leads to the same linearized value, here λ, μ are ordinary numbers.

Case (ii): A, B anti-commute; that is, AB = -BA, which will be the case when A and B are fermion operators. In that case, consistency demands that λ and μ anti-commute with one another, and also with the operators A, B, then λ, μ may be taken as Grassmann or Clifford numbers.

Thus a general hamiltonian, after linearization by this method, will look naturally like an element of a superalgebra, with $A_{\bar{1}}$ -type elements multiplied by Grassmann (or Clifford) numbers, just as in the simple example above. This approach has recently been used to give a superlagebraic model of superconductivity [6].

References

- [1] J.J. Gray, Archive for History of Exact Sciences 21 (375), 1980.
- [2] J.L. Synge, Communications of the Dublin Institute for Advanced Studies, Series A, No. 21, 1972.
- [3] L. Kaufmann, Private Communication.
- [4] For an Elementary introduction see P.G.O. Freund, Introduction to Super-symmetry, Cambridge Univ. Press, 1986.
- [5] I. Bars, Supergroups and their Representations, in "Applications of Group Theory and Physics and Mathematical Physics", M. Flato et. al. (eds.), A.M.S. Lectures in Applied Mathematics 21, Providence, 1988.
- [6] A. Nontarsi, M. Rasetti and A.I. Solomon, Dynamical Superalgebra and Supersymmetry for a Many-Fermion System (to be published).

Faculty of Mathematics
Open University, Milton Keynes, UK

Integrals of Subharmonic Functions

Stephen J. Gardiner

This article reviews a problem concerning potential theory in \mathbb{R}^n which has its roots in classical complex analysis. One of the interesting features of the problem is the way in which the solution has gradually emerged, sometimes in a surprising fashion. The article is based on a lecture given at the First September Meeting of the Society, held at Trinity College, Dublin.

1 Background in C

Let N(f,r) denote the maximum modulus of an analytic function f on the circle $\{z \in \mathbb{C} : |z| = r\}$. The starting point for our discussion is provided by the following facts from elementary complex analysis.

Hadamard's Three Circles Theorem. If f is analytic on $\{|z| < R\}$ and $f \not\equiv 0$, then $\log N(f, r)$ is convex as a function of $\log r$.

Principle of Removable Singularities. If f is analytic on $\{0 < |z| < R\}$ and $rN(f,r) \to 0$ as $r \to 0+$, then f has an analytic continuation to $\{|z| < R\}$.

The latter result is saying that either N(f,r) behaves badly near 0 or else 0 is a removable singularity for f, in which case N(f,r) is continuous at 0. The Three Circles Theorem has the following analogue for suprema over lines. (See [14, p.180] for an important application of this result in the proof of the M. Riesz convexity theorem.)

Three Lines Theorem. Let f be bounded and analytic on $\mathbb{R} \times (0,1)$, continuous on $\mathbb{R} \times [0,1]$, and let $f \not\equiv 0$. Then

$$y\mapsto \sup\Bigl\{\log\bigl|f(x+iy)\bigr|:x\in\mathbf{R}\Bigr\}$$

defines a convex function on [0, 1].

Integrals of Subharmonic Functions

We will be concerned with analogues of the above results for integrals of sub-harmonic functions. We recall that a function s defined on a connected open subset ω of \mathbf{R}^n $(n \geq 1)$ and taking values in $[-\infty, +\infty)$ is called *subharmonic* if $s \not\equiv -\infty$ and:

- (i) s is upper semicontinuous (u.s.c.), i.e. $\limsup_{Y\to X} s(Y) = s(X)$ for all $X\in\omega$;
- (ii) the mean of s over the boundary of any closed ball in ω is greater than or equal to its value at the centre.

Notes. (I) A function h is harmonic (i.e. h satisfies Laplace's equation) if and only if both h and -h are subharmonic.

(II) If f is analytic on C and $f \not\equiv 0$, then $\log |f|$ is subharmonic. (Here we are identifying C with \mathbb{R}^2 in the usual way).

