NEW Engineering Mathematics
A Programmed Approach ‘

C Evans Portsmouth Polytechnic
The introductory engineering mathematics fext
that will be used with equal enthusiasm by students
and lecturers alike. The author includes
‘comprehensive coverage of discrete mathematics,
probability and statistics, and micrécomputer
applications. ) '

Van Nostrand Reinhold International . ,
May 1989 700pp Pb 0 278 00036 3: £13.95

NEW WMathematics for Engineers
and Scientists, 4th-Edition

A Jeftrey, University of
Newcastle-upon-Tyne =~

One of the most successful and enduring texts on
applied mathemnatics for all students of engineering
and physical sciences, now extensively revised and
updated. The first chapter is expanded to provide
an easier introduction for students, and the
statistics chapter is radically improved.

Van Nostrand Reinhold International
April 1989 848pp Pb 0 278 00083 5: £15.95

NEW Numerical Analysis,
4th Edition ‘
R L Burden and J D Faires, Youngstown

State University

A rigorous and accessible text on the theory and
application of numerical methods, for students of
mathematics, engineering and science, with a
calculus prerequisite. The authors include detailed
structured algorithms for each significant method
presented in the texty

PWS-Kent  Student Priced Book
March 1989 736pp Hb 0 534 91585 X: £17.95

NEW An introduction to Aﬁalysis
1 R Kirkwood Sweet Briar College

Designed for an introductory course in analysis for
undergraduates with one year of caiculus, this text
emphasises methods.of proof and a real
understanding of the topics covered. Discussions
-are deliberately limited to real valued functions of
one variable..

PWS-Kent Student Priced Book
Apri 1989 320pp Hb 0 534 91500 0: £15.95

address below.

o April 1989 512pp  Hb. 0 534 100!

Please send orders and requests for'furthe,r\informa‘tibn to

ISH MATHEMATICAL
SOCIETY

NEW Real Analy
Probability ‘

R M Dudley, Massachu
Technology o

Renowned for his contribution
Professor Dudley offers a clea
presentation of modern prob.
exposition of the interplay b
of metric spaces and those of |
Brooks/Cole - Student Priced Book

" 3rd Edition

S Venit, and W Bishop,
University ’

A flexible, introductory text that i
for students of mathematics, but

explanation and examples for th

students of engineering and scie

PWS-Kent  Student Priced Book - -
March 1989. 448pp - Hb /0 534 91689 9

NEW A First Course in
Differential Equations

Applications 4th Editio
D G Zill, Loyola Marymou

Written for an introductory co
equations, this text emphasise:

differential equations and
equations ina physical se
more applications, such as a

and systems. ;
PWS-Kent ~ Student Priced Book
February 1989 - 592pp Hb -0 53

NEW Different
Boundary-Value
2nd Edition .
D G Zill, Loyola M.

BULLETIN

Based on the author’
Course in Differenti

4th Edition, this text of
boundary-value prot

PWS-Kent . Student
February 1989~ 672pp

NUMBER 22 MARCH 1989
ISSN 0790-1690 *

CHAPMAN AND HALL
11 New Fetter Lane, London EC4P 4EE

015839855
A division of Thomson Information Services Limitgd




IRISH MATHEMATICAL SOCIETY
BULLETIN

EDITOR: Ray Ryan
'ASSOCIATE EDITOR: Ted Hurley
PROBLEM PAGE EDITOR: Phil Rippon

The aim of the Bulletin is to inform Society members about the activities of
the Society and about items of general mathematical interest. 1t appears twice
each year, in March and December. The Bulletin is supplied free of charge to
to members by Local Representatives, or by surface mail abroad. Libraries
may subscribe to the Bulletin for IR£20 per annum.

The Bulletin seeks articles of mathematical interest written in an exposi-
tory style. All areas of mathematics are welcome, pure and applied, old and
new. The Bulletin is typeset using TgX. Authors are invited to submit their
articles in the form of TgX input files. Articles submitted in the form of typed
manuscripts will be given the same consideration as articles in TEX.

Correspondence concerning the Bulletin sh"ould be addressed to:

Irish Mathematical Society Bulletin
Department of Mathematics
University College
s ; Galway
Ireland

Correspondence concerning the Problem Page should be sent d;lrectly to the
Problem Page Editor at the following address:

Faculty of Mathematics
Open University
" Milton Keynes, MK7 6AA
UK

The Irish Mathematical Society aéknowledges the assistance of EOLAS,
The Irish Science And Technology Agency, in the production of the Bulletin.

IRISH MATHEMATICAL SOCIETY BULLETIN 22, MARCH 1989

CONTENTS

IMS Officers and Local Representatives ............... i

LEEECES -+ eeeeeee e e 11l

TMS BUSIIESS -+ vreen oo oo 2

NEWS + e e 6
Articles

Group Presentations,

Topology and Graphs ...........ccoiviiieeniiia.... Timothy Porter 13

Algebra and Superalgebra ..............ooooll Allan Solomon 21

Integr‘als of Subharmonic Functions ............ Stephen J. Gardiner 33

Toeplitz Operators .........cccoviiiiiiienininenan.n.. G. J. Murphy 42
Mathematical Education

Mathematics at Third Level:

Q.ues_tioning How We Teach ....................... Maurice O’Reilly 50

Linking Mathematics With Industrial Problems ....... P. F. Hodnett 55
Notes

Error Correcting Codes ............cccoovivinana.... John Hannah 60

Cayley Hamilton for Eigenvalues ........................ Robin Harte 66
Book Reviews.............oooiiiiiiiiniin... 69
Problem Page ..ot Phil Rippon T4

Ty




THE IRISH MATHEMATICAL SOCIETY
OFFICERS AND COMMITTEE MEMBERS

President Dr. Fergus Gaines Department of Mathematics
University College
Dublin

Vice- Dr. Richard Timoney School of Mathematics

President Trinity College
Dublin

Secretary Prof. A.G. O’Farrell Department of Mathematics
Maymnooth College
Maynooth

Treasurer Dr. Gerard M. Enright Department of Mathematics

Mary Immaculate College
Limerick

Committee Members: P. Barry, R. Critchley, B. Goldsmith, D. Hurley, T.

Hurley, R. Ryan, M. O’Reilly, M. O Searcéid, R. Watson.

LOCAL REPRESENTATIVES

Cork RTC Mr. D. Flannery
UCC Dr. M. Stynes
Dublin DIAS Prof. J. Lewis
Kevin St. Dr. B. Goldsmith
NIHE Dr. M. Clancy
St. Patrick’s  Dr. J Cosgrave
TCD Dr. R. Timoney
UCDh Dr. F. Gaines
Dundalk RTC Dr. E. O’Riordan
Galway jijele; Dr. R. Ryan
Limerick MICE Dr. G. Enright
NIHE Dr. R. Critchley
Thomond Mr. J. Leahy
Maynooth Prof. A. O'Farrell
Waterford RTC Mr. T. Power
Belfast QUB Dr. D.W. Armitage

LETTERS

Textbook prices

Dear Editor,
1 would like to draw the attention of your readers to the sometimes large

difference between the US and European prices of mathematics textbooks.

For example:

o “Modern Algebra, an Introduction” by John R. Durbin (Wiley) costs
St £36.05 here, US$ 32.45 in the USA;

o “Methods of Mathematics Applied to Calculus, Probability and Statis-
tics” by Richard W. Hamming (Prenf.ice—Hall) costs St£59.90 here, US$

56.00 in the USA,

o “Calculus with Analytic Geometry” by George F. Simmons (McGraw-
Hill) costs St.£42.95 here, US$ 48.95 in the USA.

The above are all hardback editions. The UK price is taken from the October
1988 edition of “British Books in Print”, the US price from the November
1988 edition of “Books in Print”. In each case the UK price exceeds the US
price by a factor of at least 50%.

These are not isolated examples. The differential in prices usually seems to
be a function not of the individual book but of the publisher. Most publishers
have virtually identical US and European prices, but as you see there are
exceptions.

Irish and British libraries are apparently aware of the problem and are
trying to control it. We as individuals can help in this endeavour, and simul-
taneously get better value from our book budgets, by being wary in the choice
of books ordered for our institutional libraries. This is particularly easily done
when choosing textbooks for undergraduate reading, where there is generally
a wide selection of titles.

Martin Stynes

Department of Mathematics

~ University College Cork
STYNESQIRUCCVAX.BITNET




IRISH MATHEMATICAL SOCIETY 5. The Secretary presented his report, and was thanked for it.

6. Elections: The following were proposed, seconded, and elected unop-
Annual General Meeting posed:
President: F. Gaines.

December 22, 1988 Vice President: R.M. Timoney.

Committee Members: P. Barry, B. Goldsmith, M. O'Reilly, M. O Searcéid,
and R.O. Watson.

Professor Dineen did not wish to serve on the Committee, but was ap-
pointed as the Society’s representative to deal with EOLAS.

The Annual General Meeting of the Irish Mathematical Society was held
at the Dublin Institute for Advanced Studies at 12.15 p.m. on Thursday De-
cember 12 1988.

Twenty-two members were present, and the President, Professor S. Dineen

was in the Chair. 7. Maurice O’Reilly presented a short paper on ‘Mathematics at Third

1. The minutes of the meeting of September 9 1988 were read, approved, Level: Questioning how we teach’. He raised interesting questions, on

and signed.

. Arising from these, the President announced the decision of the Com-
mittee to expand the September Meeting to a two-day event, and to hold

the subject of how teachers go about teaching, as opposed to the actual
content of the courses. He provided two questionnaires, which teachers
were invited to use for assessing themselves from this point of view.
Copies of his material may be had by writing to him at Dundalk Regional

the 1989 meeting in Maynooth. The meeting will begin after lunch on
Thursday, September 7, 1989, and conclude on Friday the 8th. Overnight
accommodation will be available for those who require it. Suggestions
for invited speakers and proposals for contributed talks should be sent
to Professor O’Farrell, preferably before the end of February 1989.

'Iiechni?al College. The paper and questionnaires provoked some spirited
discussion. He was thanked by the President and the meeting closed.

Anthony G. O’Farrell,

e .. e - Secretary
The Committee invites aplication by institutions willing to host the 1990

September meeting. Applications should be sent to the Secretary before
the end of February 1989.

3. Correspondence: The two reports of the EUROMATH project were sum-
marised for the meeting by the Secretary. These are:
(1) State of the Art Report, July 1988.
(2) The EUROMATH Surveys, August 1988.
Members expressed a strong view that EUROMATH should support
TEX. Members who wish to ontain copies of the reports could apply to
John Carroll, head of the EUROMATH unit at NIHE Dublin, Glasnevin,
Dublin 9.

4. Consideration of the Treasurer’s report, which was delayed in the post,
was postponed until the next meeting.




IRISH MATHEMATICAL SOCIETY
Secretary’s Report 1987-88

The Society met three times during this year, and the Committee three
times.

The main development this year was the first September Meeting of the
Society. Other noteworthy items concerned the Olympiad, the Bulletin and
Exchanges.

The September Meeting is intended to be an annual affair, devoted prin-
cipally to scientific papers on Mathematics. The first was a one-day meeting,
on the ninth of September, in Trinity College Dublin. The invited speakers
were S. Gardiner, W.K. Hayman and T.W. Korner. Each gave a one-hour
talk, and there was an hour of short contributed talks, and a panel discussion
on the impact of computers on the curriculum in Mathematics. The meeting
was well attended, and was generally considered a success. Encouraged by
this, we propose in future to have two-day September meetings.

The Schools Mathematics Contest (sponsored by Eolas) continued to at-
tract more entrants, and competition in the Contest and the Irish Mathemat-
ical Olympiad was very keen. The prize-giving ceremony was held at UCD
on the second of December, and was attended by representatives of Eolas, the
IMTA and the teachers of prizewinners.

