32 IMS Bulletin 22, 1989

leads to the same linearized value, here A, i are ordinary numbers.
Case (ii): A4, B anti-commute; that is, AB = —BA, which will be the case

when A and B are fermion operators. In that case, consistency demands that

A and p anti-commute with one another, and also with the operators A4, B,
then A, u may be taken as Grassmann or Clifford numbers.
Thus a general hamiltonian, after linearization by this method, will lock

naturally like an element of a superalgebra, with Ai-type elements multiplied
by Grassmann (or Clifford) numbers, just as in the simple example above.
This approach has recently been used to give a superlagebraic model of su-

perconductivity [6].
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Integrals of Subharmonic Functions

Stephen J. Gardiner

This article reviews a problem concerning potential theory in R™ which has
its roots in classical complex analysis. Omne of the interesting features of the
problem is the way in which the solution has gradually emerged, sometimes
in a surprising fashion. The article is based on a lecture given at the First
September Meeting of the Society, held at Trinity College, Dublin.

1 Background in C

Let N(f,r) denote the maximum modulus of an analytic function f on the
circle {z € C : |z| = r}. The starting point for our discussion is provided by
the following facts from elementary complex analysis.

Hadamard’s Three Circles Theorem. If f is analytic on {]z] < R} and
f #£0, then log N(f, ) is convex as a function of logr.

Principle of Removable Singularities. If f is analytic on {0 < |z| < R}
and rN(f,7) — 0 as r — 0+, then f has an analytic continuation to {]zi <
R}.

The latter result is saying that either N(f,r) behaves badly near 0 or else
0 is a removable singularity for f, in which case N(f,r) is continuous at 0.
The Three Circles Theorem has the following analogue for suprema over lines.
(See [14, p.180] for an important application of this result in the proof of the
M. Riesz convexity theorem.)

Three Lines Theorem. Let f be bounded and analytic on R x (0,1), con-
tinuous on R x [0,1}, and let f # 0. Then

Y- sup{loglf(:z: + iy){ iz € R}

defines a convex function on [0, 1].
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We will be concerned with analogues of the above results for integrals of sub-
harmonic functions. We recall that a function s defined on a connected open
subset w of R™ (n > 1) and taking values in [—oo, +00) Is called subharmonic
if s % —00 and:

(i) s is upper semicontinuous (u.s.c.), i.e. limsupy_ x s(Y) = s(X) for all

X Ewy

(ii) the mean of s over the boundary of any closed ball in w is greater than

or equal to its value at the centre.

Notes. (I) A function h is harmonic (i.e. h satisfies Laplace’s equation) if

and only if both A and —A are subharmonic.

(II) If f is analytic on C and f # 0, then log|[f| is subharmonic. (Here we are

identifying C with R? in the usual way).

(IIT) Condition (ii) above can be replaced by (ii'): for any open set W with |
compact closure in w, and for any continuous function A ou W which is har-

monic on W and satisfies A > s on W, we have h > s on W.
(IV) Although it is usual to work with subharmonic functions on open subsets

of R"™, where n > 2, the definition also makes sense for n = 1. We discuss this

further at the end of Section 3.

2 Convexity Theorems

If 5 is a non-negative subharmonic function on R™~! x (0, 1), put

M(z,) = /Ru_l s(zy, .. .,znjdzl cdzaoy (0<z, <1).

The following analogue of the Three Lines Theorem is essentially due to Hardy,

Ingham and Pélya [8] in the case n = 2. (See also [13, 9]).

Theorem 1 If M(-) is locally bounded on (0, 1), then it is convex.

Proof (n=2). Let 0 < o < # < 1, and choose a, b such that ay +b = M(y)
for y = o, 8. Now define

he(z,y) = ay + b + e cosh(wrz) sin(wy)
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(2 harmonic function), and

I3
ul(:v,y):/ s(z +t,y)dt,
—t

which is subharmonic because it is finite valued, u.s.c. (by Fatou’s Lemma)
and submeanvalued (by Tonelli’s Theorem). Also u, < h. on R x {a, 8} and

ul(zay) - he(zy y) — —Q0 (lzi — 00, & S Yy S /B)!

so (cf. (ii') above) uy < he on R x [a, A]. Letting € — 0+ and £ — oo, we get
M(y) < ay+b for y € o, B, proving convexity.

