Toeplitz Operators

G.J. Murphy

There are few classes of operators on a Hilbert space about which one has

very detailed information, apart from the normal operators and the compact
operators. An exceptional class about which much is known is the class of
Toeplitz operators. This paper gives a brief survey of some aspects of their

theory, from its origin near the begining of this century to the present day.

1 The basic results

The study of Toeplitz operators was initiated in a paper in 1911 (by Toeplitz

[13]) in which the relationship of finite square matrices that are constant on
diagonals to the corresponding infinite matrices was investigated. The class of

Wiener-Hopf operators was studied in parallel (from 1931) until Rosenblum = |

[11] observed in 1965 that that the two classes of operators are unitarily equiv-

alent. There now exists a vast literature on this area. The theory is interesting

in its own right, but also has applications to and connections with many other
areas, for example, Function Theory, Prediction Theory, C*-algebras, other
areas of Operator Theory, Probability, and Physics.

Having indicated why Toeplitz operators are studied, let us now define
them and look at some of their properties.

Let T denote the circle group, T = {z € C | |z] = 1}, and let A denote
normalized Haar measure (= normalized arc length) on T. For p € [1, +00]
let LP = LP(T,)). If ¢ € L™ we get a bounded linear operator M, on L? by
setting

M,(f) =of (f€L?.

M, is called the Laurent operator with symbol ¢. It is of course a normal
operator, i.e. it commutes with its adjoint, and the map ¢ — M, is an
isometric *-homomorphism of L® into B(L?) (for any Hilbert space H, we
let B(H) denote the Banach algebra of all bounded linear operators on H).
The matrices of these operators are very special when taken relative to the
standard orthonormal basis (e, ), <7 (where e, : z — z") — they are constant
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along d?agonals. However our interest is not really in Laurent operators, whose
theory is very easy, but in their compressions to a certain subspace H 2., Recall
that .for P € [1, +co] the Hardy space H? is the set of all f € L? with “negative”
Fourier coeflicients (f,en) = [ f&, dA (n < 0) all equal to zero. Let P denote
the projection of L? onto H?. If ¢ € L™ then T, € B(H?) is defined by

setting
To(f) = P(of) (feH?).

T, is called the Toepliiz operator with symbol o. It might appear at first sight
that the theory of Toeplitz operators should be like that of Laurent operators
since the difference between their definitions may appear trivial, but in fa.ci:
the two theories are profoundly different. The theory of Toeplitzyoperatc;fs is
deep, and hard.

Let us begin by noting some elementary facts. Every Toeplits operator
has matrix with constant diagonals relative to the standard orthonormal basis
‘(en),‘f’:o, afld conversely any T' € B(H?) with such a matrix relative to (en)2
is a Toeplitz operator. One has ||T,|| = r(T,) (the spectral radius) = ”cpﬁ_o.
tI‘he spectral theory of T,, is complicated by the fact that invertibility of ?
is not equiva lent to invertibility of ¢ (although the corresponding statemen‘:z
is true for M, ). One does have implication in one direction however: if T. is
invertible then ¢ is invertible. Hence o(yp) C o(T,), a result due to Hartz;’;an
a,nd. Wintner [6]. o( ) denotes the spectrum — for a an element of an algebra
ha,v1‘ng a unit 1 the spectrum o(a) of a is the set of all z € C such that z1—a is
not invertible. As indicated above one does not in general have o(T,,) = o(yp)
An example is provided by the unilateral shift U = T., as its s;ectrum ié;
Fhe closed unit disc, but the spectrum of e, is the unit circle. However a(T,)
1s not too much bigger than o(p), because o(T),) is contained in the clos:d
convex hull of o(yp) (Brown-Halmos [ 1]).

_ The above results are relatively near the surface. In contrast is the beau-
tiful and surprising theorem of Widom [15] which states that the spectrum of
a Toeplitz operator is connected.