This year, for the first time, an Irish team competed in the International
Mathematical Olympiad in Australia. The team was coached and accompa-
nied by Finbarr Holland and T.J. Laffey, who have put an enormous amount
of work into the contest down through the years. The entry was coordinated
by a joint committee of the Departments of Education and Foreign Affairs,
and sponsored by the Government.

As the Society grows, its various functions become more time-consuming,
and there is a danger that some of them might suffer as a result. It is the
policy of the Committee to identify and circumscribe the various important
functions, and find volunteers to manage each one on a long-term basis.

This year, the maintenance of the Membership List and the management
of Institutional Members, formerly the responsibility of the Treasurer, was
taken over by Bob Critchely. It has been agreed to rent the list to interested
publishers.

The management of exchanges, formerly the function of the Bulletin Ed-
itor, was also separated, and is looked after by me. Existing exchanges have
been regularised, and a campaign to create new ones launched. To date, six
new exchanges have been agreed.

The Bulletin continues under the editorship of Ray Ryan, assisted by Ted
Hurley. After some period of uncertainty, Sedn Dineen successfully negotiated
with Eolas to have the printing done gratis, indefinitely. It has been agreed to
include advertisements in the Bulletin. Ray Ryan is launching a membership
drive, using free copies of the Bulletin as an inducement.

The Society has become a member of the European Mathematical Trust,
and has appointed Tony Seda as Chairman of the Euromath Coordinating
Committee for Ireland.

The system of Local Representatives has proven very effective in ensuring
the cohesion of the Society. This year, we added Local Representatives in the
Queen’s University of Belfast (D.W. Armitage) and in St. Patrick’s College,
Drumcondra (John Cosgrave).

The Society sponsored a meeting on Group Theory at UCG, a meeting
on Operator Theory at UCC, a meeting on Matrix Theory at UCD, and a
meeting on Differential Equations at NIHED.

Anthony G. O’Farrell,
Secretary

T




NEWS

Personal Items

o Professor Les Foulds, of Waikatu University, New Zealand, who works
in Applied Graph Theory, is presently visiting UCD and TCD.

e Professor Hansjorg Wacker, of the Institut der Mathematik of the
University of Linz, will be visiting the Mathematics Department of NTHE
Limerick during the month of July. Professor Wacker works in Industrial
Mathematics.

e Professor Dan Luecking, of the University of Arkansas at Fayet-
teville, will be visiting TCD during the Autumn term this year.

e Ted Hurley has been appointed to an Associate Professorship in Math-
ematics at UCG.

e Donal O’Regan has joined the Mathematics Department in Maynooth
College.

e David Spearman will be visiting the University of Montpelier during
the Autumn term.

Second September Meeting of the IMS
Maynooth College, September 7-8

Following the great success of the Society’s First September Meeting in TCD
last year, it was decided to expand this event to a two-day meeting. The
Second September Meeting will take place in Maynooth on Thursday Septem-
ber 7th and Friday September 8th. The principal speakers will be F. Alm-
gren (Princeton) who will speak on “Supercomputers and Minimal Surfaces”,
S.K. Donaldson (Oxford), who will speak on “Yang-Mills Theory and Four-
Manifolds”, and J. Lewis (DIAS). Contributed short talks are also invited.
Overnight accomodation is available in Maynooth at a modest cost, and a
dinner will be arranged for Thursday evening if sufficiently many participants
are interested. Further details can be had from A. G. O’ Farrell, Mathematics
Department, Maynooth College, Co. Kildare.

NEWS 7

International Mathematical Olympiad

Following the excellent performance last year in Sydney by the first Irish team
to participate in the International Mathematical Olympiad, preparations are
now being made to send a team to this year’s Olympiad, which will be held
in Braunshweig.

Our readers might care to pit their wits against the 1988 questions. There
were four and a half hours allowed for each paper. Five competitors obtained
full marks.

First Paper

1. Consider two concentric circles of radii R and r (R > r) with centre
O. Fix P on the small circle and consider the variable chord P4 of the
small circle. Points B and C lie on the large circle, B P C are collinear
and BC is perpendicular to AP.

(i) For what value(s) of LZOP A is the sum BC? + CA? + AB? extremal?
(ii) What are the possible positions of the midpoint U of BA and V of
AC as LOPA varies?

2. Let n be an even positive integer. Let B be a set and let 4, 4s,...4n11
be subsets of B such that
(i) each A; has n elements,
(ii) each intersection A; N A; (i # j) has exactly one element,
(iii) every element of B belongs to at least two of the A;.
For which n can one assign to every element of B one of the numbers
0 and 1 in such a manner that each A; has exactly n/2 of its elements
assigned the value 07

3. A function f defined on the positive integers (and taking positive integer
values) is given by:
(=1, f(38)=3,
f(2n) = f(n),
fldn +1) =2f(2n+ 1) — f(n),
F(dn +3) = 3£(2n + 1) - 2f(n),

for all positive integers n. Determine with proof the number of positive
integers n < 1988 for which f(n) = n.
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Second Paper
4. Show that the solution set of the inequality

70 k
Zx—kz
k=1

is a union of disjoint intervals, the sum of whose lengths is 1988.

Aot

5. In a right-angled triangle ABC let AD be thf: altitude drawn .to the
hypotenuse and let the straight line joining the mcent?es of the triangles
ABD, ACD intersect the sides AB, AC at the points K, L respec-
tively. If F and E; denote the areas of the triangles ABC and AKL

respectively, show that E/E; > 2.

6. Let a, b be two positive integers such that ab+ 1 divides a? + b. Prove
that (a? + b?)/(ab+ 1) is a perfect square.

Each participating country was invited to submit five questi?ns for con-
sideration for use in the contest. The jury then sel.ected th.e six questions
from this pool. Ireland was honoured to have one of its questions, number 4,
composed by Finbarr Holland, selected for the.contest.

We wish every success to the Irish team this year.

James Callagy (1908-1988)

Jim Callagy was a distinguished member of the Irish mathematical com-
munity. He grew up in Galway City where he was a pupil at St. Joseph’s
Secondary School. His early mathernatical career is closely associated to that
of his life-long friend, Martin Newell, who later became Professor of Mathe-
matics at University College, Galway and then President of the College. In
1930, Jim and Martin Newell graduated with honours degrees in Mathematics
from University College, Galway, after highly distinguished undergraduate ca-
reers, during which they closely rivalled each other in academic achievement
and participation in the student life of the College. The two of them pro-
duced a student magasine, and it will be interesting to those who remember
Jim’s light, neat figure that he was secretary of the College rugby football
club. Another intriguing fact that survives from that period is the result of
the first year Arts examination in Jim’s first year in College. First overall, a
young woman from Rosmuc, second James Callagy and third Martin Newell.
It would be interesting to know the identity and subsequent career of the top
scholar.

In 1930, Jim went to St. Muireadach’s College in Ballina, where he taught
until 1934. In 1934, he married and he and his wife Lilly went to live in
Listowel, where Jim taught Mathematics at St. Michael’s College until 1950.
That year, Jim and Lilly returned to Galway and Jim joined the famous
Preparatory College of St. Enda’s.

St. Enda’s was then at its height and, as teacher of honours Mathematics,
Jim played a key role among a list of impressive and endearing figures, such
as Aodh Mac Dhubhain, Toméis O Loidedin, Tomés O Sé and Michesl Mac
Gabhna, all of them.outstanding teachers and individuals who dedicated them-
selves with enthusiasm and imagination to excellence in education through the
Irish language. He lived through the years of hope and excitement, and even-
tually knew the sorrow of what has since been recognised as a signal blow to
the cause of the Irish language, when the countiry seemed to flinch from the
prospect of a possible success of the revival of Irish. The Preparatory Colleges
were abolished and Enda’s was turned into a staid and conventional secondary
A school, which quickly followed the fate of other A schools throughout the
country. This transition was undoubtedly a traumatic one for Jim as it was
for the other teachers who shared his ideals.
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When Jim retired from St. Enda’s in 1973, he had taught Mathemai%cs
at secondary level for 43 years. During all these years, he had bee.n a metic-
ulous and dedicated teacher and his success both on the acadermc‘and th.e
personal level is demonstrated by the enormous numbe‘r of past -puplls of his
who achieved success and distinction, and at the same time remained staunch
friends of his in later years. His years of teaching howeve‘r, had be?en, by
his own acco;mt, arduous and often frustrating.. Thfsn, on re-tlremtsnt, life sud-
denly accorded him an opportunity which, ha‘d it arisen earlier, might perhaps
have spared him much frustration and perrm.tted gr?ater pers.onal fulfilment.
Over the years, in spite of his dedication to his teac}ung and his dev?ted com-
mitment to his wife and family, Jim had found time to pursue his Ppassion
for Mathematics and the history of Mathematics. It was this expe.r‘?lse that
now afforded him the opportunity of a new career. In 1973, he joined the
Mathematics Department at University College, Galw.ay. .

His years at U.C.G. were very successful anc?, again by his own account,
very happy. He taught several existing courses in English and Insh. and c‘ie-
veloped a new and highly popular course in the history of Mz.ithematlcs which
is on the curriculum ever since. He found the atmosl?here in U.C.C%. conge-
nial and instantly developed the closest rapport with his colleagues within the
Mathematics Department and outside it. He had always been a man of great
charm and erudition. These qualities made him extre‘mely }?opula'r among
colleagues, many of whom were much younger than him. ﬂls meticulously
and elegantly dressed figure was well loved in College and his company and
conversation were always sought after. . .

His long and distinguished career in Irish education made Jim we‘ll known
to a large number of people in this country, but he’ was also well-‘h!sed agd
respected abroad. For years, he was a regular ar‘ld 1mportan.t part1f:1pant in
the Summer School of International Post University Courses in Belgium, and
the President of the Post University Courses and Honorary R?ctor of t}.le State
Unversity of Ghent, Professor A. Cottenie, was a Personal friend of h1s..

An Irish colleague of Jim’s who accompanied him to one of t}.Je meeFlngs' of
the Summer Schools was charmed at the warmth a.n.d regfard with which Jim
was greeted by the other participants. On that occasion, Jim was welcomed as
the senior member of a very small number of participants who had attended
the Summer School every year over a period of twenty years, and was c‘alled
upon to deliver an appreciation of the occasion. Characteristically, he did so
with accomplished elegance and humour.

James Callagy (1908-1988) 11

The memory that Jim Callagy leaves behind him is a very fond one and a
poignant one. His great knowledge of local people and history and their points
of contact with world events and European culture were fascinating. His loss
inevitably provokes thoughts on the nature and deficiences of the transmission
of knowledge and cultural continuity.

Jim’s long career was intimately linked to the Irish educational system,
with all its contrasts and conflicting qualities. The constant demands on him
by this system, over a period of half a century, could be challenging and ex-
citing but also sometimes capricious and unimaginative. Throughout his life,
Jim responded with impeccable professionalism, contributing handsomely to
the best the system could offer and struggling bravely against its shortcomings

and frustrations. Ultimately, a product of it himself, he was an example of
the best that it is capable of.

Tony Christofides
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IMS MEMBERSHIP

Ordinary Membership

Ordinary Membership of the Irish Mathematical Society is open to all persons
interested in the activities of the Society. Application forms are available
from the Treasurer and from Local Representatives. Special reciprocity rates
apply to members of the Irish Mathematics Teachers Association and of the
American Mathematical Society.

Institutional Membership

Institutional Membership is a valuable support to the Society. Institutional
members receive two copies of each issue of the Bulletin and may nominate
up to five students for free membership.

Subscriptions Rates

The rates are listed below. The membership year runs from 1st October to
30th September. Members should make payments by the end of January
either direct to the Treasurer or through Local Representatives. Members
whose subscriptions are more than eighteen months in arrears are deemed to
have resigned from the Society.

Ordinary Members IR£5
IMS-IMTA Combined IR.£6.50
Reciprocity Members from IMTA IR £1.50
Reciprocity Members from AMS US$6
Institutional Members IR.£35

Note: Equivalent amounts in foreign currency will also be accepted.

