Cayley-Hamilton for Eigenvalues

Robin Harte

The Cayiey-Hamilton theorem says that a linear operator T: X — Xona
finite dimensional space X = C" satisfies its characteristic equation:

pr(T) =0 (1)

where
pr(T) = (2 = M) (z = A)” .o (2 — M) (2)
is the characteristic polynomial of T; thus Ay, Az, ..., Ag are the distinct eigen-

values of T and vy, va, . . ., vk are their (algebraic) multiplicitzes. It is familiar
that, if the inverse T~ ! exists, then it can be expressed as a polynomial in T'
with the help of (2); dividing across by the non-vanishing constant term of pr
and bringing it across the equality sign gives

pr(T)T = I = Tpp(T) (3)

This note arises from the problem of calculating the eigenvectors associated
with the eigenvalues A;. In the process we rediscover a well-known theorem
(which was obviously not well enough known to the author!).

Begin with the observation that (1) may well be valid for polynomials pr
other than the characteristic polynomial: it is possible for (1) to hold with
integers v; in (2) smaller than the full algebraic multiplicities. If pr is the
polynomial given by (2) we shall write

pr(T) = (z~—)\1)(z—A2)...(z—/\k), (4)

and call this the reduced polynomial of T; then it may or may not happen
that '

Br(T) = 0. (5)
If (5) holds we shall call the operator T reduced. The well-known theorem (4,
Chapter IV Theorem 5] is simply stated:

Theorem IfT:X — X is a linear operator on a finite dimensional space then

T reduced <= T diagonal. (6)
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Proof Diagonal means of course that T is a direct sum of scalars:

X =

k
j=

k
(@ = 3D)7H0) = T - D 7HO)s (7)
j=1

1

if this happens then (5) follows at once by considering pr(T) separately on each
eigenspace. For forward implication in (6) we need the notion of “exactness”
(2, 3, Chapter 10]: the pair (R, S) of operators on X is called ezact if

R™(0) = 5(X). (8)
Inclusion one way is just the condition
RS =10; 9)

for the opposite inclusion it is sufficient that there are operators S’ and R’ on

X for which
RR+ S8 =1I. (10)

We have this, in particular, when R and S are polynomials in T without
common divisor: if

5=¢(T) and R=rT) with ged(g,7) =1 (11)

then the Euclidean algorithm for polynomials gives polynomials ¢'(z) and ' (2)
for which
¢'(2)q(z) +7'(2)r(2) = 1,

giving (10) with §' = ¢'(T)and R' = #/(T). This happens many times over if
T is reduced: if (5) holds then we get (11) with

S=g(T)=T-XI R=r(T) =J@ - x1) (12)
i#j

Further, in this case, everuthing in (9) and (10) commutes, so that also
5-1(0)= R(X), R7'(0)n ST1(0)=0 and S(X)+R(X)=X; (13)

thus
X =5"0)eR*0).
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Forward implication in (8) is now induction on the number k of distinct eigen-

alues A;; for if T: X — X is diagonal on each of its inva—rilant iubs_pla.%es
;'1(0) ;r;d R™(0) then it is diagonal on their direct sum 5—1 (0);5 ( 1)
On S~1(0) the operator T coincides with the scalar A;I; on B (0) T has only

k — 1 eigenvalues.

This theorem is not new, and can be found for exam?li in .; acobson [41}1 ZV:
i i i the Euclidean algorithm has some charto;
believe our direct deduction from : . i
tkexe same argument gives, with no assumptions about T, the “primary decom

position” .

k
Xx=5(T-XI)7"(0)= @(T — N I)7H(0).

. . -
An alternative version of the argument, passing through the medium of “Tay

i ‘bility? . is given by Gonzalesz [1]. ‘
e ?V:::T::tzp;r:tir T:X — X is “reduced” in the sense of (5) then 1its

. . with
eigenvectors can all be obtained without solving a,)ny motr; :ci\;atlc?rgxz;m;v;t; "
i ‘ t part of (13) says that the €
— T _ I and R as in (12), the first p 7 : :
forrespondjing to ); is the range or “column space” oi.' the. matrix lI-?. };mlt Oil;:
of the remaining eigenvalues. Of course in practice it will usu;,i y :t :;sR
and pleasanter to solve the equations Sz =0 than to compute the m .
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METRIC SPACES: ITERATION AND APPLICATION

by Victor Bryant, Cambridge University Press (1985), STG £5.95 (paperback).
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by E.T. Copson, Cambridge Tracts in Mathematics number 57, Cambridge
University Press (1968), STG £22.50 (hardback), STG£7.95 (paperback).
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by W.A. Sutherland, Oxford University Press (1981), STG.£10.95 (paper-
back).

Of the three books, I like the one by Bryant the least. It claims, with some
justification, to make the subject interesting. But the result is a book which
might be more appropriately described as an introduction to iteration and
fixed point theory that includes a little on metric spaces. To be somewhat ob-
jective, the book does touch on many of the basic concepts (limits of sequences;
closed, complete, compact and connected sets). The applications include the
existence and uniqueness of solutions for ordinary differential equations. But
my basic objection is the second class treatment given {o open sets and the
less than enthusiastic treatment of continuity. On page 35, having introduced
closed sets via limits of sequences, we are told that open sets are not really
necessary because “all theorems about open sets can be stated in terms of
closed sets”. While this is undeniable, most textbooks do not take such an
upside down view, and I do not consider that one can be said to have learned
‘metric spaces’ without being comfortable with the notion of open set. Who
would like to volunteer to rewrite a standard text on multivariable analysis
(never mind ones about complex analysis, functional analysis or elementary
manifolds) mentioning only closed sets? The last chapter (marked optional) of
Bryant’s short book does make some amends by looking into continuity (even
uniform continuity and the fact that the continuous image of a compact set is
compact) and defining open sets.

This brings us to the question of what the book sets out to achieve. It
claims to be intended for courses for engineering or ‘combined honours’ stu-
dents, or really for those who have taken but not grasped a single variable