Ox.le of the reasons that Toeplitz operator theory is not easy is that the
equation Tyy = T, Ty does not hold in general (e.g. take ¢ = ¢; and Y =&
But there is a subclass of Toeplitz operators for which the above equality does.
hold: We say Ty is analytic if » € H™. In this case we have T Ty =T,y and
T;T, = Ty, for all p € L. Hence the map ! "

H® - B(Hz), 1/)»——>T¢,
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is an algebra isomorphism onto the closed subalgebra 4 of all analytic Toeplitz
operators. One can easily show that 4 is the commutant of U, i.e. the set of
all operators commuting with U, and so a maximal commutative subalgebra
of B(H?). The open unit disc A can be embedded in the character space of
the Banach algebra H® in a natural way, and if ¥ € H® then its Gelfand
transform v restricted to A is a bounded analytic function. (By the way, the
character space of H® is quite complicated. The famous Corona Theorem of
Carleson says that A is dense in this space.) One can now state Wintner’s
theorem [16] : If ¢ € H™ then o(Ty) = cl(¥(A)) where cl denotes closure in
C.

In the next section we shall indicate how one can use C*-algebras to get
some other results of the classical theory of Toeplitz operators, but we end
this section with a brief remark on Wiener-Hopf operators.

If o € L'(R) the Wiener-Hopf operator W, € B(L*(R%)) is defined by
setting

Wof)a) = [ wle -1t (e L*(RY)).
If z € C\ {0} then the Wiener-Hopf equation is
(z+Wy)f =g

where ¢ is given and f is the unknown function. The conformal map of the
upper half-plane onto the unit disc sets up a unitary equivalence between a
Wiener-Hopf operator and its corresponding Toeplitz operator.

2 C*-algebras and Toeplitz operators

For T a bounded linear operator on a Hilbert space H, N(T') denotes its
nullspace {z € H : Tz = 0}. Recall that T is Fredholm if T(H) is closed
and N(T), N(T") are finite-dimensional. In this case the Fredholm index is
defined to be indez (T') = dim N(T') — dim N(T*). The essential spectrum of
T is the set

0.(T)={z € C|z1 —T is not Fredholm}.

Obviously ¢.(T) C o(T). There is a very useful characterization of Fredholm
operators due to Atkinson, but to state it we need to introduce a few more
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concepts. An operator is compact if it is the norm limit of a sequence of finite-
rank operators. The set K(H) of these operators on H forms a closed ideal,
and the quotient algebra B(H)/K(H) is called the Calkin algebra. If 7 is the
canonical map from B(H) to B(H)/K(H) then the Atkinson characterization
is that T' is Fredholm if and only if #(T') is invertible in the Calkin algebra.

A key step in the spectral analysis of Toeplitz operators is the following
lemma due to Coburn [2]. The proof is so short that we include it, as it also
illustrates nicely the connections with Function Theory.

Lemma If ¢ is a function in L™ not almost everywhere equal to zero then
either T, or Ty has zero nullspace.

Proof Recall that the theorem of F. and M. Riesz says that a nonzero function
f in H? cannot vanish on any set of positive measure in T. Now suppose that
f € N(T,) and that g € N(T;). Then of and g are in H?, so ¢f§ and
gof are in H'. By the “analyticity” property of the Hardy spaces, we must
have ¢ fg is constant a.e. But [¢f§dA =0, so pf§ = 0 a.e. If neither f or
g is zero, then by the F. and M. Riesz theorem we must have ¢ = 0 a.e., a
contradiction. QED

It is immediate from this lemma that if T}, is Fredholm then T, is invertible
if and only if indez (T,,) = 0. From this it is not difficult to prove:

Theorem (Krein-Widom-Devinatz) If ¢ is a continuous function on T
then the operator T, is Fredholm if and only if ¢ does not vanish anywhere,
and in this case indez (T,) is equal to minus the winding number of © with
respect to the origin.

This beautiful result thus identifies an analytic index with a topological
index, and is a simple prototype of the Atyiah-Singer Index Theorem. A
direct consequence of it is the fact that the spectrum of T, is connected if ¢ is
continuous, thus giving an easy proof of a special case of Widom’s Theorem.

Many of the above results (and other results) are obtained by C*-algebraic
techniques. The idea is this: Let T(Z) denote the C*-algebra generated by
the Toeplitz operators with continuous symbol (the reason for the appearance
of the symbol Z will become clear presently). Then its commutator ideal (i.e.
the smallest closed ideal I for which the quotient algebra modulo I is abelian)
is K(H?). The map

C(T) — T(Z)/K(H?), ¢ — T, + K(B?),
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is a *-isomorphism. To see how this gives connectedness of the essential spec-
trum note that if ¢ € C(T) then its spectrum is just its range, so it is con-
nected as T is connected. It follows that the spectrum of T, + K(H?) is
connected, and by the Atkinson characterization this is just the essential spec-
trum of T,,. With a little more work a simple proof that o(T,) has connected
spectrum can be given in this case.