(III) Condition (ii) above can be replaced by (ii'): for any open set W with compact closure in ω , and for any continuous function h on \overline{W} which is harmonic on W and satisfies h > s on ∂W , we have h > s on W.

(IV) Although it is usual to work with subharmonic functions on open subsets of \mathbb{R}^n , where $n \geq 2$, the definition also makes sense for n = 1. We discuss this further at the end of Section 3.

2 Convexity Theorems

If s is a non-negative subharmonic function on $\mathbb{R}^{n-1} \times (0,1)$, put

$$M(x_n) = \int_{\mathbb{R}^{n-1}} s(x_1, \dots, x_n) dx_1 \dots dx_{n-1} \quad (0 < x_n < 1).$$

The following analogue of the Three Lines Theorem is essentially due to Hardy, Ingham and Pólya [8] in the case n = 2. (See also [13, 9]).

Theorem 1 If $M(\cdot)$ is locally bounded on (0,1), then it is convex.

Proof (n=2). Let $0 < \alpha < \beta < 1$, and choose a,b such that ay + b = M(y) for $y = \alpha, \beta$. Now define

$$h_{\epsilon}(x,y) = ay + b + \epsilon \cosh(\pi x) \sin(\pi y)$$

(a harmonic function), and

$$u_\ell(x,y) = \int_{-\ell}^\ell s(x+t,y) dt,$$

which is subharmonic because it is finite valued, u.s.c. (by Fatou's Lemma) and submeanvalued (by Tonelli's Theorem). Also $u_{\ell} \leq h_{\epsilon}$ on $\mathbb{R} \times \{\alpha, \beta\}$ and

$$u_{\ell}(x,y)-h_{\epsilon}(x,y)
ightarrow -\infty \quad (|x|
ightarrow \infty, \,\, lpha \leq y \leq eta),$$

so (cf. (ii') above) $u_{\ell} \leq h_{\epsilon}$ on $\mathbb{R} \times [\alpha, \beta]$. Letting $\epsilon \to 0+$ and $\ell \to \infty$, we get $M(y) \leq ay + b$ for $y \in [\alpha, \beta]$, proving convexity.

Question. Is local boundedness the "right" condition?

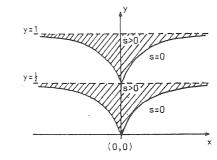
The hypothesis cannot be dispensed with entirely. To give some idea of possible behaviour we give below a few simple examples when n=2.

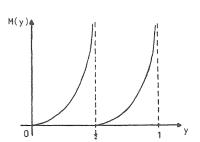
Examples (i) $s(x, y) \equiv 1$; $M(y) \equiv +\infty$.

(ii)
$$s(x,y) = e^{2\pi x} |\sin \pi y|$$
; $M(y) = \begin{cases} 0 & \text{if } y \in \{0, \frac{1}{2}, 1\} \\ +\infty & \text{otherwise.} \end{cases}$

(iii)
$$s(x,y) = \frac{e^y}{x^2 + (y+1)^2};$$
 $M(y) = \frac{\pi e^y}{y+1}.$

(iv)





Thus $M(\cdot)$ may be everywhere infinite, or everywhere finite, or neither. Even if $M(\cdot)$ is always finite, it need not be convex.

Theorem 2. If $M(\cdot)$ is locally integrable on (0,1), then it is finite and convex.

This result, due to Kuran [10], shows that convexity holds provided we restrict the type of discontinuity that is allowed to occur. It was substantially improved when Rippon [12] applied a result of Domar to obtain the following.

Theorem 3. If $\log^+ M(\cdot)$ is locally integrable on (0,1), then $M(\cdot)$ is finite and convex.

It was also shown in [12] that the hypothesis here is best possible, so the convexity property of $M(\cdot)$ is now satisfactorily described. However, we will mention a recent generalization [7] which shows what happens when integration of s is carried out with respect to fewer of the co-ordinates.