ARTICLES

Group Presentations, Topology and Graphs

Timothy Porter

A few years ago John McDermott wrote a short article [1] for the Newslet-
ter, as it was then called. This article takes up the relationship studied briefly
in his article and looks at several other uses of simple graph-theoretic ideas
in the study of group presentations. The level of graph theory involved is not
much deeper than that used in his article The material is used quite success-
fully in both a three year course in Knot Theory and in an M.Sc. course in
algebra at U.C.N.W., Bangor.

1 Group Presentations

As examples of group presentations, we will use a few very simple ones such
as:

Ce, the cyclic group oforder 6, having an obvious presentation (a: a®), but
also another slightly more subtle one, (z,y : 2?,4%, [z,y]). Ds, the dihedral
group of order 6, with a presentation (a,b: a3, b?, (ab)?).

In each case we specify a set of generators and some relations between them.
To be slightly more. precise, we recall:

X C G generates Gif X C H < G implies H = G

Le., if there is no proper subgroup of G containing X. In this case every g € G
can be written nonuniquely as a word in elements from X U X1,

The relations in the presentation are there to handle the problem of nonUNIqUE-
ness of represeniative words. This is simply illustrated by the following exam-
ple.

In Cs, X = {a},a® = a.a.a.a.a.a.a.a, and @* = a.a representing the same
element. This makes it awkward to talk about the relationships between

13
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different words; in some way we want to say that a® and a2 are different
words but at the same time they are equal as elements of C3. The solution to
the conundrum is to form the free group on a set ¥ = X, satisfying Y NG =0
to so that no confusion of symbols can arise. More generally, if ¥ is a set,
we denote by F(Y') the free group on Y, that is the group formed from all
words in y’s and y~!’s (with any occurences of yy~? etc. cancelled). If ¥ has
n elements we say F(Y) has rank n and write

TR(Y) = M.
Any w € F(Y') can be written uniquely in the form
w=yityr
where yi,,...y, €Y, a1...an € {-1,1} and 1; # 441 (1 < 7 < n). Now
pick f:Y — G. This will induce ¢: F(Y) — G defined recursively by
o(yw) = F(y)o(w)

If ¢ is onto then f(Y') gemeraies G, so ker v measures the nonuniqueness of
representative words, i.e., the relations between the generators. To be able to
study ker ¢ we pick R C keryp so that RC N q F(Y) = N > kerg, i.e., so
that ker ¢ is the normal closure of R in F(Y').

Example Let P be the presentation (z,y : z3 32, (zy)?) of Dj, F(Y) =

F(z,y) = Fy, free of rank 2

rotation

| o fo)=a,
fiY — D3 s given by { = b, reflection

3

Any relation between a and b is a consequence of 7 = 2% | s = y?, and t = (zy)?

i.e. is a product of conjugates of r, s and .
We note that F' = F(Y) acts on N = N(R):
FxN—-N, (wc)—~Yc=wew !
and any element, ¢, of N can be written in the form:
e= i (r) ()

withrm;, € R, e; =1, w; € F,1=1,2,...n.

Group Presentations, Topology and Graphs 15

2 Graphs

As explained in [1], a graph, T, consists of a set of vertices joined by edges;
the edges may be directed, labelled (coloured) etc., as required. A path from
a vertex, z, to a vertex, y, in a graph consists of a sequence, zg,z1,..., z;,
of vertices such that z = zo, y = z; and each pair z;_;, z; is joined by an
edge; if there are several edges joining z;_; to z; we must specify which of
the edges is being used. As an example consider the following graph having a
single vertex:

A path in W, is exactly a word in the symbols z; and their “inverses”
z]'; however, unlike the elements of a free group, in the paths we can have
occurences of z;z'. To construct a group from these edge paths in a graph,
T, one first proves that any path in I' determines a unique reduced path, i.e., a
path in which such pairs do not occur; one then picks some vertex, v, and looks
at the reduced paths that start and end at that vertex. Composition is given
by putting two reduced paths next to each other and then forming the reduced
path determined by them. The group one gets is called the fundamental group
of the graph, and it is denoted #1(T', v). This group will in general depend on
the choice of vertex, v, but if the graph is connected, i.e., if any two vertices
can be joined by some path in I', then any two choices of base vertex give
isomorphic groups, so if T' is connected we can write 7;(T") without serious
risk of ambiguity. By picking 2 maximal spanning tree as indicated in [1] one
can prove:

If G is a connected finite graph with aq vertices and o, edges, then 71(T) is
free of rank a1 — ag + 1.

In fact a basis for 71(T') can easily be found. Each element of the basis
corresponds to an edge not in the spanning tree. The corresponding reduced
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path goes out in the tree to the start-vertex of the edge, crosses that edge in
the given direction and returns to v again in the spanning tree.

We can model a graph, T, by a topological space, X, say, by taking a set
of points in R™ as the vertices and for each edge an arc in R™ joining the
corresponding vertices. With this model 71(T, ) is of course isomorphic to
the topologically defined fundamental group 71(X) of the space X based at
the vertex corresponding to v, (c.f. [2]).

3 Covering spaces and covering graphs

From topology we next take some results from the theory of covering spaces.
These we really only need in the case that all the spaces concerned are graphs
so the theory of “covering graphs” would suffice This can we found in the book
by Stillwell, [2], which is an excellent source for much of this material.
If X is a space, and H < 71(X) then to H there corresponds a covering
space, p: Xy — X with ’
Py (Xp) — T1(X)

a monomorphism with Imp, = H. If X is a graph, so is Xy.

To illustrate the idea in the case we want, take X to be W,, so that
T (X) = F(zy,...,zm) = F, say, and take # < F. Then Xy is the the
Schreier diagram of H in F having the cosets of H in F as vertices and for
each generator, z;, and coset zH an edge labelled z; from z H to z;zH.

The map from Xy to X maps all the vertices to the one vertex of X
and maps edges according to their labels. eg- P =(z,y,: 2% 3% (2y)?), the
presentation of D3 given earlier. Then
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Then

P
XH:A - OO
®

In this case the Schreier diagram is easily seen to be the Cayley graph of
the group with respect to the given generators.

The above discussion provides the basis for a proof of the following famous
theorem.

Neilsen-Schreier: If F free, and H < F then H is free.

Together with our remark earlier on the rank of the fundamental group of a
graph and basic, easily verified, facts about induced maps between fundamen-
tal groups we get:

The Schreier Index Formula: Ifrp and rg are finite and [F:Hl=i< o
then

rTH =Trpi—341

“Proof”: Xy has i vertices and rri edges.

4 Bases for N(R)

We saw that H = 7y (X m) is free. Can we find a basis? In other words, can
we find elements freely generating H? Rather than looking at this in general
we will consider our previous example in more detail. In that case rp o= 2,
|F: H| = |Ds| = 6, so TH=2X6-6+1=7, 50 we want a seven element
basis for H,
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We need to calculate 71(X ) so we choose a maximal spanning tree T, in
Xy; say

Generators of 71(Xg) correspond to the edges not in the tree as earlier.
For our choice of tree they are:

L yy 2. zzx 3.zzy~lzly
4. zzgm_ly 5. y‘lng:c“l 6 zgm‘lz_ly
Ty lzzzy

in each word the underlined element corresponds to the edge not in 7.

Each of these is a consequence of the relations r = 2%, s = 4% and t = (zy)?.
This is not only a result of the overall theory but that can be “visualised” in
the following way:

Group Presentations, Topology and Graphs 19

Take for instance the fourth basis element in our list:

1 -1_-3

2 y(zy)’y tey) (v e 3y)
(v

Thus by interpreting the Cayley graph as a covering graph of the graph
W, one can find bases for the subgroup of relations and also one can express
those basis elements as products of conjugates of the chosen relations. This
method also enables one to identify certain identities among relations, but as
that subject really needs another article to do it justice. I will not say more
here.

(zv)* (v 'ty P2y) (v~

= T (gl v e T

4. zmy:z:“ly

5 Automorphisms of Graphs

From the theory of covering spaces one has the idea of a deck automorphism.
This is as follows:

Suppose that p:Y — X is a covering graph, then a deck automorphism
of p is an automorphism ¢ of the graph ¥ such that pp = p. Of course the
deck automorphisms of a covering graph (Y, p) form a group, A(Y,p). In the
case of the covering graph constructed from a presentation, this group is the
subgroup of the automorphism group of the Cayley graph consisting of those
automorphisms that preserve the labels. (We will look at this in our example
shortly.) As the image of 71(Xz) in this case is normal, the covering graph
is “regular” and the theory of covering spaces gives an isomorphism between
A(Xm,p) and 7 (Xg)/Im{p*:7(Xg) — #1(X)}. As this latter group is
exactly the group that was being presented, we have the following result:

Theorem: (Frucht,1938) IfG is a finite group, X a generating set for G,
' the labelled graph of G relative to X then G is isomorphic to the group of
label preserving automorphisms of T,

Example In our example in §3 with G = D3, there are two obvious auto-
morphisms of the graph that preserve labels. One rotates the graph through
120°; if the rotation is clockwise, this corresponds to the element z in Dj, if
anticlockwise to z~!. The other exchanges the inner and outer triangles; this
corresponds to y. These two generate the deck/label automorphism group of
the graph and the relations are clearly those given in the presentation of Dj.




20 IMS Bulletin 22, 1989

The fact that I is considered as a labelled directed graph may spoil the
pleasure of some people so it is worth while pointing out that the.re is a simple
means to replace a labelled directed graph by an unlabelled undirected graph
with the same automorphism group, as follows:

We suppose the graph is labelled by a finite set, {z1,...2n}. If the edge
from v to w is labelled with z; replace that edge by the subgraph:

21-1
Vv )
21-2 21-
v . VVV '
21-3
Uyy
2
usv Vyv
1 vl
Uyy vy
Y a,, Vo W

Thus we replace the edge by a path v, Uyw, Vew, W, at vertex Uy, WE z'attach a
new path of length 2i — 2 and at v,,, a new path of length 27 — 1. This labels

the edge in a purely graph theoretic way.
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Algebra and Superalgebra

Allan Solomon

This article is based on a talk given by the author to the Dublin
University Mathematical Society on April 30, 1987.

On this 210th Anniversary of Gauss’ birthday, I should like to start off by
referring to the Fundamental Theorem of Algebra, for which Gauss gave four
proofs. The assertion of this theorem—that every polynomial equation has
a root—must be interpreted by extending the real numbers to the complex,
Le., every polynomial over the real numbers has a (complex) root. In fact,
the theorem remains true if we extend to polynomials over the complex field;
the complex numbers are algebraically closed. We may, however, extend the
complex numbers in an elegant and non-trivial way to the quaternions. The
system of quaternions A provides us with our first example of an algebra. An
algebra A is a linear space over a field F, on which a multiplication, having
the usual distributive properties, is defined. Essentially, we have

ar+PBye A and zyec A (2,9 € A o, € F),

with
(az)y = a(zy),
(az + By)z = azz + Pyz,
z{az + By) = azz + Bzy

Here «, 3 are elements of the field F over which the linear space Ais defined;
in the usual applications this will be the real field R on the complex field C.
An algebra may, or may not, have the associative property;
(zy)z = 2(yz) Vz,y,z € A.

Ifit does, it is called an associative algebra. In general, the algebras and super-
algebras of my title are not associative algebras. However, most algebras that
have applications may be represented by matrices; and since matrices multiply
associatively, we may effectively embed our algebras in associative algebras.

21




22 IMS Bulleiin 22, 1989

However, our algebras will not be commutative; that is oy # yz is general.
The quaternions are a non-trivial extension of the complex numbers because
they form a non-commutative system, perhaps the earliest such example. Let
us look more closely at this example.

