4, B} when we try to identify K, L and M with AN B, AN B’
and 4’ N B; for 4 and B could be

either KUL and KUM,
or KulL and LUM,

either KuM and LUM;

hence we see that:

.
.
.
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Proposition 1 The number of non-degenerate (in the present sense) choices
of two subsets of X is

(4" —3.3" +3.2" — 1)

In the same way, there are T(3) ways of choosing three subsets 4, B, C,
of X, and the choice is non-degenerate precisely when none of the seven sets
ANBNC, ANBNC,ANB NC, ANBNC', AnNB'NnC’', A'/nBNC’,
A’ N B'NC is empty. There are Q(7)/7! choices of seven disjoint non-empty
subsets (call them K, L, M, N, O, P, Q) of X, each resolving itself into several
distinct choices of {4, B,C}. To be precise, for each of the 7! permutations
of K,L,...,Q we could identify those sets in order with ANBNC, A'NBN
C, ...A'n B'NC, thus constructing an ordered triple (4, B, C); it will be

necessary to divide by 3! to disregard the order and so {K, L, ..., Q} actually

resolves itself into 7!/3! unordered combinations of {4, B,C}. Thus we have
shown that:

Proposition 2 The number of non-degenerate choices of three subsets of X
is
(1)

1
3 § (8" =777 4 216" — 35,57 + 3547 — 2137 + 72" — 1)

Although Venn diagrams themselves cease to be of much use for s > 3, the
above analysis requires no significant change to cope with larger values. Thus
one reaches the following conclusion:

Theorem Let n and s be positive integers, and let X be a set with n ele-
ments. The number of ways of choosing s distinct subsets A;, Aa,..., A, of
X (irrespective of order), subject to the condition that every one of the sets

CiNCN...NC,

(where for 1 < i < s, C; is either A; or Al, but C; = A; for at least one value
of i) is non-empty, is

2°-1

sy e ()




IMS Bulletin 22 198y |

The following table records, for 1 < n < 10, the calculated values of T(2)
and T'(3), of ©2(3)/2! and Q(7)/3!, and of the probabilities p, and th
a r{mdomly chosen pair or trio of sets is non-degenerate o fou
decimal places. Tt shows as expected that the rog
small values of n, rise as n does. ;

, recorded to four
abilities, though small for

Better information on their b 1
: ehaviour f
large n is easy to extract from the above formulae, which yield that >

p2 =

1= 3(3/4)"(1 + o(1))
ps = )

- 7(7/8)"(1 + o{1)
and in general, where p, is defined as Q(2° — 1)/s!T(s), that
P = 1= (27 = 1)(1 = 27)"(1 + o(1))

as n — 00. Since these probabilities tend to 1, we are obliged to concede that
they told us the truth all those years ago. Rather a pity, really.

T(2) | 3)/20 | p, T(3) | Q(7)/3!
1 0 0 0

6 0 0

28 3

1071 56
120 30 | .2500 560
496 195 | .3931

2,016
8,128
32,640

4,960

1,050 | .5208 41,664

5,103 | .6278

23,310 | .7142
102,315 | .7821
437,250 | .8348

341,376 840
2,763,520
22,238,720
178,433,024

30,240
630,000
9,979,200

130,816
523,776

Department of Pure Mathematics
The Queen’s University of Belfast
Belfast BT7 1NN, Northern Ireland

HISTORY OF MATHEMATICS

Giovanni Frattini 1852-1925

Maurizio Emaldi

(Communicated by M.L. Newell)