A Generalization 3

A subset E of ω is called polar if there is a subharmonic function on ω which takes the value $-\infty$ on E. A function s is said to be quasi-subharmonic if the function $\widehat{s}(X) = \limsup_{Y \to X} s(Y)$ is subharmonic, and \widehat{s} equals s except on a polar set.

Let $X = (X', X'') \in \mathbb{R}^{n-m} \times \mathbb{R}^m$, $(2 < m \le n-1)$, and put

$$P(s,X'') = \int_{\mathbf{R}^{n-m}} s(X',X'') dX',$$

$$P_{\infty}(s,X'') = \sup \{s(X',X'') : X' \in \mathbf{R}^{n-m}\}.$$

Theorem 4. Let s be subharmonic on $\mathbb{R}^{n-m} \times (0,1)^m$.

- (i) If $\{\log^+ P(s^+,\cdot)\}^{m+\epsilon}$ is locally integrable on $(0,1)^m$, then $P(s,\cdot)$ is either subharmonic on $(0,1)^m$ or identically valued $-\infty$.
- (ii) If $\{\log^+ P_{\infty}(s^+,\cdot)\}^{m+\epsilon}$ is locally integrable on $(0,1)^m$, then $P_{\infty}(s,\cdot)$ is quasi-subharmonic on $(0,1)^m$.

Notes . The hypotheses can be weakened slightly [7]. A version of (i) with stronger hypotheses was proved independently by Aikawa [1].

Example. To see that, in (ii), quasi-subharmonicity is the best that can be said, let E be a polar subset of $(0,1)^m$ $(m \ge 2)$, and let u be a negative subharmonic function taking the value $-\infty$ on E. Then the function s(X) = $=\{-u(X'')|X|^{2-n}\}^{1/2}$ can be shown to be subharmonic on $\mathbb{R}^{n-m}\times(0,1)^m$,

 $P_{\infty}(s, X'') = \begin{cases} -\infty & \text{if } u(X'') = -\infty \\ 0 & \text{elsewhere on } (0, 1)^m. \end{cases}$

Consider now the notions of harmonicity and subharmonicity for functions of one real variable. A "harmonic" function h must satisfy $d^2h/dx^2 \equiv 0$, so h(x) = ax + b. From condition (ii') of §1, if a "subharmonic" function s satisfies s(x) < h(x) at $x = \alpha, \beta$, the same inequality holds for $x \in (\alpha, \beta)$, so s is convex. Since it is impossible for a convex function to take the value $-\infty$, the only polar subset of R is the empty set. Hence, in R, the terms "convex", "subharmonic" and "quasi-subharmonic" are synonymous. Thus Theorem 4 generalizes (in different ways) Theorems 1 - 3 and the Three Lines Theorem.

Growth Theorems 4

We now consider analogues for $M(\cdot)$ of the Principle of Removable Singularities. In what follows, we assume that s is a non-negative subharmonic function on the half-space $\mathbb{R}^{n-1} \times (0, +\infty)$, and that $M(\cdot)$ is finite and convex on $(0, +\infty)$. We also note that, if $M(\cdot)$ is bounded on $(a, +\infty)$ for some a > 0, then $M(\cdot)$ is decreasing (wide sense).

The following is due to Flett [6].

Theorem 5. If $M(y) = O(y^{n-1})$ as $y \to +\infty$, then $M(\cdot)$ is decreasing.