A quaternion g is written g = a + Ai+ pj + vk (o, A, p,v € R); 50, as a
vector space, M is 4-dimensional, with basis {1,4,7,k}. In order to define H
as an algebra, we must give a multiplication table for the basis elements; and
these are the famous relations of Hamilton:

P=2=k=-1; ij=—j-i=k, j-k=—k-j=i, h-i=-i-k=1j.

So we see the non-commutativity in, for example i-j = —j - 4.
How would such a non-commutativity, so non-intuitive from our experience

with school alebra, arise naturally,? It arose naturally in a geometric context.
Consider the rotations of a sphere in R® with its centre at the origin.

First we have rotate the sphere by an angle 7/2 about the (fixed in space)
K-axis, followed by a 7/2 rotation about the J-axis. Now we perform these
two operations in reverse order; a /2 roration about J followed by a 7/2
rotation about K. It is easy to see that the resulting position of the sphere
is not he same in the two cases. These operations, of rotating the sphere, do
not commaute.

In fact, the operation of rotating the sphere through an angle 6 about an
axis through its centre may be represented by a quaternion

g=a-+ i+ puj+ vk,

where o = tan 6/2, and the axis has direction cosines (cos f, cos g, cos h) given

by
] 6 8
A=tan—-cosf p=tan—-cosg v =tan—cosh.
2 2 2
The rotation of the sphere is given by
i+ yj+ 2 = g(zi+yj + zk)g
where i+ yj + zk is a unit quaternion (z? + y% + 22 = 1) and so represents

a point on the surface of the sphere.
For example, the first of the two rotations used above is given by ¢; = 1+k

(8 = /2, and the axis contains (0,0, 1)) The second is given by g = 1+ 3. If _
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we take the point k on the sphere, we have:

(a) Applying first g; and then g3: k — qikq7' = (1 + k)k(1 — k)/2
(L+)k(1-3)/2=1

(b) Applying first ¢ and then q;: k — Qqu;I =(@+D1-5)/2 =i
quigrt = (1+ B)i(1 — h)/2 = 7.

I
!

This discovery of the connection between quaternions and rotations was
made by Gauss in 1819, pre-dating Hamilton’s work by almost a quarter of a
century. However, Gauss did not publish it. The result was given in a paper
of Olinde Rodrigues (1840) again pre-dating Hamilton, by three years. (I am
indebted to my Open University colleague, Jeremy Gray for referring me to
his article in the Archive for History of Exact Sciences where the details on
this discovery of quaternions are laid out.)

Quaternions are not much used nowadays, mainly because they can be
represented by the more familiar matrices with complex or real entries (see
Diagram (a)). This is a pity. They do have their enthusiasts still, however.

A MATRIX REPRESENTATION OF THE QUATERNIONS

=) = (0T

ij=k jk=i, ki=j

2 _ 2213 10 _
=3 = (0 1)_—1

These matrices are equivalent to the Pauli Spin Matrices

Diagram (a)

Symplectic groups—much used in dynamics and physics—have their most
elegant expression in terms of quaternionic matrices—although again, these
groups may be expressed otherwise. The fact that a quaternion is al element
of a 4-dimensional space would seem to indicate a possible use in relativyity;
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however, the quaternion

g=a+ Ai+pj+ vk
has a natural norm
llgll? = @+ A% + p? + 02,

while the relativistic theory would require a form such as —a2+ A%+ 2 412,
For this reason, Professor John Synge introduced Minkowski quaternions [2]
or minguats for short (called physical quaternions by Silberstein in 1912)

bl

=44 +q11+ q27 + g3k

where g4 is a pure imaginary (¢4 = v/—1la, o real). Now it is easy to see that .

if we multiply two minquats g, ¢’ together, the scalar term gag) is no longer
pure imaginary, and so the result is not a minquat. Thus minquats do not
form an algebra. However, the general quaternions with complex coefficients
do form an algebra, called biquaternions by Hamilton. The most amusing use
of biquaternions I know is due to Louis Kaufman [3]: Define

H= Hli'f’sz‘*' H3k,
J = J1i+J2j+J3k,

E - Ell + Egj -+ E3IC,
F=H++-1E,
and define the operators D and V by:

gl 0.0
—— mm— 1 e —
oz Byj Oz

D:\/—1%+v

Then the six electrodynamics equations of Maxwell may be written as the
single biquaternionic equation

k,

DF:\/-*lp—}-J

The quaternions form a system very like ordinary numbers, in that we may
add and subtract, multiply and divide. Technically, they form a Division Ring.
But we have lost the commutativity of the real and of the complex numbers.
If we relax associativity, we may define one final division ring, the octonions
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of Cayley. I say a final division ring, for it may .be shown that the;e‘are no
others. The property which you cannot preserve is .thfe absence of divisors of
gero; that is when two non-zero elements are multl.phe:d togfether, the res'ult
cannot be zero. Quaternions have this property, which is equivalent to saying
that every non-zero element has an inverse: Thus, if

ge€H, g=a+ri+pj+rvk#0

then 1 (@=Xi—pj—vk)
- (a2+A2+[J3+U2)‘

Biquaternions to not have this property’ that is, they have divisors of zero:
(V=14 k) (v/-1—k)=0.

A more important contribution of Cayley is the idea of a matrix. Sets of
matries (over R or C, for examples) form Algebras; and the Algebras and
Superalgebras I wish to consider in the sequel may all be represented by ma-

trices.

Clifford Algebras and Grassman Algebras

In passing, I should like to refer to two sorts of algebra which have many
applications nowadays Clifford (1845-1879) Algebras and Grassmann (1809-
1877) Algebras. These are both associative algebras.

First of all, Clifford Algebras. We take a basis {e1,e2,...,¢e,} for a real k-
dimensional vector space, and then define a multiplication of the basis vectors:

(i+#3)

€85 — —¢€5€

e? = —1.

By this means we define an algebra—we generate an algebra, since we are
allowed products. But due to the reduction we can make if two elements ina
product are equal (e.g., e1e2e183 = —€j€1€3€3 = €ze3) we need only consider
products in which all the basis vectors are unequal; so the algebra has for
basis

1 (noe’s), e, eej, €1€3...€;

number of elements: 1 EOEC, 1
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The total number of elements in the basis for the algebra is
1+5C +5C, + .+ Gy =1+ 1) =2*
Let us consider some cases of Clifford Algebras:
1. k = 1:-2! elements,basis {1, e1,e? = —1}, A = C, the Complex Numbers
2. k = 2: 22 elements, basis {1,e;, ez, e1e2}, A = H, the Quaternions.
3. k = 3: 2% elements, basis {1,ei,€ei,¢e5,e1e0e3}, A=ZHBH.

The 16-element case (k = 4) is related to an algebra introduced by Dirac
(1902-85) to describe electromagnetism.

If instead of taking ei = —1, we assume e? = 0, we obtain the Grassmann
Algebras, again of dimension 2*.

Jordan Algebras and Lie Algebras

To introduce the remaining algebras, I wish to talk about, we turn to Quantum
Mechanics. In one formulation, the basic laws of Quantum Mechanics are
algebraic in character; this is the matrix mechanics of Heisenberg (1901-76).
The dynamical quantities @ and P for position and momentum respectively
are to be thought of as Hermitian matrices—since these correspond to real
physical observables.

Hermitian conjugation is a complex conjugation which also reverses the
order of matrices: thus

(At = Bt af, (VIA)T = —v=1a4l.

The operators representing real physical quantities, such as P and Q, are
Hermitian, that is

p=rl, Q=¢"

It would therefore be very nice to form an Algebra of Hermitian matrices.
Ordinary addition is no problem:
(a+Bt=at+Bt+4+B  (4=al B=38h

But

Algebra and Superalgebra 27

(aB)t = BTat =Ba# 4B (4= al B=5B".

in general. Nevertheless, it is not too difficult to devise multiplication rules
which preserve hermiticity. These correspond to Jordan Algebras and Lie

Algebras.
Jordan Algebras:
Ax*B=AB+ BA

so that
(a+B) =B+ Ba) =plal y Btat = B4+ aB=4+B.

(Multiplication is always commutative.)
Lie(1842-1899) Algebras:

A+B=AB - BA

This multiplication actually preserves anti-hermiticity. If At = —4gand Bt =
—B, then

(4+B)t = (4B — BA) = (BT at - alBhY=Ba- 4B=-4+B.

But if we consider our physical operator P, Q etc., to be /—1 times an anti-
hermitian operator, this amounts to preserving hermiticity. (Multiplication is
always aliernating or anii-commutative.)

Neither the Jordan nor the Lie Algebras are associative; but for the Lie
Algebras associativity is replaced by the Jacobi identity:

(A«*B)*C+ (B+C)*A+(CxA)«xB=0
It is conventional to write the * operation for Lie algebras as a bracket:
[4,B] = AB - BA
This implies the possibility of embedding the Lie Algebra in an associative
algebra, where (4B)C = A(B) — always possible for Lie Algebras (the

Poincare-Birkhoff-Witt Theorem). However, not every abstract Jordan Al-
gebra is thus obtainable.
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Lie Algebras are the most frequently met in Physics, since the basic op-
erator @ and the momentum operator P, may be expressed as a Lie Algebra
bracket:

Q. P1=QP-PQ=+v=1h1l  (h=10"erg sec)

This relation gives rise to the famous Heisenberg uncertainty principle,
which imposes limits on the simultaneous accuracy of measurement of the
observables Q and P. And the above Lie Algebra, consisting of {@Q, P, 1},1s a
very elementary and very famous Lie Algebra, sometimes called the Heisenberg
algebra. This leads to the very physical Boson and Fermion Algebras.

If we define

b=Q+iP/V2, bl =Q—iP/V2,

then, taking units for which A =1,
XUEr !

gives an even simpler form of this Lie algebra. It is found in applicatins
that the operator b is associated with a particle in Physics with zero spin (or
an even number of spin units of (1/2)A)). Such a particle is called a boson.
Examples are mesons in nuclear physics and, most important of all, the photon
in Quantum Optics.

If by analogy, we assume a similar Jordan algebra for a different operator
f, we get the basic anti-commutation relation

U=t +ir=1 =1

Such a relation is satisfied by particles in physics which possess an odd number
of spin-units. Examples are the particles of the nucleus, neutrons and protons,
and, most importantly, the electron.

The property of a particle obeying either commutation or anti-commutation

relations is called its “statistics”, and can have a profound effect on the ob-
served properties. For example, Helium Four consists of bosons, and becomes
superfluid at about two degrees above absolute zero. The very similar isotope
Helium Three, on the other hand, is a gas of Fermions and becomes superfluid,
only at about under a thousandth of a degree above absolute zero.

If we wish to consider algebras in which both types of statistics are simul-
taneously present, we are led to superalgebras.
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Superalgebras

Superalgebras are simply mixtures of a Lie Algebra with a Jordan Algebra; or,
an algebra which incorporates both the commutation relation of a Lie Algebra
and the anti-commutation of a Jordan Algebra. Physically, we culd call them
boson-fermion algebras. Thus the basic operation is neither commutation
[z,y] = zy — yz, or anti-commutation {z,y} = zy + yz, but an operation
which can be either, depending on the elements z and y.

Abstractly, we write our superalgebra A as a sum of algebras

A= A5 @ Aj;
that is, every element z in A belongs either to 43 or 45;, and
(2,9} = =(=1)*[y, =}

where z € Aq, y € Ag; thus ,8=0: [z,y} = —[y,z} (Lie type)
o,B=1: [z,y} = [y,z} (Jordan type)

a=0,8=1 [z,y} = —~[y,z} (Lie type)

and

[Aa; Ag} C Aatp-

The supersymmetry associated with superaigebras provides a theoretical
framework for some current theories of Particle Physics [4] (although I am
informed it has not been observed to date experimentally) and this idea has
been used in Nuclear Physics and, more recently, in Condensed Solid State
Physics.

