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ARTICLES

Group Presentations, Topology and Graphs

Timothy Porter

A few years ago John McDermott wrote a short article [1] for the Newslet-
ter, as it was then called. This article takes up the relationship studied briefly
in his article and looks at several other uses of simple graph-theoretic ideas
in the study of group presentations. The level of graph theory involved is not
much deeper than that used in his article The material is used quite success-
fully in both a three year course in Knot Theory and in an M.Sc. course in
algebra at U.C.N.W., Bangor.

1 Group Presentations

As examples of group presentations, we will use a few very simple ones such
as:

Ce, the cyclic group oforder 6, having an obvious presentation (a: a®), but
also another slightly more subtle one, (z,y : 2?,4%, [z,y]). Ds, the dihedral
group of order 6, with a presentation (a,b: a3, b?, (ab)?).

In each case we specify a set of generators and some relations between them.
To be slightly more. precise, we recall:

X C G generates Gif X C H < G implies H = G

Le., if there is no proper subgroup of G containing X. In this case every g € G
can be written nonuniquely as a word in elements from X U X1,

The relations in the presentation are there to handle the problem of nonUNIqUE-
ness of represeniative words. This is simply illustrated by the following exam-
ple.

In Cs, X = {a},a® = a.a.a.a.a.a.a.a, and @* = a.a representing the same
element. This makes it awkward to talk about the relationships between
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different words; in some way we want to say that a® and a2 are different
words but at the same time they are equal as elements of C3. The solution to
the conundrum is to form the free group on a set ¥ = X, satisfying Y NG =0
to so that no confusion of symbols can arise. More generally, if ¥ is a set,
we denote by F(Y') the free group on Y, that is the group formed from all
words in y’s and y~!’s (with any occurences of yy~? etc. cancelled). If ¥ has
n elements we say F(Y) has rank n and write

TR(Y) = M.
Any w € F(Y') can be written uniquely in the form
w=yityr
where yi,,...y, €Y, a1...an € {-1,1} and 1; # 441 (1 < 7 < n). Now
pick f:Y — G. This will induce ¢: F(Y) — G defined recursively by
o(yw) = F(y)o(w)

If ¢ is onto then f(Y') gemeraies G, so ker v measures the nonuniqueness of
representative words, i.e., the relations between the generators. To be able to
study ker ¢ we pick R C keryp so that RC N q F(Y) = N > kerg, i.e., so
that ker ¢ is the normal closure of R in F(Y').

Example Let P be the presentation (z,y : z3 32, (zy)?) of Dj, F(Y) =

F(z,y) = Fy, free of rank 2

rotation

| o fo)=a,
fiY — D3 s given by { = b, reflection

3

Any relation between a and b is a consequence of 7 = 2% | s = y?, and t = (zy)?

i.e. is a product of conjugates of r, s and .
We note that F' = F(Y) acts on N = N(R):
FxN—-N, (wc)—~Yc=wew !
and any element, ¢, of N can be written in the form:
e= i (r) ()

withrm;, € R, e; =1, w; € F,1=1,2,...n.
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2 Graphs

As explained in [1], a graph, T, consists of a set of vertices joined by edges;
the edges may be directed, labelled (coloured) etc., as required. A path from
a vertex, z, to a vertex, y, in a graph consists of a sequence, zg,z1,..., z;,
of vertices such that z = zo, y = z; and each pair z;_;, z; is joined by an
edge; if there are several edges joining z;_; to z; we must specify which of
the edges is being used. As an example consider the following graph having a
single vertex:

A path in W, is exactly a word in the symbols z; and their “inverses”
z]'; however, unlike the elements of a free group, in the paths we can have
occurences of z;z'. To construct a group from these edge paths in a graph,
T, one first proves that any path in I' determines a unique reduced path, i.e., a
path in which such pairs do not occur; one then picks some vertex, v, and looks
at the reduced paths that start and end at that vertex. Composition is given
by putting two reduced paths next to each other and then forming the reduced
path determined by them. The group one gets is called the fundamental group
of the graph, and it is denoted #1(T', v). This group will in general depend on
the choice of vertex, v, but if the graph is connected, i.e., if any two vertices
can be joined by some path in I', then any two choices of base vertex give
isomorphic groups, so if T' is connected we can write 7;(T") without serious
risk of ambiguity. By picking 2 maximal spanning tree as indicated in [1] one
can prove:

If G is a connected finite graph with aq vertices and o, edges, then 71(T) is
free of rank a1 — ag + 1.

In fact a basis for 71(T') can easily be found. Each element of the basis
corresponds to an edge not in the spanning tree. The corresponding reduced
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path goes out in the tree to the start-vertex of the edge, crosses that edge in
the given direction and returns to v again in the spanning tree.

We can model a graph, T, by a topological space, X, say, by taking a set
of points in R™ as the vertices and for each edge an arc in R™ joining the
corresponding vertices. With this model 71(T, ) is of course isomorphic to
the topologically defined fundamental group 71(X) of the space X based at
the vertex corresponding to v, (c.f. [2]).

3 Covering spaces and covering graphs

From topology we next take some results from the theory of covering spaces.
These we really only need in the case that all the spaces concerned are graphs
so the theory of “covering graphs” would suffice This can we found in the book
by Stillwell, [2], which is an excellent source for much of this material.
If X is a space, and H < 71(X) then to H there corresponds a covering
space, p: Xy — X with ’
Py (Xp) — T1(X)

a monomorphism with Imp, = H. If X is a graph, so is Xy.

To illustrate the idea in the case we want, take X to be W,, so that
T (X) = F(zy,...,zm) = F, say, and take # < F. Then Xy is the the
Schreier diagram of H in F having the cosets of H in F as vertices and for
each generator, z;, and coset zH an edge labelled z; from z H to z;zH.

The map from Xy to X maps all the vertices to the one vertex of X
and maps edges according to their labels. eg- P =(z,y,: 2% 3% (2y)?), the
presentation of D3 given earlier. Then

Group Presentations, Topology and Graphs 17

Then

P
XH:A - OO
®

In this case the Schreier diagram is easily seen to be the Cayley graph of
the group with respect to the given generators.

The above discussion provides the basis for a proof of the following famous
theorem.

Neilsen-Schreier: If F free, and H < F then H is free.

Together with our remark earlier on the rank of the fundamental group of a
graph and basic, easily verified, facts about induced maps between fundamen-
tal groups we get:

The Schreier Index Formula: Ifrp and rg are finite and [F:Hl=i< o
then

rTH =Trpi—341

“Proof”: Xy has i vertices and rri edges.

4 Bases for N(R)

We saw that H = 7y (X m) is free. Can we find a basis? In other words, can
we find elements freely generating H? Rather than looking at this in general
we will consider our previous example in more detail. In that case rp o= 2,
|F: H| = |Ds| = 6, so TH=2X6-6+1=7, 50 we want a seven element
basis for H,
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We need to calculate 71(X ) so we choose a maximal spanning tree T, in
Xy; say

Generators of 71(Xg) correspond to the edges not in the tree as earlier.
For our choice of tree they are:

L yy 2. zzx 3.zzy~lzly
4. zzgm_ly 5. y‘lng:c“l 6 zgm‘lz_ly
Ty lzzzy

in each word the underlined element corresponds to the edge not in 7.

Each of these is a consequence of the relations r = 2%, s = 4% and t = (zy)?.
This is not only a result of the overall theory but that can be “visualised” in
the following way:
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Take for instance the fourth basis element in our list:

1 -1_-3

2 y(zy)’y tey) (v e 3y)
(v

Thus by interpreting the Cayley graph as a covering graph of the graph
W, one can find bases for the subgroup of relations and also one can express
those basis elements as products of conjugates of the chosen relations. This
method also enables one to identify certain identities among relations, but as
that subject really needs another article to do it justice. I will not say more
here.

