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The fact that I is considered as a labelled directed graph may spoil the
pleasure of some people so it is worth while pointing out that the.re is a simple
means to replace a labelled directed graph by an unlabelled undirected graph
with the same automorphism group, as follows:

We suppose the graph is labelled by a finite set, {z1,...2n}. If the edge
from v to w is labelled with z; replace that edge by the subgraph:

21-1
Vv )
21-2 21-
v . VVV '
21-3
Uyy
2
usv Vyv
1 vl
Uyy vy
Y a,, Vo W

Thus we replace the edge by a path v, Uyw, Vew, W, at vertex Uy, WE z'attach a
new path of length 2i — 2 and at v,,, a new path of length 27 — 1. This labels

the edge in a purely graph theoretic way.
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Algebra and Superalgebra

Allan Solomon

This article is based on a talk given by the author to the Dublin
University Mathematical Society on April 30, 1987.

On this 210th Anniversary of Gauss’ birthday, I should like to start off by
referring to the Fundamental Theorem of Algebra, for which Gauss gave four
proofs. The assertion of this theorem—that every polynomial equation has
a root—must be interpreted by extending the real numbers to the complex,
Le., every polynomial over the real numbers has a (complex) root. In fact,
the theorem remains true if we extend to polynomials over the complex field;
the complex numbers are algebraically closed. We may, however, extend the
complex numbers in an elegant and non-trivial way to the quaternions. The
system of quaternions A provides us with our first example of an algebra. An
algebra A is a linear space over a field F, on which a multiplication, having
the usual distributive properties, is defined. Essentially, we have

ar+PBye A and zyec A (2,9 € A o, € F),

with
(az)y = a(zy),
(az + By)z = azz + Pyz,
z{az + By) = azz + Bzy

Here «, 3 are elements of the field F over which the linear space Ais defined;
in the usual applications this will be the real field R on the complex field C.
An algebra may, or may not, have the associative property;
(zy)z = 2(yz) Vz,y,z € A.

Ifit does, it is called an associative algebra. In general, the algebras and super-
algebras of my title are not associative algebras. However, most algebras that
have applications may be represented by matrices; and since matrices multiply
associatively, we may effectively embed our algebras in associative algebras.
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However, our algebras will not be commutative; that is oy # yz is general.
The quaternions are a non-trivial extension of the complex numbers because
they form a non-commutative system, perhaps the earliest such example. Let
us look more closely at this example.

A quaternion g is written g = a + Ai+ pj + vk (o, A, p,v € R); 50, as a
vector space, M is 4-dimensional, with basis {1,4,7,k}. In order to define H
as an algebra, we must give a multiplication table for the basis elements; and
these are the famous relations of Hamilton:

P=2=k=-1; ij=—j-i=k, j-k=—k-j=i, h-i=-i-k=1j.

So we see the non-commutativity in, for example i-j = —j - 4.
How would such a non-commutativity, so non-intuitive from our experience

with school alebra, arise naturally,? It arose naturally in a geometric context.
Consider the rotations of a sphere in R® with its centre at the origin.

First we have rotate the sphere by an angle 7/2 about the (fixed in space)
K-axis, followed by a 7/2 rotation about the J-axis. Now we perform these
two operations in reverse order; a /2 roration about J followed by a 7/2
rotation about K. It is easy to see that the resulting position of the sphere
is not he same in the two cases. These operations, of rotating the sphere, do
not commaute.