We give a simple example of a superalgebra in Diagram (b), representing
the elements of the 4-dimensional algebra 4 by 2 X 2 matrices over R. Note
that although the example may be simple, the algebra .4 is not ‘simple’ in
the technical sense, in that it possesses a (non-trivial) ideal; in fact {al:a €
R} C Ais such an ideal. Just as a complete classification of all the simple Lie

‘Algebras (finite dimensional over fields of characteristic zero) has been given

by E. Cartan (1869-1951) and others, a similar classification has been made
for superalgebras by Victor Kac of M.I.T. (1977).

An interesting confluence of the ideas of Clifford and Grassmann Algebras
with those of Lie Algebras and Superalgebras arises when we consider repre-
sentations of the latter by matrices [5]. We may reduce both types of bracket
(Lie and Jordan) to a single type (Lie) by introducing a representation in
terms of matrices over a Grassmann algebra instead of, say, the reals. We
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AN EXAMPLE OF A SUPERALGEBRA

=(30) =(10)
h=<(1) _01> 1:<é 2)

x,yEAi; h,1 € Ag

A=Az Afls generated by z,y, h, 1.

[;E,y}:my—i—yz:l
[hIz}::hz:-—zh::c
[y} =hy—vh =~y

In all other cases, [a, b} = 0.

Diagram (b)
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illustrate this using our small superalgebra A above. If every element of Ag
is assumed to be multiplied by an element (of the odd part) of a Grassmann
algebra then, for example, since

[e1z, e2y] = e1zeqy — eayerz = erez(zy + yz) = erea(z, ¥}

we obtain closure by consideration only of the commutator (Lie) bracket. (We
assumed in the above that the elements of the Grassmann algebra commuted
with the elements of .4; we may alternatively assume that the e; anti-commute
with Aj, commute with Ag. And since we only used the property eje; =
—eqey, a Clifford algebra would also provide a convenient representation for a
superalgebra.)

We conclude this note by indicating how these algebras may arise when
considering physical systems. The dynamics of such systems are governed by
a hamiltonian H, an operator expressed in terms of other operators of the
theory. The time evolution of an operator A is given by

V=1 %A =[4,H|= AH - HA

where we have a Lie Bracket on the right-hand side. This bracket is a natural
operation when both A and H belong to a Lie Algebra, or a Superalgebra (with
H in the even part Ag). This would occur when, for example, the operators
are linear or bilinear in boson or fermion operators (b, f) described above.
Otherwise, an approximation process (“linearization”) may be used (called
‘Mean Field Theory’ in Many Body Physics). Suppose H = AB, where 4, B
are some operators. We may write the identity

H=AB=(A-A)(B—p)+Ap+ 2B+ Ap.

Typically, A, 4 are thought of as the expectation values of the operators 4, B
respectively in some state w of the system. In the event that we may neglect
the (4 — A)(B — p) term—rationalizing this by assuming we do not consider
states for which opérators 4, B stray far from the w values—we may approx-
imate:

Happrox ~ Aip + AB — Ap.

This approximation is only consistent if
Case (i): 4, B commute; that is, AB = BA and so the approximation for BA
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leads to the same linearized value, here A, i are ordinary numbers.
Case (ii): A4, B anti-commute; that is, AB = —BA, which will be the case

when A and B are fermion operators. In that case, consistency demands that

A and p anti-commute with one another, and also with the operators A4, B,
then A, u may be taken as Grassmann or Clifford numbers.
Thus a general hamiltonian, after linearization by this method, will lock

naturally like an element of a superalgebra, with Ai-type elements multiplied
by Grassmann (or Clifford) numbers, just as in the simple example above.
This approach has recently been used to give a superlagebraic model of su-

perconductivity [6].
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Integrals of Subharmonic Functions

Stephen J. Gardiner

This article reviews a problem concerning potential theory in R™ which has
its roots in classical complex analysis. Omne of the interesting features of the
problem is the way in which the solution has gradually emerged, sometimes
in a surprising fashion. The article is based on a lecture given at the First
September Meeting of the Society, held at Trinity College, Dublin.

1 Background in C

Let N(f,r) denote the maximum modulus of an analytic function f on the
circle {z € C : |z| = r}. The starting point for our discussion is provided by
the following facts from elementary complex analysis.

Hadamard’s Three Circles Theorem. If f is analytic on {]z] < R} and
f #£0, then log N(f, ) is convex as a function of logr.

Principle of Removable Singularities. If f is analytic on {0 < |z| < R}
and rN(f,7) — 0 as r — 0+, then f has an analytic continuation to {]zi <
R}.

The latter result is saying that either N(f,r) behaves badly near 0 or else
0 is a removable singularity for f, in which case N(f,r) is continuous at 0.
The Three Circles Theorem has the following analogue for suprema over lines.
(See [14, p.180] for an important application of this result in the proof of the
M. Riesz convexity theorem.)

Three Lines Theorem. Let f be bounded and analytic on R x (0,1), con-
tinuous on R x [0,1}, and let f # 0. Then

Y- sup{loglf(:z: + iy){ iz € R}

defines a convex function on [0, 1].

33




34 IMS Bulletin 22 1989

We will be concerned with analogues of the above results for integrals of sub-
harmonic functions. We recall that a function s defined on a connected open
subset w of R™ (n > 1) and taking values in [—oo, +00) Is called subharmonic
if s % —00 and:

(i) s is upper semicontinuous (u.s.c.), i.e. limsupy_ x s(Y) = s(X) for all

X Ewy

(ii) the mean of s over the boundary of any closed ball in w is greater than

or equal to its value at the centre.

Notes. (I) A function h is harmonic (i.e. h satisfies Laplace’s equation) if

and only if both A and —A are subharmonic.

(II) If f is analytic on C and f # 0, then log|[f| is subharmonic. (Here we are

identifying C with R? in the usual way).

(IIT) Condition (ii) above can be replaced by (ii'): for any open set W with |
compact closure in w, and for any continuous function A ou W which is har-

monic on W and satisfies A > s on W, we have h > s on W.
(IV) Although it is usual to work with subharmonic functions on open subsets

of R"™, where n > 2, the definition also makes sense for n = 1. We discuss this

further at the end of Section 3.

2 Convexity Theorems

If 5 is a non-negative subharmonic function on R™~! x (0, 1), put

M(z,) = /Ru_l s(zy, .. .,znjdzl cdzaoy (0<z, <1).

The following analogue of the Three Lines Theorem is essentially due to Hardy,

Ingham and Pélya [8] in the case n = 2. (See also [13, 9]).

Theorem 1 If M(-) is locally bounded on (0, 1), then it is convex.

Proof (n=2). Let 0 < o < # < 1, and choose a, b such that ay +b = M(y)
for y = o, 8. Now define

he(z,y) = ay + b + e cosh(wrz) sin(wy)
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(2 harmonic function), and

I3
ul(:v,y):/ s(z +t,y)dt,
—t

which is subharmonic because it is finite valued, u.s.c. (by Fatou’s Lemma)
and submeanvalued (by Tonelli’s Theorem). Also u, < h. on R x {a, 8} and

ul(zay) - he(zy y) — —Q0 (lzi — 00, & S Yy S /B)!

so (cf. (ii') above) uy < he on R x [a, A]. Letting € — 0+ and £ — oo, we get
M(y) < ay+b for y € o, B, proving convexity.

Question. Is local boundedness the “right” condition?

The hypothesis cannot be dispensed with entirely. To give some idea of pos- -
sible behaviour we give below a few simple examples when n = 2.

Examples (1) s(z,y) = 1; M(y) = +oo.

(ii) s(z,y) = €| sin 7yl;

M(y)={0 ifye{0,3,1}
+co  otherwise.

xey
y+1°

M(y)a

o o e ]
[T SR S e
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Thus M(-) may be everywhere infinite, or everywhere finite, or neither.
Even if M(-) is always finite, it need not be convex.

Theorem 2. If M(-) is locally integrable on (0, 1), then it is finite and con-
Vex.

This result, due to Kuran [10], shows that convexity holds provided we re-
strict the type of discontinuity that is allowed to occur. It was substantially

improved when Rippon [12] applied a result of Domar to obtain the following.

Theorem 3. If logt M(-) is locally integrable on (0,1), then M(-) is finite

and convex.

It was also shown in [12] that the hypothesis here is best possible, so the

convexity property of M(-) is now satisfactorily described. However, we will
mention a recent generalization [7] which shows what happens when integra-

tion of s is carried out with respect to fewer of the co—ordinates.

3 A Generalization

A subset E of w is called polar if there is a subharmonic function on w which
takes the value —oo on E. A function s is said to be quasi-subharmonic if
the function 3(X) = limsupy _, y s(Y) is subharmonic, and 3 equals s except

on a polar set.
Let X = (X', X")e R"™™ x R™, (2<m<n-1), and put

P(s, X") = / (X, X")dX,
Rﬂ-—m

Peo(s, X") = sup{s(X', X") : X' e R""™}.

Theorem 4. Let s be subharmonic on R"™™ x (0,1)™.

‘

(i) If{log+ P(st, -)}m-*‘6 is locally integrable on (0,1)™, then P(s,-) is either
subharmonic on (0,1)™ or identically valued —co.

i) If {log™ Po(sT,- ™ s locally integrable on (0,1)™, then Py(s,-) is
g
quasi-subharmonic on (0,1)™.

Notes . The hypotheses can be weakened slightly [7]. A version of (i) with
stronger hypotheses was proved independently by Aikawa [1].
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Example. To see that, in (ii), quasi-subharmonicity is the best that can
be said, let E be a polar subset of (0,1)™ (m > 2), and let u be a negative
subharmonic function taking the value —co on E. Then the function s{(X) =
—{~u(X") 1Xi2'"}1/2 can be shown to be subharmonic on R"™™ x (0, )™,
and clearly
uy _ J —oo Hu(X")=-—co
Pools, X7) = {0 elsewhere on (0, 1)™.

Consider now the notions of harmonicity and subharmonicity for functions
of one real variable. A “harmonic” function h must satisfy d*h/dz® = 0,
so h(z) = az + b. From condition (ii') of §1, if a “subharmonic” function s
satisfies s(z) < h(z) at ¢ = a, 8, the same inequality holds for z € (e, 8), so s
is convex. Since it is impossible for a convex function to take the value —co,
the only polar subset of R is the empty set. Hence, in R, the terms “convex”,
“subharmonic” and “quasi-subharmonic” are synonymous. Thus Theorem 4
generalizes (in different ways) Theorems 1 — 3 and the Three Lines Theorem.

4 Growth Theorems

We now consider analogues for M(-) of the Principle of Removable Singu-
larities. In what follows, we assume that s is a non—negative subharmonic
function on the half-space R~ ! x (0,+c0), and that M(-) is finite and con-
vex on (0, +00). We also note that, if M(-) is bounded on (a, +co) for some
a> 0, then M(-) is decreasing (wide sense).

The following is due to Flett [6].

Theorem 5. If M(y) = O(y*~!) as y — oo, then M(-) is decreasing.

Proof Let B(X,r) denote the open ball of centre X and radius r, and let
v denote the volume of B(O, 1). By hypothesis there exists ¢ > 0 such that
M(y) <cy*~!forally> ;. If ¢, > 1, then

1
(2 /2)" JB(x,20/2)
s
V(20 /2)" JR™ % (2n/2,320/2)

1 32‘/2
= M(y)dy
(onf2) /, @)

s(X)

IA

s(Y)dy  (cf §1, (ii))

(Y)dY
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3z./2
zn/2 —~ / s y"~ ! dy = constant.

Thus s is bounded on R™™! x [1, +00), and it follows that s is majorized by
its Poisson integral I, on R™™! x (1,00). Hence

M(mn):‘/ _ls(X)d:cl‘..d:zn_lg/ n_lL(X)d:cl.”dmn_l:M(l)
(:zzn>1f

by Tonelli’s theorem, and so M(-) is bounded on (1, +o0).