A little over one hundred years ago, between 1885 and 1886 three pa-
pers by the Roman mathematician, Giovanni Frattini “On the generators of
groups of operations” appeared in the proceedings of the Royal Academy of
Lincei. In the first of these the author introduced the subgroup @ of a finite
group of operations consisting of the set of all operations which “cannot effec-
tively contribute to the generators” of the group. This can be characterized
as the intersection of all proper maximal subgroups. He demonstrated that
the group in question is nilpotent and in doing so used a most elegant argu-
ment which today is called “the Frattini argument”. The results contained
in these three papers, the full scope of which were not fully grasped at the
time of their publication, are amongst the most significant contributions of
Italian mathematicians to the theory of groups in the latter half of last cen-
tury. The definition of the subgroup & of a finite group given by Frattini has
been extended to groups in general and today is generally called “the Frattini-
subgroup”. (As far as we can determine, this name appeared explicitly for the
first time in a paper by G. Zacher: “Construction of finite groups with trivial
Frattini-subgroup.” Rend. Sem. Mat. Padova, vol. 21, 1952). In group theory
the Frattini-subgroup and more generally the analogous notion in algebraic
structures play a central role in many questions. Thus it seems opportune to
give a brief biography of the author and document his mathematical interests.
While our investigations have led to a complete list of his publications, we
shall give but a selection here. We have used the writings of R. Marcolongo
“Bollettino di Matematica (1926)”, of P. Teofilato “Memorie della Pontificia

]

Accademia dei Nuovi Lincei (1926),” G. Zappa “Supplemento ai Rendiconti
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del Circolo Matematico di Palermo (1985)” and research on Frattini under-
taken by O. Vanuzzo in 1982/3. Furthermore, we have availed of the help of
other people, notably A.C. Garibaldi of Genoa.

Biographical Notes

Giovanni Frattini was born in Rome on the 8th of January, 1852 and in that
city he did all of his studies. He was admitted in November 1869 to the first
year course in Mathematics and in June 1870, passed his Bachelor’s exami-
nation with honours. His tutors at University were Battaglini, Beltrami and
Cremona and in July 1875, he was awarded his degree in Mathematics. In
1876, he was in charge of Mathematics in the Liceo di Caltanisetta and from
there, in Novernber 1878, was transferred to the Technical Institute of Viterbo.
In 1879 he became principal teacher of Mathematics and Descriptive Geom-
etry. In February 1881 he obtained a transfer to the Technical Institute of
Rome. He remained in Rome until the end of April 1916, having opted for
the position of lecturer in the Military College where he taught right from its
foundation in 1884. On the 1st of August 1921, he retired.

He was one of the most senior members of the “Mathesis”, an association
founded in Rome in 1895 by secondary school teachers of Mathematics aimed
at improving the schools and raising teaching standards. Between 1900 and
1902, he held the office of President and although his term was extended
for a further two years, he did not wish to accept in order to secure the
re-election of the association’s first President R. Bettazzi. In 1914, he was
awarded lectureship qualification in Algebra at the University of Rome, but
never took up an appointment. He was a member of the Mathematical Society
of Palermo. In 1917, he became an associate member of the Pontificia Romana
Accademia dei Nouvi Lincei and an ordinary member in 1918.

He held office as city counsellor and in this guise, helped in the erection
of a monument to his favourite poet G.G. Belli, whose sonnets he was wont
to recite to his pupils in perfect Roman dialect. This practice of his led to
a ministerial enquiry which ended happily. He declared himself willing to re-
place these sonnets by the poetry of a highest undersecretary of Education.
Without further ado, he was allowed continue his recitation of Belli’s poetry.
A gifted teacher, he wrote several books for the elementary schools in Rome,
for the two year course at the Technical Institute and for the Military College.
These concise books, bereft of superflous abstraction and rich in legant bril-

s
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liance makes one aware of Frattini’s art of teaching. The spirit of the master
is evident from the following verse which heads a collection of exercises in
Frattini’s book “Elementi di Calcolo Letterale” (Paravia, 1908).

— Gino mio, 'ingegno umano
partori cose stupende,

quando 'uvomo ebbe tra mano

meno libri e piu faccende — (Giusti)

implying that greater things are achieved by doing more and reading less.

As a researcher and scientist, Frattini cultivated all the mathematical dis-
ciplines and studied with particular benefit differential geometry, the theory of
groups and the analysis of second degree indeterminates. On this latter topic,
his noteworthy contributions to the Periodico di Matematica 1891/92 simplify
significantly the classical methods of Euler, Lagrange and Gauss. Two large
tracts in 1883 and 1884 on groups of transitive substitutions which were the
fruit of his study of the classical work of Jordan and some brilliant works of
Capelli, made him eligible for appointment to the Chair of Complementary
Algebra in Naples in 1886. Amongst the contestants in this truly famous
competition were Capelli, Cesaro and Besso.