(zv)* (v 'ty P2y) (v~

= T (gl v e T

4. zmy:z:“ly

5 Automorphisms of Graphs

From the theory of covering spaces one has the idea of a deck automorphism.
This is as follows:

Suppose that p:Y — X is a covering graph, then a deck automorphism
of p is an automorphism ¢ of the graph ¥ such that pp = p. Of course the
deck automorphisms of a covering graph (Y, p) form a group, A(Y,p). In the
case of the covering graph constructed from a presentation, this group is the
subgroup of the automorphism group of the Cayley graph consisting of those
automorphisms that preserve the labels. (We will look at this in our example
shortly.) As the image of 71(Xz) in this case is normal, the covering graph
is “regular” and the theory of covering spaces gives an isomorphism between
A(Xm,p) and 7 (Xg)/Im{p*:7(Xg) — #1(X)}. As this latter group is
exactly the group that was being presented, we have the following result:

Theorem: (Frucht,1938) IfG is a finite group, X a generating set for G,
' the labelled graph of G relative to X then G is isomorphic to the group of
label preserving automorphisms of T,

Example In our example in §3 with G = D3, there are two obvious auto-
morphisms of the graph that preserve labels. One rotates the graph through
120°; if the rotation is clockwise, this corresponds to the element z in Dj, if
anticlockwise to z~!. The other exchanges the inner and outer triangles; this
corresponds to y. These two generate the deck/label automorphism group of
the graph and the relations are clearly those given in the presentation of Dj.
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The fact that I is considered as a labelled directed graph may spoil the
pleasure of some people so it is worth while pointing out that the.re is a simple
means to replace a labelled directed graph by an unlabelled undirected graph
with the same automorphism group, as follows:

We suppose the graph is labelled by a finite set, {z1,...2n}. If the edge
from v to w is labelled with z; replace that edge by the subgraph:

21-1
Vv )
21-2 21-
v . VVV '
21-3
Uyy
2
usv Vyv
1 vl
Uyy vy
Y a,, Vo W

Thus we replace the edge by a path v, Uyw, Vew, W, at vertex Uy, WE z'attach a
new path of length 2i — 2 and at v,,, a new path of length 27 — 1. This labels

the edge in a purely graph theoretic way.
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Algebra and Superalgebra

Allan Solomon

This article is based on a talk given by the author to the Dublin
University Mathematical Society on April 30, 1987.

On this 210th Anniversary of Gauss’ birthday, I should like to start off by
referring to the Fundamental Theorem of Algebra, for which Gauss gave four
proofs. The assertion of this theorem—that every polynomial equation has
a root—must be interpreted by extending the real numbers to the complex,
Le., every polynomial over the real numbers has a (complex) root. In fact,
the theorem remains true if we extend to polynomials over the complex field;
the complex numbers are algebraically closed. We may, however, extend the
complex numbers in an elegant and non-trivial way to the quaternions. The
system of quaternions A provides us with our first example of an algebra. An
algebra A is a linear space over a field F, on which a multiplication, having
the usual distributive properties, is defined. Essentially, we have

ar+PBye A and zyec A (2,9 € A o, € F),

with
(az)y = a(zy),
(az + By)z = azz + Pyz,
z{az + By) = azz + Bzy

Here «, 3 are elements of the field F over which the linear space Ais defined;
in the usual applications this will be the real field R on the complex field C.
An algebra may, or may not, have the associative property;
(zy)z = 2(yz) Vz,y,z € A.

Ifit does, it is called an associative algebra. In general, the algebras and super-
algebras of my title are not associative algebras. However, most algebras that
have applications may be represented by matrices; and since matrices multiply
associatively, we may effectively embed our algebras in associative algebras.
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