In fact, Kuran [10] showed that the exponent in Theorem 5 can be m
creased. 5
Theorem 6. If M(y) = o(y™), then M(-) is decreasing.

Example . To see that the exponent cannot be further increased in the
case n =2, let « > 1 and .

S(Teiﬂ) - {.,.a cos (6 — 1'2—) (IQ—- %' < 27'_[1)

0 (otherwise).

Then s is subharmonic on R x (0, +oco) and M (y) = const. yett for y > 0
(For n > 3, a similar example is based on Legendre functions).

However, Nualtaranee [11] was able to refine Kuran’s hypothesis.

Theorem 7. If M(y) =

The problem of finding the “correct” condition is now clearly down to a matter
of “fine tuning”. A contribution in this direction was obtained by Rippon [12]
using a result of Dahlberg about minimally thin sets in half-spaces.

O(y™), then M(-) is decreasing.

Theorem 8. If s has a harmonic majorant on R"*™" x (0, +co) and
f min[l, {y/M(y) }1/ T 1)} dy = 400, (*)
1

then M(-) is decreasing.

Condition (*) was also shown to be the best possible. Using the convexity o
M (-) it can be seen that (x) is implied by the condition lim infy oo ¥y "M (y) ¢
+o0. It is now not difficult to obtain the following improvement of Theorem
7.
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Corollary. Ifliminfy_. e y™" M (y) < +oco then M(-) is decreasing.

Open Question . Can the hypothesis about the harmonic majorant be
removed from Theorem 87

This question appears to be difficult. If the answer is “yes”, then Rippon’s
condition (x) is best possible [12].

5 An Extension

We mention now a recent result [3] which shows what can be said about
the gr'owth of 'M (-) = M(s,-) when we drop the requirement that s be non-
negative. Again, s denotes a subharmonic function on R™™! x (0, +-00).

Theorem 9. Iflogt M(st,y) = o(y) and

/1 y " M (s, y)dy < +oo,

then M(s,-) and M(s*,-) are decreasing, and M(s™,y) = o(y).

The proof of Theorem 9 begins by estimating the distributional Laplacian
of s 1on strips and using this to show that s has a harmonic majorant on
R™™" x (0, +00). With regard to the sharpness of the result we mention the
following. (i) If log* M(st*,y) = O(y), then all three conclusions fail. (ii) If
we replace y~"~! by y~""17¢, the counterexample of §4 (mvolvmg Legendre
functlf)ns) applies. (iii) The concluswn about M(s~,-) is best possible in
that, if ¢(y) decreases to 0 as y — +co, then there is a negative subharmonic
function s such that M(s™,y) > yé(y).

6 Other Results

A number of papers have dealt with M(® o s,-), where & is an increasing
convex function (whence @ o s is subharmonic). We mention here only th;
case ®(z) = z”, where p > 1. The following is a refinement of a result of
Brawn [4] in the light of Theorem 3.

Theorem 10. If s is non-negative and subharmonic on R~ ! x (0,1) and
log™ M(s?,-) is locally integrable on (0,1), then {M(sp, -)}llp is finite and

convex.
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The convexity property here is replaced by subharmonicity if we integrate onl
over R"™™ as in §3, (see [6]). With regard to growth theorems, we mentio
the following result of Armitage [2].

Theorem 11. If s is non-negative and subharmonic on R™~! x (0, 4+0c0) an
M(s?,y) = O(y™*+P~1) as y — 4co, then M (sP,y) decreases to 0 as y — +-co

Thus, with s replaced by the “strongly subharmonic” function s?
weaken the hypotheses of Theorem 7 and strengthen the conclusion.

, We ca

Acknowledgement .
in compiling this account.

I am grateful to David Armitage for his assistanc

References

(1] H. Aikawa, On subharmonic functions in strips, Ann. Acad. Sci. Fenn,
Ser. AL Math. 12 (1987), 119-134. '

(2] D. H. Armitage, On hyperplane mean values of subharmonic functionsé
J. London Math. Soc. (2) 22 (1980), 99-109.

(3] D. H. Armitage and S. J. Gardiner, The growth of the hyperplane mean
of @ subharmonic function, J. London Math. Soc. (2) 36 (1987), 501-512,

[4] F. T. Brawn, Hyperplane mean values of subharmonic funciions in
R™x]0, 1[, Bull. London Math. Soc. 3 (1971), 37-41. ‘

(5] F. T. Brawn, Mean values of strongly subharmonic functions on half
spaces, J. London Math Soc. (2) 27 (1983), 257-266. '

(6] T. M. Flett, Mean values of subkarmonic functions on half-spaces, h
London Math. Soc. (2) 1 (1969), 375-383. ,

[7] S. J. Gardiner, Integrals of subkarmonic functions over affine sets, Bull.
London Math. Soc. 19 (1987), 343-349.

(8] G. H. Hardy, A. E. Ingham and G. Pdlya, Notes on moduli and mea
values, Proc. London Math. Soc. (2), 27 (1928), 401-409.

(9] U. Kuran, Classes of subharmonic functions in R™ x (0, +00), Proc. Lon
don Math. Soc. (3), 16 (1966), 473-492.

Integrals of Subharmonic Functions 41

[10] U. Kuran, On hyperplane means of positive subharmonic functions, J.
London Math. Soc. (2), 2 (1970), 163-170.

[11] S. Nualtaranee, On hyperplane means of non-negative subharmonic func-
tions, J. London Math. Soc. (2), 7 (1973), 48-54.

[12] P. J. Rippon, The hyperplane mean of @ positive subharmonic funciion,
J. London Math. Soc. (2), 27 (1983), 76-84.

[13] E. M. Stein and G. Weiss, On the theory of harmonic functions of several
variables, I. The theory of HP-spaces, Acta Math. 103 (1960), 25-62.

(14] E. M. Stein and G. Weiss, Iniroduction to Fourier Analysis on FEuclidean
spaces, Princeton Univ. Press, 1971,

Department of Mathematics
University College, Dublin.




Toeplitz Operators

G.J. Murphy

There are few classes of operators on a Hilbert space about which one has

very detailed information, apart from the normal operators and the compact
operators. An exceptional class about which much is known is the class of
Toeplitz operators. This paper gives a brief survey of some aspects of their

theory, from its origin near the begining of this century to the present day.

1 The basic results

The study of Toeplitz operators was initiated in a paper in 1911 (by Toeplitz

[13]) in which the relationship of finite square matrices that are constant on
diagonals to the corresponding infinite matrices was investigated. The class of

Wiener-Hopf operators was studied in parallel (from 1931) until Rosenblum = |

[11] observed in 1965 that that the two classes of operators are unitarily equiv-

alent. There now exists a vast literature on this area. The theory is interesting

in its own right, but also has applications to and connections with many other
areas, for example, Function Theory, Prediction Theory, C*-algebras, other
areas of Operator Theory, Probability, and Physics.

Having indicated why Toeplitz operators are studied, let us now define
them and look at some of their properties.

Let T denote the circle group, T = {z € C | |z] = 1}, and let A denote
normalized Haar measure (= normalized arc length) on T. For p € [1, +00]
let LP = LP(T,)). If ¢ € L™ we get a bounded linear operator M, on L? by
setting

M,(f) =of (f€L?.

M, is called the Laurent operator with symbol ¢. It is of course a normal
operator, i.e. it commutes with its adjoint, and the map ¢ — M, is an
isometric *-homomorphism of L® into B(L?) (for any Hilbert space H, we
let B(H) denote the Banach algebra of all bounded linear operators on H).
The matrices of these operators are very special when taken relative to the
standard orthonormal basis (e, ), <7 (where e, : z — z") — they are constant

42
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along d?agonals. However our interest is not really in Laurent operators, whose
theory is very easy, but in their compressions to a certain subspace H 2., Recall
that .for P € [1, +co] the Hardy space H? is the set of all f € L? with “negative”
Fourier coeflicients (f,en) = [ f&, dA (n < 0) all equal to zero. Let P denote
the projection of L? onto H?. If ¢ € L™ then T, € B(H?) is defined by

setting
To(f) = P(of) (feH?).

T, is called the Toepliiz operator with symbol o. It might appear at first sight
that the theory of Toeplitz operators should be like that of Laurent operators
since the difference between their definitions may appear trivial, but in fa.ci:
the two theories are profoundly different. The theory of Toeplitzyoperatc;fs is
deep, and hard.

Let us begin by noting some elementary facts. Every Toeplits operator
has matrix with constant diagonals relative to the standard orthonormal basis
‘(en),‘f’:o, afld conversely any T' € B(H?) with such a matrix relative to (en)2
is a Toeplitz operator. One has ||T,|| = r(T,) (the spectral radius) = ”cpﬁ_o.
tI‘he spectral theory of T,, is complicated by the fact that invertibility of ?
is not equiva lent to invertibility of ¢ (although the corresponding statemen‘:z
is true for M, ). One does have implication in one direction however: if T. is
invertible then ¢ is invertible. Hence o(yp) C o(T,), a result due to Hartz;’;an
a,nd. Wintner [6]. o( ) denotes the spectrum — for a an element of an algebra
ha,v1‘ng a unit 1 the spectrum o(a) of a is the set of all z € C such that z1—a is
not invertible. As indicated above one does not in general have o(T,,) = o(yp)
An example is provided by the unilateral shift U = T., as its s;ectrum ié;
Fhe closed unit disc, but the spectrum of e, is the unit circle. However a(T,)
1s not too much bigger than o(p), because o(T),) is contained in the clos:d
convex hull of o(yp) (Brown-Halmos [ 1]).

_ The above results are relatively near the surface. In contrast is the beau-
tiful and surprising theorem of Widom [15] which states that the spectrum of
a Toeplitz operator is connected.

Ox.le of the reasons that Toeplitz operator theory is not easy is that the
equation Tyy = T, Ty does not hold in general (e.g. take ¢ = ¢; and Y =&
But there is a subclass of Toeplitz operators for which the above equality does.
hold: We say Ty is analytic if » € H™. In this case we have T Ty =T,y and
T;T, = Ty, for all p € L. Hence the map ! "

H® - B(Hz), 1/)»——>T¢,
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is an algebra isomorphism onto the closed subalgebra 4 of all analytic Toeplitz
operators. One can easily show that 4 is the commutant of U, i.e. the set of
all operators commuting with U, and so a maximal commutative subalgebra
of B(H?). The open unit disc A can be embedded in the character space of
the Banach algebra H® in a natural way, and if ¥ € H® then its Gelfand
transform v restricted to A is a bounded analytic function. (By the way, the
character space of H® is quite complicated. The famous Corona Theorem of
Carleson says that A is dense in this space.) One can now state Wintner’s
theorem [16] : If ¢ € H™ then o(Ty) = cl(¥(A)) where cl denotes closure in
C.

In the next section we shall indicate how one can use C*-algebras to get
some other results of the classical theory of Toeplitz operators, but we end
this section with a brief remark on Wiener-Hopf operators.

If o € L'(R) the Wiener-Hopf operator W, € B(L*(R%)) is defined by
setting

Wof)a) = [ wle -1t (e L*(RY)).
If z € C\ {0} then the Wiener-Hopf equation is
(z+Wy)f =g

where ¢ is given and f is the unknown function. The conformal map of the
upper half-plane onto the unit disc sets up a unitary equivalence between a
Wiener-Hopf operator and its corresponding Toeplitz operator.

2 C*-algebras and Toeplitz operators

For T a bounded linear operator on a Hilbert space H, N(T') denotes its
nullspace {z € H : Tz = 0}. Recall that T is Fredholm if T(H) is closed
and N(T), N(T") are finite-dimensional. In this case the Fredholm index is
defined to be indez (T') = dim N(T') — dim N(T*). The essential spectrum of
T is the set

0.(T)={z € C|z1 —T is not Fredholm}.