In fact, the operation of rotating the sphere through an angle 6 about an
axis through its centre may be represented by a quaternion

g=a-+ i+ puj+ vk,

where o = tan 6/2, and the axis has direction cosines (cos f, cos g, cos h) given

by
] 6 8
A=tan—-cosf p=tan—-cosg v =tan—cosh.
2 2 2
The rotation of the sphere is given by
i+ yj+ 2 = g(zi+yj + zk)g
where i+ yj + zk is a unit quaternion (z? + y% + 22 = 1) and so represents

a point on the surface of the sphere.
For example, the first of the two rotations used above is given by ¢; = 1+k

(8 = /2, and the axis contains (0,0, 1)) The second is given by g = 1+ 3. If _
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we take the point k on the sphere, we have:

(a) Applying first g; and then g3: k — qikq7' = (1 + k)k(1 — k)/2
(L+)k(1-3)/2=1

(b) Applying first ¢ and then q;: k — Qqu;I =(@+D1-5)/2 =i
quigrt = (1+ B)i(1 — h)/2 = 7.

I
!

This discovery of the connection between quaternions and rotations was
made by Gauss in 1819, pre-dating Hamilton’s work by almost a quarter of a
century. However, Gauss did not publish it. The result was given in a paper
of Olinde Rodrigues (1840) again pre-dating Hamilton, by three years. (I am
indebted to my Open University colleague, Jeremy Gray for referring me to
his article in the Archive for History of Exact Sciences where the details on
this discovery of quaternions are laid out.)

Quaternions are not much used nowadays, mainly because they can be
represented by the more familiar matrices with complex or real entries (see
Diagram (a)). This is a pity. They do have their enthusiasts still, however.

A MATRIX REPRESENTATION OF THE QUATERNIONS

=) = (0T

ij=k jk=i, ki=j

2 _ 2213 10 _
=3 = (0 1)_—1

These matrices are equivalent to the Pauli Spin Matrices

Diagram (a)

Symplectic groups—much used in dynamics and physics—have their most
elegant expression in terms of quaternionic matrices—although again, these
groups may be expressed otherwise. The fact that a quaternion is al element
of a 4-dimensional space would seem to indicate a possible use in relativyity;
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however, the quaternion

g=a+ Ai+pj+ vk
has a natural norm
llgll? = @+ A% + p? + 02,

while the relativistic theory would require a form such as —a2+ A%+ 2 412,
For this reason, Professor John Synge introduced Minkowski quaternions [2]
or minguats for short (called physical quaternions by Silberstein in 1912)

bl

=44 +q11+ q27 + g3k

where g4 is a pure imaginary (¢4 = v/—1la, o real). Now it is easy to see that .

if we multiply two minquats g, ¢’ together, the scalar term gag) is no longer
pure imaginary, and so the result is not a minquat. Thus minquats do not
form an algebra. However, the general quaternions with complex coefficients
do form an algebra, called biquaternions by Hamilton. The most amusing use
of biquaternions I know is due to Louis Kaufman [3]: Define

H= Hli'f’sz‘*' H3k,
J = J1i+J2j+J3k,

E - Ell + Egj -+ E3IC,
F=H++-1E,
and define the operators D and V by:

gl 0.0
—— mm— 1 e —
oz Byj Oz

D:\/—1%+v

Then the six electrodynamics equations of Maxwell may be written as the
single biquaternionic equation

k,

DF:\/-*lp—}-J

The quaternions form a system very like ordinary numbers, in that we may
add and subtract, multiply and divide. Technically, they form a Division Ring.
But we have lost the commutativity of the real and of the complex numbers.
If we relax associativity, we may define one final division ring, the octonions
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of Cayley. I say a final division ring, for it may .be shown that the;e‘are no
others. The property which you cannot preserve is .thfe absence of divisors of
gero; that is when two non-zero elements are multl.phe:d togfether, the res'ult
cannot be zero. Quaternions have this property, which is equivalent to saying
that every non-zero element has an inverse: Thus, if

ge€H, g=a+ri+pj+rvk#0

then 1 (@=Xi—pj—vk)
- (a2+A2+[J3+U2)‘

Biquaternions to not have this property’ that is, they have divisors of zero:
(V=14 k) (v/-1—k)=0.

A more important contribution of Cayley is the idea of a matrix. Sets of
matries (over R or C, for examples) form Algebras; and the Algebras and
Superalgebras I wish to consider in the sequel may all be represented by ma-

trices.