Question. Is local boundedness the “right” condition?

The hypothesis cannot be dispensed with entirely. To give some idea of pos- -
sible behaviour we give below a few simple examples when n = 2.

Examples (1) s(z,y) = 1; M(y) = +oo.

(ii) s(z,y) = €| sin 7yl;

M(y)={0 ifye{0,3,1}
+co  otherwise.

xey
y+1°

M(y)a

o o e ]
[T SR S e
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Thus M(-) may be everywhere infinite, or everywhere finite, or neither.
Even if M(-) is always finite, it need not be convex.

Theorem 2. If M(-) is locally integrable on (0, 1), then it is finite and con-
Vex.

This result, due to Kuran [10], shows that convexity holds provided we re-
strict the type of discontinuity that is allowed to occur. It was substantially

improved when Rippon [12] applied a result of Domar to obtain the following.

Theorem 3. If logt M(-) is locally integrable on (0,1), then M(-) is finite

and convex.

It was also shown in [12] that the hypothesis here is best possible, so the

convexity property of M(-) is now satisfactorily described. However, we will
mention a recent generalization [7] which shows what happens when integra-

tion of s is carried out with respect to fewer of the co—ordinates.

3 A Generalization

A subset E of w is called polar if there is a subharmonic function on w which
takes the value —oo on E. A function s is said to be quasi-subharmonic if
the function 3(X) = limsupy _, y s(Y) is subharmonic, and 3 equals s except

on a polar set.
Let X = (X', X")e R"™™ x R™, (2<m<n-1), and put

P(s, X") = / (X, X")dX,
Rﬂ-—m

Peo(s, X") = sup{s(X', X") : X' e R""™}.

Theorem 4. Let s be subharmonic on R"™™ x (0,1)™.

‘

(i) If{log+ P(st, -)}m-*‘6 is locally integrable on (0,1)™, then P(s,-) is either
subharmonic on (0,1)™ or identically valued —co.

i) If {log™ Po(sT,- ™ s locally integrable on (0,1)™, then Py(s,-) is
g
quasi-subharmonic on (0,1)™.

Notes . The hypotheses can be weakened slightly [7]. A version of (i) with
stronger hypotheses was proved independently by Aikawa [1].
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Example. To see that, in (ii), quasi-subharmonicity is the best that can
be said, let E be a polar subset of (0,1)™ (m > 2), and let u be a negative
subharmonic function taking the value —co on E. Then the function s{(X) =
—{~u(X") 1Xi2'"}1/2 can be shown to be subharmonic on R"™™ x (0, )™,
and clearly
uy _ J —oo Hu(X")=-—co
Pools, X7) = {0 elsewhere on (0, 1)™.

Consider now the notions of harmonicity and subharmonicity for functions
of one real variable. A “harmonic” function h must satisfy d*h/dz® = 0,
so h(z) = az + b. From condition (ii') of §1, if a “subharmonic” function s
satisfies s(z) < h(z) at ¢ = a, 8, the same inequality holds for z € (e, 8), so s
is convex. Since it is impossible for a convex function to take the value —co,
the only polar subset of R is the empty set. Hence, in R, the terms “convex”,
“subharmonic” and “quasi-subharmonic” are synonymous. Thus Theorem 4
generalizes (in different ways) Theorems 1 — 3 and the Three Lines Theorem.

4 Growth Theorems

We now consider analogues for M(-) of the Principle of Removable Singu-
larities. In what follows, we assume that s is a non—negative subharmonic
function on the half-space R~ ! x (0,+c0), and that M(-) is finite and con-
vex on (0, +00). We also note that, if M(-) is bounded on (a, +co) for some
a> 0, then M(-) is decreasing (wide sense).

The following is due to Flett [6].

Theorem 5. If M(y) = O(y*~!) as y — oo, then M(-) is decreasing.

Proof Let B(X,r) denote the open ball of centre X and radius r, and let
v denote the volume of B(O, 1). By hypothesis there exists ¢ > 0 such that
M(y) <cy*~!forally> ;. If ¢, > 1, then

1
(2 /2)" JB(x,20/2)
s
V(20 /2)" JR™ % (2n/2,320/2)

1 32‘/2
= M(y)dy
(onf2) /, @)

s(X)

IA

s(Y)dy  (cf §1, (ii))

(Y)dY
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3z./2
zn/2 —~ / s y"~ ! dy = constant.