Proof Let B(X, r) denote the open ball of centre X and radius r, and let ν denote the volume of B(O,1). By hypothesis there exists c>0 such that $M(y) \le cy^{n-1}$ for all $y \ge \frac{1}{2}$. If $x_n \ge 1$, then

$$s(X) \leq \frac{1}{\nu(x_{n}/2)^{n}} \int_{B(X,x_{n}/2)} s(Y) dY \quad (cf \S 1, (ii))$$

$$\leq \frac{1}{\nu(x_{n}/2)^{n}} \int_{\mathbb{R}^{n-1} \times (x_{n}/2,3x_{n}/2)} s(Y) dY$$

$$= \frac{1}{\nu(x_{n}/2)^{n}} \int_{x_{n}/2}^{3x_{n}/2} M(y) dy$$

$$\leq \frac{c}{\nu (x_n/2)^n} \int_{x_n/2}^{3x_n/2} y^{n-1} dy = \text{constant.}$$

Thus s is bounded on $\mathbb{R}^{n-1} \times [1, +\infty)$, and it follows that s is majorized by its Poisson integral I_s on $\mathbb{R}^{n-1} \times (1, \infty)$. Hence

$$M(x_n) = \int_{\mathbb{R}^{n-1}} s(X) dx_1 \dots dx_{n-1} \le \int_{\mathbb{R}^{n-1}} I_s(X) dx_1 \dots dx_{n-1} = M(1)$$
 $(x_n > 1)$

by Tonelli's theorem, and so $M(\cdot)$ is bounded on $(1, +\infty)$.

In fact, Kuran [10] showed that the exponent in Theorem 5 can be increased.

Theorem 6. If $M(y) = o(y^n)$, then $M(\cdot)$ is decreasing.

Example. To see that the exponent cannot be further increased in the case n = 2, let $\alpha > 1$ and

$$s(re^{i heta}) = \left\{egin{array}{ll} r^{lpha}\coslpha(heta-rac{\pi}{2}) & \left(| heta-rac{\pi}{2}|<rac{\pi}{2lpha}
ight) \ 0 & ext{(otherwise)}. \end{array}
ight.$$

Then s is subharmonic on $\mathbf{R} \times (0, +\infty)$ and $M(y) = \text{const. } y^{\alpha+1}$ for y > 0 (For $n \geq 3$, a similar example is based on Legendre functions).

However, Nualtaranee [11] was able to refine Kuran's hypothesis.

Theorem 7. If $M(y) = O(y^n)$, then $M(\cdot)$ is decreasing.

The problem of finding the "correct" condition is now clearly down to a matter of "fine tuning". A contribution in this direction was obtained by Rippon [12] using a result of Dahlberg about minimally thin sets in half-spaces.

Theorem 8. If s has a harmonic majorant on $\mathbb{R}^{n-1} \times (0,+\infty)$ and

$$\int_{1}^{\infty} \min\left[1, \left\{y/M(y)\right\}^{1/(n-1)}\right] dy = +\infty, \tag{9}$$

then $M(\cdot)$ is decreasing.

Condition (*) was also shown to be the best possible. Using the convexity of $M(\cdot)$ it can be seen that (*) is implied by the condition $\liminf_{y\to+\infty} y^{-n}M(y) + \infty$. It is now not difficult to obtain the following improvement of Theorem 7.

Corollary. If $\lim \inf_{y \to +\infty} y^{-n} M(y) < +\infty$ then $M(\cdot)$ is decreasing.

Open Question. Can the hypothesis about the harmonic majorant be removed from Theorem 8?

This question appears to be difficult. If the answer is "yes", then Rippon's condition (*) is best possible [12].

5 An Extension

We mention now a recent result [3] which shows what can be said about the growth of $M(\cdot) = M(s, \cdot)$ when we drop the requirement that s be non-negative. Again, s denotes a subharmonic function on $\mathbb{R}^{n-1} \times (0, +\infty)$.

Theorem 9. If $\log^+ M(s^+, y) = o(y)$ and

$$\int_1^\infty y^{-n-1}M(s,y)\,dy<+\infty,$$

then $M(s,\cdot)$ and $M(s^+,\cdot)$ are decreasing, and $M(s^-,y)=o(y)$.