Clifford Algebras and Grassman Algebras

In passing, I should like to refer to two sorts of algebra which have many
applications nowadays Clifford (1845-1879) Algebras and Grassmann (1809-
1877) Algebras. These are both associative algebras.

First of all, Clifford Algebras. We take a basis {e1,e2,...,¢e,} for a real k-
dimensional vector space, and then define a multiplication of the basis vectors:

(i+#3)

€85 — —¢€5€

e? = —1.

By this means we define an algebra—we generate an algebra, since we are
allowed products. But due to the reduction we can make if two elements ina
product are equal (e.g., e1e2e183 = —€j€1€3€3 = €ze3) we need only consider
products in which all the basis vectors are unequal; so the algebra has for
basis

1 (noe’s), e, eej, €1€3...€;

number of elements: 1 EOEC, 1
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The total number of elements in the basis for the algebra is
1+5C +5C, + .+ Gy =1+ 1) =2*
Let us consider some cases of Clifford Algebras:
1. k = 1:-2! elements,basis {1, e1,e? = —1}, A = C, the Complex Numbers
2. k = 2: 22 elements, basis {1,e;, ez, e1e2}, A = H, the Quaternions.
3. k = 3: 2% elements, basis {1,ei,€ei,¢e5,e1e0e3}, A=ZHBH.

The 16-element case (k = 4) is related to an algebra introduced by Dirac
(1902-85) to describe electromagnetism.

If instead of taking ei = —1, we assume e? = 0, we obtain the Grassmann
Algebras, again of dimension 2*.

Jordan Algebras and Lie Algebras

To introduce the remaining algebras, I wish to talk about, we turn to Quantum
Mechanics. In one formulation, the basic laws of Quantum Mechanics are
algebraic in character; this is the matrix mechanics of Heisenberg (1901-76).
The dynamical quantities @ and P for position and momentum respectively
are to be thought of as Hermitian matrices—since these correspond to real
physical observables.

Hermitian conjugation is a complex conjugation which also reverses the
order of matrices: thus

(At = Bt af, (VIA)T = —v=1a4l.

The operators representing real physical quantities, such as P and Q, are
Hermitian, that is

p=rl, Q=¢"

It would therefore be very nice to form an Algebra of Hermitian matrices.
Ordinary addition is no problem:
(a+Bt=at+Bt+4+B  (4=al B=38h

But
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(aB)t = BTat =Ba# 4B (4= al B=5B".

in general. Nevertheless, it is not too difficult to devise multiplication rules
which preserve hermiticity. These correspond to Jordan Algebras and Lie

Algebras.
Jordan Algebras:
Ax*B=AB+ BA

so that
(a+B) =B+ Ba) =plal y Btat = B4+ aB=4+B.

(Multiplication is always commutative.)
Lie(1842-1899) Algebras:

A+B=AB - BA

This multiplication actually preserves anti-hermiticity. If At = —4gand Bt =
—B, then

(4+B)t = (4B — BA) = (BT at - alBhY=Ba- 4B=-4+B.

But if we consider our physical operator P, Q etc., to be /—1 times an anti-
hermitian operator, this amounts to preserving hermiticity. (Multiplication is
always aliernating or anii-commutative.)

Neither the Jordan nor the Lie Algebras are associative; but for the Lie
Algebras associativity is replaced by the Jacobi identity:

(A«*B)*C+ (B+C)*A+(CxA)«xB=0
It is conventional to write the * operation for Lie algebras as a bracket:
[4,B] = AB - BA
This implies the possibility of embedding the Lie Algebra in an associative
algebra, where (4B)C = A(B) — always possible for Lie Algebras (the

Poincare-Birkhoff-Witt Theorem). However, not every abstract Jordan Al-
gebra is thus obtainable.
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Lie Algebras are the most frequently met in Physics, since the basic op-
erator @ and the momentum operator P, may be expressed as a Lie Algebra
bracket:

Q. P1=QP-PQ=+v=1h1l  (h=10"erg sec)

This relation gives rise to the famous Heisenberg uncertainty principle,
which imposes limits on the simultaneous accuracy of measurement of the
observables Q and P. And the above Lie Algebra, consisting of {@Q, P, 1},1s a
very elementary and very famous Lie Algebra, sometimes called the Heisenberg
algebra. This leads to the very physical Boson and Fermion Algebras.