Subsequently, however, for family reasons, and because he did not wish to
leave Rome, he did not compete for other University posts and remained in
secondary teaching, making a magnificent contribution “turning the advances
of science to the benefit of the school”. This motto of Frattini’s was imprinted
on the journal “Il Bollettino di Malematica” founded by A. Conti at Bologna
in 1902.

The last years of his life were not happy ones. He was deeply troubled by
the war and further by the illness of one of his sons, a war invalid, the loss of
his wife and the difficult economic conditions which forced him to work even
though he had left teaching for some years. All of this left him dejected but
he still managed to retain his old habit of frequenting his favourite Roman
cafe where as he often pronounced he “held his chair”. He died on the 21st
July, 1925, while acting as supervisor of examinations for the School Leaving
Certificate of the Liceo Scientifico di Roma.

Apart from 21 papers in the “Periodico di Matematica”, 6 articles in “Il
Bollettino di Matematica”, 3 contributions to “La Matematica Elementare”
and over 13 general publications on mathematical topics, some written in witty
poetic form — his main works are the following:
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Memorie R. Accademia dei Lincel

1883 I gruppi transitivi di sostituzioni dell’istesso ordine e grado. Serie I,
Vol. XIV, pagg. 143-172.

1884 Intorno ad alcune proposizioni della teoria delle sostituzioni. Serie 111,
Vol. XVIII, pagg. 487-513.

Rendiconti R. Academia dei Lincei
1883 I. Gruppi a K dimensioni. Serie III, Vol. VIII, pagg. 260-264.
1885 Intorno a un teorema di Langrange. Serie IV, Vol. pagg. 136-142.

1885 Un teorema relativo al gruppo della transformazione modulare di grado
p- Nota [, Nota I, Serie IV, Vol. I, pagg. 142-147, 166-168.

1885 Intorno alla generazione dei gruppi di operazioni. Serie IV, Vol. I, pagg.
281-285.

1885 Intorno alla generazione dei gruppi di operazioni. Nota II. Serie v,
Vol. I, pagg. 455-456.

1886 Intorno alla generazione dei gruppi d’operazioni e ad un teorema
d’Aritmetica. Serie IV, Vol. II, pagg. 16-19.

1886 Extensione ed inversione d’un teorema d’Aritmetica. Serie IV, Vol. 11,
pagg. 132-135.

1892 Due proposizioni della teoria dei numeri e loro interpretazione geomet-
rica. Serie IV, Vol. I, pagg. 51-57.

1892 A complemento di alcuni teoremi del sig. TCHEBICHEFF. Serie V,
Vol. 1, pagg. 85-91.

1893 Di un doppio isomorfismo nella teoria generale delle sostituzioni. Serie
V, Vol. II, pagg. 253-259.

1903 Di un gruppo continuo di trasformazioni decomponibili finitamente. Se-
rie V, Vol. XII, pagg. 74-82.

Atti Della Pontificia Accademia Romana dei Nouvi Lincei
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1917 Diuna dualita reciproca tra coppie di quadrilateri inscritti nel medesimo
cerchio. Sessione VII, pagg. 136-139.

1918 Intorno a una questione di minimo relativa alle equazioni. Sessione VI,
pagg. 210-219.

1920 Alcune considerazioni poligono vettorali. Sessione I, pag. 25.

1922 Una formula di approssimazione relativa al gruppo della radice quadrata.
Sessione IV, pagg. 99-104.

1923 Un problema di ampliamento per isomorfismo cui da luogo la teoria
della relativita. Sessione III, pagg. 94-99, Sessione V, pagg. 146-156.