The proof of Theorem 9 begins by estimating the distributional Laplacian of s on strips and using this to show that s has a harmonic majorant on $\mathbb{R}^{n-1}\times(0,+\infty)$. With regard to the sharpness of the result we mention the following. (i) If $\log^+ M(s^+,y) = O(y)$, then all three conclusions fail. (ii) If we replace y^{-n-1} by $y^{-n-1-\epsilon}$, the counterexample of §4 (involving Legendre functions) applies. (iii) The conclusion about $M(s^-,\cdot)$ is best possible in that, if $\phi(y)$ decreases to 0 as $y\to +\infty$, then there is a negative subharmonic function s such that $M(s^-,y)\geq y\phi(y)$.

6 Other Results

A number of papers have dealt with $M(\Phi \circ s, \cdot)$, where Φ is an increasing, convex function (whence $\Phi \circ s$ is subharmonic). We mention here only the case $\Phi(x) = x^p$, where p > 1. The following is a refinement of a result of Brawn [4] in the light of Theorem 3.

Theorem 10. If s is non-negative and subharmonic on $\mathbb{R}^{n-1} \times (0,1)$ and $\log^+ M(s^p,\cdot)$ is locally integrable on (0,1), then $\{M(s^p,\cdot)\}^{1/p}$ is finite and convex.

The convexity property here is replaced by subharmonicity if we integrate only over \mathbb{R}^{n-m} as in §3, (see [6]). With regard to growth theorems, we mention the following result of Armitage [2].

Theorem 11. If s is non-negative and subharmonic on $\mathbb{R}^{n-1} \times (0, +\infty)$ and $M(s^p, y) = O(y^{n+p-1})$ as $y \to +\infty$, then $M(s^p, y)$ decreases to 0 as $y \to +\infty$.

Thus, with s replaced by the "strongly subharmonic" function s^p , we can weaken the hypotheses of Theorem 7 and strengthen the conclusion.

Acknowledgement . I am grateful to David Armitage for his assistance in compiling this account.

References

- [1] H. Aikawa, On subharmonic functions in strips, Ann. Acad. Sci. Fenn., Ser. A.I. Math. 12 (1987), 119-134.
- [2] D. H. Armitage, On hyperplane mean values of subharmonic functions, J. London Math. Soc. (2) 22 (1980), 99-109.
- [3] D. H. Armitage and S. J. Gardiner, The growth of the hyperplane mean of a subharmonic function, J. London Math. Soc. (2) 36 (1987), 501-512.
- [4] F. T. Brawn, Hyperplane mean values of subharmonic functions in $\mathbb{R}^n \times]0, 1[$, Bull. London Math. Soc. 3 (1971), 37-41.
- [5] F. T. Brawn, Mean values of strongly subharmonic functions on half-spaces, J. London Math Soc. (2) 27 (1983), 257-266.
- [6] T. M. Flett, Mean values of subharmonic functions on half-spaces, J. London Math. Soc. (2) 1 (1969), 375-383.
- [7] S. J. Gardiner, Integrals of subharmonic functions over affine sets, Bull. London Math. Soc. 19 (1987), 343-349.
- [8] G. H. Hardy, A. E. Ingham and G. Pólya, Notes on moduli and mean values, Proc. London Math. Soc. (2), 27 (1928), 401-409.
- [9] Ü. Kuran, Classes of subharmonic functions in $\mathbb{R}^n \times (0, +\infty)$, Proc. London Math. Soc. (3), 16 (1966), 473-492.

- [10] Ü. Kuran, On hyperplane means of positive subharmonic functions, J. London Math. Soc. (2), 2 (1970), 163-170.
- [11] S. Nualtaranee, On hyperplane means of non-negative subharmonic functions, J. London Math. Soc. (2), 7 (1973), 48-54.
- [12] P. J. Rippon, The hyperplane mean of a positive subharmonic function,
 J. London Math. Soc. (2), 27 (1983), 76-84.
- [13] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I. The theory of H^p-spaces, Acta Math. 103 (1960), 25-62.
- [14] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1971.

Department of Mathematics University College, Dublin.