If we define

b=Q+iP/V2, bl =Q—iP/V2,

then, taking units for which A =1,
XUEr !

gives an even simpler form of this Lie algebra. It is found in applicatins
that the operator b is associated with a particle in Physics with zero spin (or
an even number of spin units of (1/2)A)). Such a particle is called a boson.
Examples are mesons in nuclear physics and, most important of all, the photon
in Quantum Optics.

If by analogy, we assume a similar Jordan algebra for a different operator
f, we get the basic anti-commutation relation

U=t +ir=1 =1

Such a relation is satisfied by particles in physics which possess an odd number
of spin-units. Examples are the particles of the nucleus, neutrons and protons,
and, most importantly, the electron.

The property of a particle obeying either commutation or anti-commutation

relations is called its “statistics”, and can have a profound effect on the ob-
served properties. For example, Helium Four consists of bosons, and becomes
superfluid at about two degrees above absolute zero. The very similar isotope
Helium Three, on the other hand, is a gas of Fermions and becomes superfluid,
only at about under a thousandth of a degree above absolute zero.

If we wish to consider algebras in which both types of statistics are simul-
taneously present, we are led to superalgebras.
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Superalgebras

Superalgebras are simply mixtures of a Lie Algebra with a Jordan Algebra; or,
an algebra which incorporates both the commutation relation of a Lie Algebra
and the anti-commutation of a Jordan Algebra. Physically, we culd call them
boson-fermion algebras. Thus the basic operation is neither commutation
[z,y] = zy — yz, or anti-commutation {z,y} = zy + yz, but an operation
which can be either, depending on the elements z and y.

Abstractly, we write our superalgebra A as a sum of algebras

A= A5 @ Aj;
that is, every element z in A belongs either to 43 or 45;, and
(2,9} = =(=1)*[y, =}

where z € Aq, y € Ag; thus ,8=0: [z,y} = —[y,z} (Lie type)
o,B=1: [z,y} = [y,z} (Jordan type)

a=0,8=1 [z,y} = —~[y,z} (Lie type)

and

[Aa; Ag} C Aatp-

The supersymmetry associated with superaigebras provides a theoretical
framework for some current theories of Particle Physics [4] (although I am
informed it has not been observed to date experimentally) and this idea has
been used in Nuclear Physics and, more recently, in Condensed Solid State
Physics.

We give a simple example of a superalgebra in Diagram (b), representing
the elements of the 4-dimensional algebra 4 by 2 X 2 matrices over R. Note
that although the example may be simple, the algebra .4 is not ‘simple’ in
the technical sense, in that it possesses a (non-trivial) ideal; in fact {al:a €
R} C Ais such an ideal. Just as a complete classification of all the simple Lie

‘Algebras (finite dimensional over fields of characteristic zero) has been given

by E. Cartan (1869-1951) and others, a similar classification has been made
for superalgebras by Victor Kac of M.I.T. (1977).

An interesting confluence of the ideas of Clifford and Grassmann Algebras
with those of Lie Algebras and Superalgebras arises when we consider repre-
sentations of the latter by matrices [5]. We may reduce both types of bracket
(Lie and Jordan) to a single type (Lie) by introducing a representation in
terms of matrices over a Grassmann algebra instead of, say, the reals. We
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AN EXAMPLE OF A SUPERALGEBRA

=(30) =(10)
h=<(1) _01> 1:<é 2)

x,yEAi; h,1 € Ag

A=Az Afls generated by z,y, h, 1.