1924 La relativita e le frazioni continue. Sessione II, pagg. 80-81.

1924 Intorno alla proprieta caratteristica dei numeri primi. Sessione III,
pagg. 103-105.

1924 Intorno a una proprieta caratteristica delle funzioni intere d’una vari-
abile. Sessione VII, pagg. 174-178.

Dipartimento di Matematica Pura e Applicata
Universita di Padova
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STATISTICAL INFERENCE FOR SPATIAL ProcESssES
by Brian D.Ripley. Cambridge University Press,1988,viii + 148pp. $34.50

I.n .their quest to isolate signal from noise, statisticians know that a good
statistical procedure depends not only on the data but also on assum tgions
they m.ake to account for information they have concerning the mechznism
generating the data. Depending on these assumptions, they then adopt a
purely data- analytic angle, or attack the problem from a classical. Ba espian
robust, non-parametric or other inferential approach. The stren,gth yof the’
re.sult.s obtained will depend on the validity of the approach used and on the
cr.lterlon of performance adopted. Because of special peculiarities associated
W.Ith sp.atial processes, the above standard scientific process leads to severe
difficulties in the analysis of spatial data. This scholarly essay by Ripley is a
excellent attempt to describe and accomodate these difficulties. P

C}la;?ter 1 explains a number of problems that arise in statistical inference
for spatial processes, including the major difficulties caused by edge effects
and 'long—range dependence. The inappropriateness of time series models for
spatial processes is highlighted, along with certain inadequacies of procedures
based on the likelihood function of the data. These latter inadequacies are ex-
plored in more detail in Chapter 2 where the author explores an aut i
Gaussian process as model. e

Moving away from Gaussian processes, Chapter 3 examines spatial point
processes employing a geometric approach. The author examines the be-
hav.'lour of certain statistics that are based on distances between points and
which accomodate edge effects. The asymptotic results presented are useful
for detecting departures of the model from the simple binomial or Poisson
process, but their complexity and corresponding incompleteness force a com-
p.ar1.50n .of various estimates only in terms of their first two moments. Con-
tinuing in a similar vein, Chapter 4 deals with Gibbsian models wh.ich as
the. author notes, have their origin in statistical physics and accour;t for in}tcr

action between points. Here estimation procedures are approximate and ar_i
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interesting feature is the incorporation of Monte-Carlo methods for portions
of the estimation.

Chapters 5 and 6 involve the highly important study of digital images.
Chapter 5 accomodates background knowledge of the signal in the form of
a prior distribution, and hence invoves Bayesian inference procedures.On the
other hand, Chapter 6 belongs more to the area of (exploratory) data analysis,
the methods discussed being useful from a descriptive viewpoint, in addition
to permitting one to suggest a suitable model and allow appraisal of the pro-
cedures of the previous chapter.

Because of the inadequacy of time series models and the limitations of
standard likelihood methods, the reader may feel despondent upon reading
the first two chapters. This however should not be the case, because the
author clearly demonstrates that the problems are not insurmountable. True,
the theory is somewhat inconclusive, but this reflects only on the difficulties
involved, and there is no doubt that the author has achieved his objectives of
describing the state-of-the-art and offering much food for thought. It is this
reviewer’s opinion that while asymptotic theories have in recent years been
developed by probabilists for dependence structures as severe as those implied
in ‘strong mixing sequences’, the state of probability theory is not yet at a
level appropriate for deriving a totally definitive theory for spatial processes.
For this and other reasons, the author and others in his area deserve high
praise for their efforts. From a purely statistical viewpoint, I note that while
asymptotic procedures are at the core of much of statistical inference theory,
spatial processes beg the question: ‘asymptotic in what?’ As pointed out by
the author, asymptotic results differ according to whether we fix the region F
(within which observations will be taken) and let the sample size increase or,
as essentially done by Mardia and Marshall(1984), let E expand.

This timely essay is a must for specialists in the area of spatial processes
who desire to keep abreast of recent developments in the area. Theoreti-
cal statisticians too will welcome this well-written addition to the literature,
for it abounds in open research problems. For example, there is plenty of
room for the development of procedures that are robust against, e.g., mis-

specification of the functional form of certain models and against forms of
dependence among the observations other than those forms accomodated in
this essay. (Needless to say, the mathematics will be enormously involved in
such projects.) A valuable graduate course for students could be based on this
book along with Ripley(1981). One caveat to the reader: the writing style is
lucid but, as befits an essay, highly terse, and the author wastes no time in re-
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viewing background probability or statistics. For such a preparation, it is not
necessary that the reader be familiar with theory and techniques at the level
of Billingsley(1968) and Serfling(1980), but be aware that the author liberally
sprinkles measure-theoretic concepts and non-elementary limiting techniques
throughout the essay! An understanding of the ideas in Ripley(1981) is also

highly desirable for appreciating the many elegant ideas in this outstanding
essay.
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Jerome N.Sheahan
Department of Statistics
University of Alberta