Obviously ¢.(T) C o(T). There is a very useful characterization of Fredholm
operators due to Atkinson, but to state it we need to introduce a few more
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concepts. An operator is compact if it is the norm limit of a sequence of finite-
rank operators. The set K(H) of these operators on H forms a closed ideal,
and the quotient algebra B(H)/K(H) is called the Calkin algebra. If 7 is the
canonical map from B(H) to B(H)/K(H) then the Atkinson characterization
is that T' is Fredholm if and only if #(T') is invertible in the Calkin algebra.

A key step in the spectral analysis of Toeplitz operators is the following
lemma due to Coburn [2]. The proof is so short that we include it, as it also
illustrates nicely the connections with Function Theory.

Lemma If ¢ is a function in L™ not almost everywhere equal to zero then
either T, or Ty has zero nullspace.

Proof Recall that the theorem of F. and M. Riesz says that a nonzero function
f in H? cannot vanish on any set of positive measure in T. Now suppose that
f € N(T,) and that g € N(T;). Then of and g are in H?, so ¢f§ and
gof are in H'. By the “analyticity” property of the Hardy spaces, we must
have ¢ fg is constant a.e. But [¢f§dA =0, so pf§ = 0 a.e. If neither f or
g is zero, then by the F. and M. Riesz theorem we must have ¢ = 0 a.e., a
contradiction. QED

It is immediate from this lemma that if T}, is Fredholm then T, is invertible
if and only if indez (T,,) = 0. From this it is not difficult to prove:

Theorem (Krein-Widom-Devinatz) If ¢ is a continuous function on T
then the operator T, is Fredholm if and only if ¢ does not vanish anywhere,
and in this case indez (T,) is equal to minus the winding number of © with
respect to the origin.

This beautiful result thus identifies an analytic index with a topological
index, and is a simple prototype of the Atyiah-Singer Index Theorem. A
direct consequence of it is the fact that the spectrum of T, is connected if ¢ is
continuous, thus giving an easy proof of a special case of Widom’s Theorem.

Many of the above results (and other results) are obtained by C*-algebraic
techniques. The idea is this: Let T(Z) denote the C*-algebra generated by
the Toeplitz operators with continuous symbol (the reason for the appearance
of the symbol Z will become clear presently). Then its commutator ideal (i.e.
the smallest closed ideal I for which the quotient algebra modulo I is abelian)
is K(H?). The map

C(T) — T(Z)/K(H?), ¢ — T, + K(B?),
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is a *-isomorphism. To see how this gives connectedness of the essential spec-
trum note that if ¢ € C(T) then its spectrum is just its range, so it is con-
nected as T is connected. It follows that the spectrum of T, + K(H?) is
connected, and by the Atkinson characterization this is just the essential spec-
trum of T,,. With a little more work a simple proof that o(T,) has connected
spectrum can be given in this case.

One can also consider the C*-algebra generated by all Toeplitz operators,
and use it to derive various results. For details see Douglas [4].

The above discussion indicates the usefulness of the algebra T(Z) in Single
Operator Theory, but it is also useful in C*-algebra theory. It is generated
by a non-unitary isometry (viz U), and up to isomorphism it is the only such
C*-algebra. Moreover one can use the short exact sequence

0— K(H?) - T(Z) - C(T)—0

(or rather a reduced form of it) to give a relatively easy proof of the Bott peri-
odicity theorem in K-theory (for locally compact spaces and for C*-algebras).

It is natural that one should try to extend these ideas and techniques to
more general situations, and this has been done by many mathematicians
including Douglas, Devinatz, Howe, Kaminker, Muhly and Singer and many
others. We now discuss one of these extensions.

3 Extended theories of Toeplitz operators

An ordered group is a pair (G, <) consisting of a (discrete) abelian group G
and a linear partial order < on G which is translation invariant (ie. ¢ <y
implies that z+2z < y+z). Obvious examples are Z, R and all subgroups of R.
Ordered groups exist in superabundance, for if G is a discrete abelian group
with Pontryagin dual group G then the following are equivalent conditions:
(1) There is a linear order < on G making G an ordered group.

(2) G is torsion-free

(3) G is connected.

Fix an ordered group G, and let m denote normalized Haar measure on &,
and I? = I?(G,m), 1 < p < +oo. If f € L' we say that f is of analytic type
if the Fourier transform f(z) = 0 for all z € G for which z < 0. H? = H?(G)
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denotes the norm-closed vector subspace of all f € L? of analytic type. As
is well known if e(z) : G — T, v — 7(z), (z € G) then (e(z))zec form an
orthonormal basis for L?. It follows that if G = {z € G : 0 < z} then
(e(2))zeq+ is an orthonormal basis for H2. One can extend Fourier Analysis
and Function Theory to this context (see Rudin [12]). The generalized Hardy
spaces H? display analytic behaviour, for if f, f € H? then f = constant a.e.
We can now define Toeplitz operators as before, and many of the elementary
results extend easily. However we shall primarily be interested in certain C*-
algebras generated by Toeplitz operators.

Let T(G) be the C*-algebra generated by all T,, for which ¢ € C(G), and
let K(G) be its commutator ideal. Before stating some results in this area we
need a few definitions.

A C*-algebra A is primitive if it has a faithful irreducible representation
(i.e. there is an injective *-homomorphism ¢ : A — B(H) where H is some
Hilbert space with no nontrivial subspace invariant for every ¢(a) (a € 4)). A
is simple if it has no closed ideals apart from 0 and A. Simple C*-algebras are
primitive. In a loose sense the primitive and simple C*-algebras are thought of
as the building blocks from which all C*-algebras are made, and for this and
other reasons it is very important to have many examples of such algebras.

Theorem Let G be an ordered group.
(1) T(G) is primitive (and therefore K(G) is primitive also).
(2) K(G) is simple if and only if G is (order isomorphic to) a subgroup of R.

(1) and the forward implication in (2) are due to the author [9]. The
backward implication in (2) is due to Douglas [5]. The study of the algebras
K (G) in the case of subgroups of R has become especially important recently
with connections having been discovered with Connes’ non- commutative Dif-
ferential Geometry. There are are many more interesting things that can be
said about these more general Toeplitz theories. For example there is the very
rich spatial theory due to Muhly and others which has not even been touched
on above. We finish up with a few remarks on the K-theory of the algebras
K(G). In [5] Douglas asked if subgroups G;, G3 of R were order isomorphic
when K(G,) and K(G3) are isomorphic. This was answered affirmatively in
[10] in a special case, and in general in [7]. The method of proof in both cases
involved computing the K-groups of K(G).

A good elementary introduction to the theory of Toeplitz operators is [4].
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MATHEMATICAL EDUCATION

Mathematics at Third Level
Questioning How We Teach

Maurice O’Reilly

This essay comes in four parts: context, focussing questions, philosophies
and questions for exploration.

Contexts

What I have to say arises from three contexts: (a) my/our own personal ex-
perience, (b) the constraints of the educational system in which I/we operate,
and (c) the last two meeings of the Society.

On the first, each of us has his/her own ‘teaching CV’. I myself have been on
the staff of Dundalk RTC since September 1981 teaching courses at National
Certificate and National Diploma level in the Science, Business Studies and
Engineering Schools. Latterly, my work has been with students of computing,
science and marketing. The Leaving Certificate grades in mathematics of
student entering Dundalk RTC may range from D in the lower course to a
good honour (in the higher): an indication that students’ formation, and
perhaps their capabilities, in Mathematics can vary greatly.

The second context has to do with such issues as institutional goals, edu-
cational resources, physical space, class sizes, class contact hours and course
objectives. All of these are characterized by elements of structure rather than
experience.

The third context is one which has drawn attention to at least two impor-
tant areas in the teaching of Mathematics: (i) the low numbers who choose
to follow mathematics courses (perhaps indicative of a flaw in the popular
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perception of the subject), and (i1) the challenge posed by the increasing use
of computers in every domain of mathematics teaching.

It is my belief that when we talk about teaching mathematics, we need
to go behond merely prescribing courses. We need to consider questions of
Low we teach whatever-it-is that we teach. It is perhaps remarkable that in,
for example, Ralston & Young’s interesting study [5] on the future of college
mathematics, there is nothing to be found on this issue. For sure, the content
of courses is important, but not to the absolute exclusion of considering how we
spend our time in the classroom (I use ‘classroom’ to include lecture theatre!).
And, after all the talk, then there’s the doing ...

Focussing Questions

To focus attention on the issues, I invite the reader to reply to the following
questions:

1. What do I teach?
9. Where is my attention when I teach?

3. What different modes (methods) of teaching do I use as a mathematics
educator?

4. How much time during a typical scheduled class am I silent?
5. Under what circumstances do I have my most fruitful pedagogic insights?
6. How do I cope in teaching when under (severe) time pressure?

7. To what extent are students actively engaged in my classes? Is this the
same for all my classes?

8. To what extent do students know in advance what to expect in my class?
Not only in terms of content, but also in terms of process?

9. What do students appreciate in a good lecture?

10. What do I consider important other than content in my teaching?

|
i
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It is tempting to ask for answers to be shared, but when it comes to how
we teach, our ‘academic objectivity’ tends to wear thin and unhelpful com-
parisons between approaches may ensue! Academics are sometimes identified
as possessing a certain arrogance (if discreetly expressed!), or at least conceit,
about the importance and validity of their work. Perhaps we mathematicians
have developed this conceit to a fine art, since it is our practice, not only to
proclaim our truths, but also to prove them! This is all very appropriate in
a mathematical context, but what happens when it slips into our teaching
methods too?

Philosophies

Perhaps there are two areas of attention in learning mathematics: theory and
practice. At first, students usually perceive theory as a body of knowledge
to be taken down in their notes. It is important that these notes be coher-
ent so that they can be consulted usefully at a later date. It is only after
intelligent study, involving practice, review of theory, more practice, etc., that
understanding grows.

In [7], Sheffield identified the most important aspect of lecturing as ‘to
stimulate students to become active learners in their own right’. This might
be said of all teaching!

The key question an educator of mathematics (or indeed any subject) can
ask is how can I provide the best range of opportunities for my students to
learn?

There are various modes of teaching which provide different opportunities
for students’ learning. These may be characterised by the proportion of par-
ticipation/control assumed by the lecturer as opposed to the student. The
spectrum includes traditional lectures, facilitated group work, private study,
etc.

It is often the case that the educator spends most of his/her teaching time
operating in just one mode. Likewise, he student may remain in the rut of
just one learning mode.

Much of the above question can be restated as: How can I ensure that
1 use the appropriate mode (and variety of modes) in a particular teaching
circumstance?

In an environment where many (most?) weak students are struggling even
to begin to grasp our subject; surely it is up to us to develop process in our
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i
% mathematics teaching?

| The ‘traditional’ process in mathematics teaching is linear with emphasis
1 on content and is supported by an exclusively logical structure. To become
g ~ mathematicians, we have thrived in such an environment, and now, as teach-
| ers, we perpetuate it. Yet we know from our research work that intuition
. plays a vital role in doing mathematics. Where is intuition in our teaching?
§ Is Poincare’s essay ‘Mathematical Discovery’ [4], better known among psy-
chologists than among ourselves? Hadamard [2] has said that ‘logic merely
sanctions the conquests of the intuition’. (An update of Hadamard’s work
is found in Muir [3].) Why is mathematics so often presented in a state of
over-rumination: chewed beyond flavour?

Our own research involves exploration: exploration which is rooted in ex-
_ perience. What is the analogy of this in our teaching? Let me put it this way:
. Suppose Ej; is the experience of student % in topic j. How can we benefit from
 |J; Ei; rather than merely (); E;;7 :

Before offering some (more) open-ended questions, a few cautionary words.
Our inertia in improving our teaching can operate in subtle ways. One such
~ way is to allow oneself to be side-tracked into proclaiming the superiority of
one’s own methods over those of others. Another way is to dismiss a method
glibly by insisting, often inaccurately, that one already applies a particular
- recommended method in one’s teaching. It is hoped that the following ques-
tions may stimulate honest, self-critical and constructive exploration of how
_ we teach methematics.