[;E,y}:my—i—yz:l
[hIz}::hz:-—zh::c
[y} =hy—vh =~y

In all other cases, [a, b} = 0.

Diagram (b)
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illustrate this using our small superalgebra A above. If every element of Ag
is assumed to be multiplied by an element (of the odd part) of a Grassmann
algebra then, for example, since

[e1z, e2y] = e1zeqy — eayerz = erez(zy + yz) = erea(z, ¥}

we obtain closure by consideration only of the commutator (Lie) bracket. (We
assumed in the above that the elements of the Grassmann algebra commuted
with the elements of .4; we may alternatively assume that the e; anti-commute
with Aj, commute with Ag. And since we only used the property eje; =
—eqey, a Clifford algebra would also provide a convenient representation for a
superalgebra.)

We conclude this note by indicating how these algebras may arise when
considering physical systems. The dynamics of such systems are governed by
a hamiltonian H, an operator expressed in terms of other operators of the
theory. The time evolution of an operator A is given by

V=1 %A =[4,H|= AH - HA

where we have a Lie Bracket on the right-hand side. This bracket is a natural
operation when both A and H belong to a Lie Algebra, or a Superalgebra (with
H in the even part Ag). This would occur when, for example, the operators
are linear or bilinear in boson or fermion operators (b, f) described above.
Otherwise, an approximation process (“linearization”) may be used (called
‘Mean Field Theory’ in Many Body Physics). Suppose H = AB, where 4, B
are some operators. We may write the identity

H=AB=(A-A)(B—p)+Ap+ 2B+ Ap.

Typically, A, 4 are thought of as the expectation values of the operators 4, B
respectively in some state w of the system. In the event that we may neglect
the (4 — A)(B — p) term—rationalizing this by assuming we do not consider
states for which opérators 4, B stray far from the w values—we may approx-
imate:

Happrox ~ Aip + AB — Ap.

This approximation is only consistent if
Case (i): 4, B commute; that is, AB = BA and so the approximation for BA
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leads to the same linearized value, here A, i are ordinary numbers.
Case (ii): A4, B anti-commute; that is, AB = —BA, which will be the case

when A and B are fermion operators. In that case, consistency demands that

A and p anti-commute with one another, and also with the operators A4, B,
then A, u may be taken as Grassmann or Clifford numbers.
Thus a general hamiltonian, after linearization by this method, will lock

naturally like an element of a superalgebra, with Ai-type elements multiplied
by Grassmann (or Clifford) numbers, just as in the simple example above.
This approach has recently been used to give a superlagebraic model of su-

perconductivity [6].
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Integrals of Subharmonic Functions

Stephen J. Gardiner

This article reviews a problem concerning potential theory in R™ which has
its roots in classical complex analysis. Omne of the interesting features of the
problem is the way in which the solution has gradually emerged, sometimes
in a surprising fashion. The article is based on a lecture given at the First
September Meeting of the Society, held at Trinity College, Dublin.

1 Background in C

Let N(f,r) denote the maximum modulus of an analytic function f on the
circle {z € C : |z| = r}. The starting point for our discussion is provided by
the following facts from elementary complex analysis.

Hadamard’s Three Circles Theorem. If f is analytic on {]z] < R} and
f #£0, then log N(f, ) is convex as a function of logr.

Principle of Removable Singularities. If f is analytic on {0 < |z| < R}
and rN(f,7) — 0 as r — 0+, then f has an analytic continuation to {]zi <
R}.

The latter result is saying that either N(f,r) behaves badly near 0 or else
0 is a removable singularity for f, in which case N(f,r) is continuous at 0.
The Three Circles Theorem has the following analogue for suprema over lines.
(See [14, p.180] for an important application of this result in the proof of the
M. Riesz convexity theorem.)

Three Lines Theorem. Let f be bounded and analytic on R x (0,1), con-
tinuous on R x [0,1}, and let f # 0. Then

Y- sup{loglf(:z: + iy){ iz € R}

defines a convex function on [0, 1].
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