STATISTICAL MRECHANICS: RIGOROUS RESULTS
by David Ruelle, Addison-Wesley (1969,1989)

Addison-Wesley have reissued Ruelle’s famous book as part of a new se-
ries Advanced Book Classics. This book is a landmark in modern statistical
mechanics. The basic concept of the book is the use of functional analysis as
a foundation for statistical mechanics, and this idea is behind much study in
the past three decades. Not only have the techniques of functional analysis
provided insight upon physical problems, but standard methods of statistical
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mechanics form the underlying basis for the theory of large deviations, which
is of considerable current interest to researchers in probability theory.

During the twenty years since this book was first issued, the problems
it approaches have become clarified, and some have been solved, but most
remain as an open challenge. Mathematicians with an interest in functional
analysis may wish to have a go. This book is a good place to start, but they
will not find the going easy: Ruelle packs a lot into 200 pages.

The most interesting aspects of statistical physics involve phase transitions.
For the standard models, phase transition does not occur with finite systems,
so one must start with infinite systems which are the limits of finite approxi-
mations. One such is a Newtonian system of infinitely many point particles,
but the simpler model of an infinite lattice where each lattice point must be
in one of a finite number (usually 2) of states is also studied. The continuous
and lattice systems can be considered as classical or quantum. Thus there are
several stages of increasing difficulty, from the classical lattice to the quantum
continuous systems.

The first step is to deal with the limit of finite systems in such a way
that for energy considerations the boundary of the finite approximation can
be ignored. The assumptions on the strength of the interactions are those
needed to make the limiting process work. It has since been discovered the
a slightly more restricted family of interactions has much nicer properties
concerning phase transitions. For continuous systems a rather special class of
interactions is considered. The important case of the Coulomb interaction is
not treated in this book.

One area in which reasonably satisfactory results obtain is that in which
the interactions of the system are sufficiently weak. In this case one can prove
that the behavior is quite close to that of non-interacting systems. For slightly
stronger interactions, even in the classical lattice model, one has the presence
of several phases in the sense that the infinite limit with different boundary
conditions yields different states.

The case of stronger interactions is more interesting and more difficult.
Limited progress has been made in this case. The book also deals with various
probabilistic, group theoretic, algebraic and functional algebraic methods of
treating statistical mechanical systems.

Wayne Sullivan
Department of Mathematics
University College Dublin.
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AN INTRODUCTION TO ALGEBRAIC TopPoLoGY
by Joseph J.Rotman, Graduate Texts in Mathematics 119, Springer-Verlag,
1988, 433pp., ISBN 0-387-96678-1

This is a well written, often chatty, introduction to algebraic topology
which “goes beyond the definition of the Klein bottle, and yet is not a per-
sonal communication to J.H.C. Whitehead.” Having read this book, a studen
would be well able to use J.F.Adam’s “Algebraic Topology: A Student’s Guide”
to find direction for further study. The book begins with a sketch proof of the
Brouwer fixed point theorem: if f:D* = D" ig continuous, then there is an
z € D™ such that f(z) = z. Functorial properties of homology groups imply
that the sphere S™ is not a retract of the disc D"t and then a simple argu-
ment by contradiction shows that f must have a fixed point. This illustrates
the basic idea of studying topological spaces by assigning algebraic entities
to them in a functorial way. There follows a rigorous account of the singu-
lar homology of a space which assumes only a modest knowledge of point-set
topology and a familiarity with groups and rings. The account includes the
Hurewicz map from the fundamental group to the first homology group, and
ends with a proof of the Mayer-Vietoris sequence. By page 110 a complete
proof of Brower’s theorem has been given.

