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Error Correcting Codes

John Hannah

Introduction

In this article, I will describe an elementary approach to error-correcting codes
which can be presented to second year (general level) students. In this ap-
proach, students can see simple abstract concepts being used to solve an easily
described practical problem.

Although most texts give the impression that you need to know some finite
field theory in order to learn coding theory, you can in fact get a good grasp
of the basic ideas by knowing about little more than matrix multiplication
and modulo — 2 arithmetic. Thus, for example, I include such codes as a
brief topic in my second year linear algebra course (to help justify looking at
abstract vector spaces rather than just spaces over the real numbers). Codes
could also be discussed in introductory courses on abstract algebra or discrete
mathematics.

From the student’s point of view, the need for error-correcting codes is
easily appreciated. Digital data occur in many parts of modern life. Infor-
mation is stored as strings of binary digits (0 and 1) in such diverse areas as
computers, satellites and record-players. It is important to be able to transfer
such data reliably between different systems, whether it be between the mem-
ory and the processor of a computer, or between Earth and Voyager satellite
near Uranus. Unfortunately, most communication channels are prone to noise
of one sort or another, and errors can appear in the data. Coding theory
tries to construct efficient ways of sending digital data while at the same time
guarding against these errors.
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The Parity-check Code
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redundant digits the code will become inefficient: t}}e .actua.I message
part of the codeword and transmission will bec‘cmfm
s have as few redundant digits

many
will make up only a small
time-consuming and expensive. So good code .
as possible and detect or correct as many errors as possible.

The ISBN Code

The ISBN numbers, which are used to classify books, are another e.xampl_e ?f
a code. Again just one check digit is involved, but this time the arithmetic 1s

done modulo 11. In a typical ISBN number
0 — 474 — 00130 — X

the first nine digits a1, az, ..., a9 3I¢ the information digits, and the check
digit a0 18 calculated from the formula

9
a0 = Znan (mod 11).
n=1

If, as in the above example, this check d.igit is 10, it is wntteg‘l as Jz( It rlz
easy to see that this code again detects all single errors. The coe c(;en S}? aiso
used (instead of the 1 used in the parity chffcl‘tz code) so-that the code ‘v}le aed
detect all transposition €rrors, where two digits are accidentally 1nter<.d atng .
Transpositions are among the most common errors that occur whixil ' ata are
communicated by humans (rather than by ele.:ctrm. or magnetic fields!) ;

1 will discuss binary codes in the rest of this article, but obYlously a blicus;
gion of why modulo-11 arithmetic is used here would fit well into an abstract

algebra course.

Constructing an error-correcting code

To illustrate the ideas involved, I shall show how to construct one of the family

of Hamming codes. These codes can correct single errors or, alternatively,

detect double errors. o ‘
: Suppose we allow ourselves four check digits, instead of the single check

digit in the above parity check code, and suppose ’that our data consists
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of strings of n information digits (a1, es,. ..,6n). Each of the check digits
@nil,-- -y Onta Will come from an equation of the form

@ny1 = sum of some of a,az,...,8n

and these same four equations will be used as check equations for the re-

ceived message (a1,82,-.-10n, Gni1; - .,Gny4). We can arrange these check
equations in matrix form as

Ha=0

where a is the received codeword, 0 is the zero vector and H is a matrix of
the form

H:[Q|I4]

where I, is the 4 x 4 identity matrix and @ isa4 X n matrix of 0’s and 1’s.
These equations determine whether a is a correctly encoded string of n + 4
digits. Clearly if the received codeword gives Ha # 0, then an error has
occurred. But what is the precise effect on Ha of an error in the codeword
a? We can represent the received codeword as a +e, where a is the intended
codeword, and the vector e has a 1 in each position where an error occurred
but has zero components otherwise. This is because each of the errors 0 — 1
and 1 — 0 can be obtained by adding 1 (mod 2) to the original entry. When
we test the received codeword using the matrix H we get

H(a+e) = Ha+ He=0+ He.
If there has been exactly one error, in the ith position say, then we have

He = ith column of H.

For example, an error in the first entry corresponds to havinge = (1,0,...,0)7
and the calculation of H(a + e) will yield the first column of H.

Thus to be able to detect the ezisience of one error, we just need to make
sure that each column of H is nongero (that is, not every entry in the column
is zero). If we also want to locate the position of such an error, then we just
need to make each column of H different. Notice that since the only possible
entries are 0 and 1, locating the position of an error is the same as being able
to correct that error.

In our example H has four rows and so there are 2% = 16 possible columns
to choose from, all but one of them being nonzero. Thus if we want to be
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able to correct all single errors, then H must have at most 15 columns. This
means that 4 check digits can be used to protect strings of up to 11(=15—4)
information digits. If we use 4 check digits to protect exactly 11 digits then
there is esentially only one possible marix H (since swapping the columns of
H amounts to relabelling the original digits):

H =

1
1
0
1

Once H is found we can write down the equations for the check digits
G132, 313, G14, 815 in terms of the information digits a1, a2, .., 811

From the point of view of hand-calculations (which is all T expect my
students to do), correcting single errors is a simple procedure: in the above
notation, you search among the columns of H for one that looks like He. Of
course, this is not very satisfactory if you intend to use a computer. The
searching part of the algorithm can be sidestepped though, if you are willing
to rearrange all 15 columns of the above matrix H. The idea is to use for the
ith column of H the binary representation of the number i, so that when He
is calculated it tells you directly which eniry was wrong. (See the article by
Levinson [2]).

The same code can also be used to detect double errors, but this time
correction is not possible. The same calculation as before shows that with two
errors H(a + €) = He is a sum of two columns from H, and since all these
columns are different, their sum (modulo 2, of course) must be nonzero. So
the error is detected. But with our matrix H the sum of any two columns is
another column, since H contains all possible nonzero columns. So this double
error would be indistinguishable from some other single error.

This is as far as [ take my students. After all, it is a course on linear
algebra. In an abstract course, you could go further: to correct two or more
errors you really need to construct finite fields of order 2™, My colleague,
Kevin O’Meara, offers such a course to third-year students. My main aim is
to whet their appetities by showing what can be achieved using a few simple
ideas, and by making them aware that there is still more to be achieved.
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