Thus s is bounded on R™™! x [1, +00), and it follows that s is majorized by
its Poisson integral I, on R™™! x (1,00). Hence

M(mn):‘/ _ls(X)d:cl‘..d:zn_lg/ n_lL(X)d:cl.”dmn_l:M(l)
(:zzn>1f

by Tonelli’s theorem, and so M(-) is bounded on (1, +o0).

In fact, Kuran [10] showed that the exponent in Theorem 5 can be m
creased. 5
Theorem 6. If M(y) = o(y™), then M(-) is decreasing.

Example . To see that the exponent cannot be further increased in the
case n =2, let « > 1 and .

S(Teiﬂ) - {.,.a cos (6 — 1'2—) (IQ—- %' < 27'_[1)

0 (otherwise).

Then s is subharmonic on R x (0, +oco) and M (y) = const. yett for y > 0
(For n > 3, a similar example is based on Legendre functions).

However, Nualtaranee [11] was able to refine Kuran’s hypothesis.

Theorem 7. If M(y) =

The problem of finding the “correct” condition is now clearly down to a matter
of “fine tuning”. A contribution in this direction was obtained by Rippon [12]
using a result of Dahlberg about minimally thin sets in half-spaces.

O(y™), then M(-) is decreasing.

Theorem 8. If s has a harmonic majorant on R"*™" x (0, +co) and
f min[l, {y/M(y) }1/ T 1)} dy = 400, (*)
1

then M(-) is decreasing.

Condition (*) was also shown to be the best possible. Using the convexity o
M (-) it can be seen that (x) is implied by the condition lim infy oo ¥y "M (y) ¢
+o0. It is now not difficult to obtain the following improvement of Theorem
7.
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Corollary. Ifliminfy_. e y™" M (y) < +oco then M(-) is decreasing.

Open Question . Can the hypothesis about the harmonic majorant be
removed from Theorem 87

This question appears to be difficult. If the answer is “yes”, then Rippon’s
condition (x) is best possible [12].

5 An Extension

We mention now a recent result [3] which shows what can be said about
the gr'owth of 'M (-) = M(s,-) when we drop the requirement that s be non-
negative. Again, s denotes a subharmonic function on R™™! x (0, +-00).

Theorem 9. Iflogt M(st,y) = o(y) and

/1 y " M (s, y)dy < +oo,

then M(s,-) and M(s*,-) are decreasing, and M(s™,y) = o(y).

The proof of Theorem 9 begins by estimating the distributional Laplacian
of s 1on strips and using this to show that s has a harmonic majorant on
R™™" x (0, +00). With regard to the sharpness of the result we mention the
following. (i) If log* M(st*,y) = O(y), then all three conclusions fail. (ii) If
we replace y~"~! by y~""17¢, the counterexample of §4 (mvolvmg Legendre
functlf)ns) applies. (iii) The concluswn about M(s~,-) is best possible in
that, if ¢(y) decreases to 0 as y — +co, then there is a negative subharmonic
function s such that M(s™,y) > yé(y).

6 Other Results

A number of papers have dealt with M(® o s,-), where & is an increasing
convex function (whence @ o s is subharmonic). We mention here only th;
case ®(z) = z”, where p > 1. The following is a refinement of a result of
Brawn [4] in the light of Theorem 3.

Theorem 10. If s is non-negative and subharmonic on R~ ! x (0,1) and
log™ M(s?,-) is locally integrable on (0,1), then {M(sp, -)}llp is finite and

convex.
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The convexity property here is replaced by subharmonicity if we integrate onl
over R"™™ as in §3, (see [6]). With regard to growth theorems, we mentio
the following result of Armitage [2].

Theorem 11. If s is non-negative and subharmonic on R™~! x (0, 4+0c0) an
M(s?,y) = O(y™*+P~1) as y — 4co, then M (sP,y) decreases to 0 as y — +-co

Thus, with s replaced by the “strongly subharmonic” function s?
weaken the hypotheses of Theorem 7 and strengthen the conclusion.

, We ca
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