Singular homology is good for obtaining theoretical results, but not so
good for computations. So simplicial homology is introduced in Chapter 7,
and used to compute the homology groups of some simple spaces such as
the torus and the real projective plane. A proof of the Seifert-Van Kampen
theorem for polyhedra is given at the end of the chapter. Continuing the search
for effective means of computing homology groups, Chapter 8 introduces CW
complexes and their cellular homology. Chapter 9 begins with a statement
(without proof) of the axiomatic characterisation of homology theories due to
Eilenberg and Steenrod, and then introduces enough homological algebra to
prove the Eilenberg-Zilber theorem and Kinneth formula for the homology
of a product of spaces. Chapter 10 deals with covering spaces. The higher
homotopy groups are studied in Chapter 11 using the suspension and loop
functors. Results obtained include the exact homotopy sequence of a fibration,
and its application to the fibration $3 — §2 to show that the group 73(S5%)
is non-trivial. The isomorphism 73(5%) = Z is beyond the scope of the book.
In the final chapter a short discussion on de Rahm cohomology is used to
motivate the study of the cohomology ring of a space.
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The book is nicely structured, with explanations of where the theory is
heading given at frequent intervals. Important definitions are often accompa-
nied by a discussion on their origins. Many exercises are given at the end of
sections. Proofs are usually given in full detail. Even though probably every
result in the book (and many more besides) can be found in E.H. Spanier’s
classic text “Algebraic Topology”, I.J.Rotman’s style of exposition makes the
book a useful reference. However a lecture course based on this book may
turn out to be a bit slow and dry. (Unfortunately the book corresponds to the
syllabus of a one year course given at the University of Illinois, Urbana.) F(?r
example the homology of a space is defined on page 66 but we have t.o wait
until page 157 until the homology of the torus is calculated, and until page
226 for the homology of a lens space. The fundamental group is introduced on
page 44 but is not calculated for a wedge of two circles until page 171. Maybe
too much rigour and generality in a first course on any topic is not a good

thing!

Graham Ellis
Department of Mathematics
University College Galway.
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TR —

Editor: Phil Rippon

Just two new problems this time. The first is an inequality which is ele: I/l
i mentary, in the sense that it can be solved easily by rearrangement to give a ! !
perfect square. However, there is a much more interesting solution using an

approach which makes the inequality ‘obvious’!

23.1 Find a context within which the inequality Fig. 1

a,b,c,d> 0, This problem appears in H.S.M. Coxet_et’s boc).k ‘In.trod\:lctic.)fr; toAGe()‘rr::I;

try’ and I think it was discussed by Mfirtm Gardiner in .Sc1ent-1thcf wr::rtl}ian

is intuitively obvious. . in the sixties. It must surely be imposmb.le to ﬁ.nd a solu]tlor:hwx Ozlem than

8 triangles, but I don’t know a proof: I.t is possible to solve fe pr 3

I heard the next problem from several tutors at an O.U. Summer School; any n > 8, however, as Fig. 2 shows (it is of course easy to go from n .
apparently, it has became a popular ‘investigation’ at teacher training colleges.

Roughly speaking, the problem is to find the number of triangles which have
integer sides and perimeter n.

(a+b)(c+d) S _ac bd
at+b+c+d “a+c b4d’

23.2 Let s(n) denote the number of triples (a,b,c), where a,b,c are positive
integers with

a<b<canda+b>ec.

Determine a simple formula for s(n). \

Now here are the solutions to two earlier problems, which I described as geo-
metric doodling.

21.1 What is the minimum number of (strictly) acute angled triangles into n=9
which a square can be partitioned?

The solution is given in Fig. 1, which contains three construction lines
straight line and two semi-circles).

(Onﬁ . . Flg 2
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21.2 Find a configuration of finitely many points in the plane such that the
perpendicular bisector of the line segment Joining each pair of points passes

through at least two of the points

The solution is to take the points to be the vertices of four equilateral triangles
built on the sides of a square. It takes only a little work to check that this
configuration has the required properties.

Fig. 3

Thanks to H.S.M. Coxeter and W. Moser, I have been in touch with L.M
Kelly of Michigan State University who considered this problem back in 1964
when he was visiting the University of Cambridge. He believes that the prob-
lem may have originated with Paul Erdés and thinks that it is still unknown
whether this is the unique such configuration. The nearest I have come to find-
ing another solution was to replace the four equilateral triangles in Fig. 3 by
their reflections in the corresponding sides of the square. I'll let you discover

why my momentary excitement was quickly followed by disappointment!
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