One can also consider the C*-algebra generated by all Toeplitz operators,
and use it to derive various results. For details see Douglas [4].

The above discussion indicates the usefulness of the algebra T(Z) in Single
Operator Theory, but it is also useful in C*-algebra theory. It is generated
by a non-unitary isometry (viz U), and up to isomorphism it is the only such
C*-algebra. Moreover one can use the short exact sequence

0— K(H?) - T(Z) - C(T)—0

(or rather a reduced form of it) to give a relatively easy proof of the Bott peri-
odicity theorem in K-theory (for locally compact spaces and for C*-algebras).

It is natural that one should try to extend these ideas and techniques to
more general situations, and this has been done by many mathematicians
including Douglas, Devinatz, Howe, Kaminker, Muhly and Singer and many
others. We now discuss one of these extensions.

3 Extended theories of Toeplitz operators

An ordered group is a pair (G, <) consisting of a (discrete) abelian group G
and a linear partial order < on G which is translation invariant (ie. ¢ <y
implies that z+2z < y+z). Obvious examples are Z, R and all subgroups of R.
Ordered groups exist in superabundance, for if G is a discrete abelian group
with Pontryagin dual group G then the following are equivalent conditions:
(1) There is a linear order < on G making G an ordered group.

(2) G is torsion-free

(3) G is connected.

Fix an ordered group G, and let m denote normalized Haar measure on &,
and I? = I?(G,m), 1 < p < +oo. If f € L' we say that f is of analytic type
if the Fourier transform f(z) = 0 for all z € G for which z < 0. H? = H?(G)
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denotes the norm-closed vector subspace of all f € L? of analytic type. As
is well known if e(z) : G — T, v — 7(z), (z € G) then (e(z))zec form an
orthonormal basis for L?. It follows that if G = {z € G : 0 < z} then
(e(2))zeq+ is an orthonormal basis for H2. One can extend Fourier Analysis
and Function Theory to this context (see Rudin [12]). The generalized Hardy
spaces H? display analytic behaviour, for if f, f € H? then f = constant a.e.
We can now define Toeplitz operators as before, and many of the elementary
results extend easily. However we shall primarily be interested in certain C*-
algebras generated by Toeplitz operators.

Let T(G) be the C*-algebra generated by all T,, for which ¢ € C(G), and
let K(G) be its commutator ideal. Before stating some results in this area we
need a few definitions.

A C*-algebra A is primitive if it has a faithful irreducible representation
(i.e. there is an injective *-homomorphism ¢ : A — B(H) where H is some
Hilbert space with no nontrivial subspace invariant for every ¢(a) (a € 4)). A
is simple if it has no closed ideals apart from 0 and A. Simple C*-algebras are
primitive. In a loose sense the primitive and simple C*-algebras are thought of
as the building blocks from which all C*-algebras are made, and for this and
other reasons it is very important to have many examples of such algebras.

Theorem Let G be an ordered group.
(1) T(G) is primitive (and therefore K(G) is primitive also).
(2) K(G) is simple if and only if G is (order isomorphic to) a subgroup of R.

(1) and the forward implication in (2) are due to the author [9]. The
backward implication in (2) is due to Douglas [5]. The study of the algebras
K (G) in the case of subgroups of R has become especially important recently
with connections having been discovered with Connes’ non- commutative Dif-
ferential Geometry. There are are many more interesting things that can be
said about these more general Toeplitz theories. For example there is the very
rich spatial theory due to Muhly and others which has not even been touched
on above. We finish up with a few remarks on the K-theory of the algebras
K(G). In [5] Douglas asked if subgroups G;, G3 of R were order isomorphic
when K(G,) and K(G3) are isomorphic. This was answered affirmatively in
[10] in a special case, and in general in [7]. The method of proof in both cases
involved computing the K-groups of K(G).

A good elementary introduction to the theory of Toeplitz operators is [4].
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