Questions for Exploration

1. What is he best question I can ask to motivate topic, T'7

. How can I best spend time with my students in subject, S?
. When is it desirable to alert students to my teaching mode?

How can I encourage students to engage more actively in my classes?

. How can I encourage students to learn mathematics intuitively?
. How can I encourage a healthy dynamic between theory and practice?

How can I encourage a spirit of mathematical confidence and indepen-
dence in my students? '
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8. If I have new ideas about teaching mathematics, how can I be sure that
I succeed in implementing, evaluating and extending them?

9. How can assessments be designed in order to complement good teaching
so as to promote further opportunities for learning?

10. Are problem-solving and theorem-proving the only relevant elements in
assessment?

11. What contribution could ‘academic councils’ make to the development
of effective teaching?

12. What structures are necessary in my institution to support and promote
effective teaching?
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Linking Mathematics with
Industrial Problems

P. F. Hodnett

There is a growing interest in establishing links between University Math-
ematics Departments and industrial and commercial organizations in order to
identify industrial problems amenable to mathematical analysis. There is a
variety of reasons for this including:

1. the desire of mathematics faculty to contribute to the solution of real
life problems;

2. the desirability of involving graduate students with such problems;

3. offering industry the opportunity to view the useful mathematical ex-
pertise of graduates with possible resultant job offers;

4. the desire by industry to create links with mathematics faculties to avail
of faculty expertise and to aid in student recruitment for the company;

5. the desire by industry to avail of technical expertise in areas of shortage
of such expertise in the company.

As a result, a number of Universities in different parts of the world have
established such links. The type of link varies somewhat from place to place.
Probably the oldest continuing link scheme (running for more than fifteen
years) is operated ‘at the Mathematics Institute, University of Oxford, U.K.
where a one week study group is held annually involving Oxford faculty mem-
bers (augmented by invitees from other Universities) graduate students and
industrial participants to discuss and hopefully outline solution paths to in-
dustrial problems. With initial help from Oxford faculty a similar one week
study group is now held annually at both Rensselaer Polytechnic Institute in
the USA and at C.S.I.LR.O. in Australia. A different type of process (also run-
ning for more than fifteen years) is operated at Claremont Colleges, California,
USA, where the postgraduate education of mathematics students is through
involvement with industrial problems funded by industry and identified by
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faculty with an industrial partner. In return for funding, Claremont Colleges
contracts to deliver material specified in a contract. The TechnoMathemat-
ics Group at Kaiserslautern University, Federal Republic of Germany and the
Mathematics Institute, University of Linz, Austria also have well established
links involving the education of mathematics students through the solution of
industrial problems although at these Universities the procedure is less for-
malised than in the Oxford model. The TechnoMathematics Group at Kaiser-
slautern has particularly strong links with the German automobile manufac-
turing industry while Linz has particuarly strong links with the electricity
supply companies and the chemical plants in Austria.

Similar initiatives have begun in Ireland and in the recent past a workshop
in Applied Mathematics was held at NIHE, Limerick, in the first of what
is planned to be a continuing series. The objective of the workshops is to
involve the mathematics faculty and postgraduate students at NIHE, Limerick
in real applications of mathematics in both the manufacturing industry and
commercial organizations; the workshop participants offer help to industry in
solving problems that appear to be amenable to mathematical modelling and
analysis.

The task of identifying a set of suitable industrial problems for the work-
shop required substantial effort on the part of three mathematics faculty mem-
bers, despite the fact that (1) NIHE, Limerick has well-established industrial
links through its industrial placement program, which is an integral element of
all degree programs; and (2) the range of potential problems was wide in that
problems were regarded as acceptable if adequate relevant expertise resided
in the mathematics faculty (augmented by faculty from other departments at
NIHE, and, possibly, by support from faculty of other universities).

The three problems considered at the workshop were of widely different
types: (1) wave-induced washout of submerged vegetation in Irish lakes; (2)
creep behaviour of ultra-high-molecular-weight polyethylene under dynamic
load, with potential application to the design of femoral prostheses; and (3)
keg utilization.

Workshop structure

For this first venture, if was decided to confine the activity to one day so as

to facilitate participation by both the industrial representatives and faculty
and students from other institutions. During the morning session, each of

Linking Mathematics with Indusirial Problems

the three problems was described in detail by the industrial proposer of th

problem. :

In the afternoon, separate groups with appropriate expertise and interests
that ha‘d been identified for each problem participated in discussion sessions
Each discussion session began with an introductory presentation of materiai
rela.l.ted to the problem under consideration by an NIHE, Limerick academic
This presentation was followed by an open discussion chaired by the introduc:
tory speaker.

' The objectives of the afternoon session were (1) to identify potential solu-
tion paths for the problems (if possible) and (2) to identify groups of academics
who would commit to work on a continuing basis with the industrial presenters
of the problems towards solving the problem.

Submerged vegetation washout

The problem on washout of submerged vegetation in Irish lakes was presented
by ‘the Central Fisheries Board, Dublin. The Irish Central Fisheries Board
which is responsible for monitoring and maintaining fish stocks in Irish lala:esj
has observed that vegetation growing on lake bottoms is sometimes Washeci
away by the action of the wind on the lake surface. Since the vegetation is
necessary for the health and survival of fish stocks, it is desirable to prevent
vegetation washout; to do so, however, it is necessary to understand the mech-
anism through which washout can be predicted for a given wind speed, wind
direction, and lake geometry. To achieve this, it is necessary to unde;stand
how the action of wind-driven waves on the surface of the lake is transmitted
Ezetil:kiatzt:;)z?m to create stresses that cause washout of vegetation from
’ Fo.r this water wave problem, mathematics faculty members from NIHE
leeflck with expertise and interest in fluid mechanics and wave problem;
were Jf)ined by fluid mechanics colleagues from mechanical engineering, NIHE
leenck as well as experts in fluid mechanics and waves from Untiversit :
College, Cork and NIHE, Dublin. Joint work continues on this problem ang
to date an initial model based on linear water wave theory has been devek’)ped.
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Improved Artificial Joint Design

The problem related to the design of femoral prostheses was presented by
a large medical products manufacturing company that provides the medical
profession with a wide range of artificial replacement joints and limbs for
the human body. At present, the company produces an artificial hip joint
head that fits into a receiver cup made of a different material. The company
wishes to replace the material now used in the receiver cup by an ultra-high-
molecular-weight polyethylene (UHMWPE) material. To do so, it is necessary
(1) to establish the response of the UHMWPE material to anticipated static
and dynamic load; and (2) to establish a model for predicting the creep pene-
tration of the metal head into the UHMWPE after N walking cycles and after
various periods of use (days, months, years).

To consider these two linked materials and mechanical problems, a number
of mathematics faculty members with expertise in numerical analysis (since
numerical analysis is expected to play an important role in the modelling
of these problems) were joined by materials and mechanical engineering col-
leagues from NIHE, Limerick and a materials expert from NIHE, Dublin.
Work on the problem continues, aided in this case by the fact that a research
professorship in mechanical engineering at NTHE, Limerick is sponsored by this
industrial company and his work is substantially concerned with establishing
the mechanical response of medical prostheses under static and dynamic load.

Optimising Keg Use

The problem of keg atilization was presented by a large brewing company.
The company wishes to optimize the use of its keg population (used to trans-
port its wide range of brewing products) for known current demand and future
anticipated demand. The problem as presented at the wokshop was somewhat
diffuse and not clearly defined. The background is that this company holds a
population of approximately 800,000 kegs, purchased during a 20-year period
and of three types (i.e. 51.1 L aluminium, 50.0 L aluminium, 50.0 L stainless
steel). The company’s four production centers serve three main markets, i.e.,
Ireland, Europe and the U.S., with a dozen different brewing brands. Iden-
tification of kegs/markets/products is currently done by color banding. A
proposal within the company is to change to a universal keg (50 L stainless
steel). Subproblems related to the general optimization problem are (1) how

e
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to estimate and control/reduce losses in the current keg population; (2) how
to measure and improve utilization in a situation in which return times vary
widely in different markets, from one week to 18 months; (3) with a universal
keg, how to monitor intercompany transfers (thre are a number of separate
companies within the group) and how to allocate control over their own keg
populations to individual companies.

The consensus reached by the workshop participants was that to make
progress in solving this problem, the company needs a range of reliable statis-
tics (currently not available) on the keg population and that the company
needs to invest resources to provide the necessary data. Work on this prob-
lem continues, aided by the close existing contacts betweeen the Mathematics
Department at NIHE, Limerick and this company which on a regular basis,
receives applied mathematics degree students from NIHE, Limerick for indus-
trial placement.

Conclusion

Review of the first workshop on applied mathematics in anticipation of plan-
ning for future workshops, clearly indicates that substantial expenditures of
time, energy, and effort are required (1) to identify suitable industrial prob-
lems, (2) to organize an appropriate expert group to address a given problem,
and (3) to ensure that collaboration between the industrialist and the aca-
demic group continues after the workshop, until an acceptable solution to the
problem has been identified. it appears, therefore, that to continue the oper-
ation on an ongoing basis will require the expenditure of substantial human
resources. However, there is considerable enthusiasm within the Mathematics
Department at NIHE, Limerick for the organisation of further workshops.

Department of Mathematics,
NIHE, Limerick
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Error Correcting Codes

John Hannah

Introduction

In this article, I will describe an elementary approach to error-correcting codes
which can be presented to second year (general level) students. In this ap-
proach, students can see simple abstract concepts being used to solve an easily
described practical problem.

Although most texts give the impression that you need to know some finite
field theory in order to learn coding theory, you can in fact get a good grasp
of the basic ideas by knowing about little more than matrix multiplication
and modulo — 2 arithmetic. Thus, for example, I include such codes as a
brief topic in my second year linear algebra course (to help justify looking at
abstract vector spaces rather than just spaces over the real numbers). Codes
could also be discussed in introductory courses on abstract algebra or discrete
mathematics.

From the student’s point of view, the need for error-correcting codes is
easily appreciated. Digital data occur in many parts of modern life. Infor-
mation is stored as strings of binary digits (0 and 1) in such diverse areas as
computers, satellites and record-players. It is important to be able to transfer
such data reliably between different systems, whether it be between the mem-
ory and the processor of a computer, or between Earth and Voyager satellite
near Uranus. Unfortunately, most communication channels are prone to noise
of one sort or another, and errors can appear in the data. Coding theory
tries to construct efficient ways of sending digital data while at the same time
guarding against these errors.

Error Correcting Codes

The Parity-check Code

(}:reirglilzzf c;:hte sirmb)’lles;I ez;ample of a binary code is the parity-check code. Here
ata, a block of n binary digits, has an extra “ch igi :
ofn | eck digit” attach
and a block of n+ 1 digits is transmitted instead. The check diggit is 0 i? :h::e,
are an even number of 1’s in the original message, and 1 if there are an odd

number. Hence the name “pari i
. parity check” code. Using additi
encoding procedure can be expressed as: § addition moduo 2 the

. (0'17021"'107‘1)
information digits

—

(Gl) a2;-.., G, a'n.+1)
codeword

Gnt1 = a1+ a3+ + a,.

For example, if we were using 4-digit blocks we would have the encodings

(1101) — (11011)

(1010) — (10100).

y Ir}lI this c;)ciz a correctly received codeword must have an even number of
s. Hence if there is exactly one error durin issi

. g transmission, th i 1
 realize that an error has occurred. For example (10101) et come

<
a correctly sent message. e s oo

So we can say that the i
: ' parity check code de?
all single errors. If there is no error detected then the receiver decod . i‘;}u
message simply by removing the redundant digit anyg o
; There are tw? drawbacks to this simple code. Firstly
t }<1>es occur,Fwe still cannot tell which digit is wrong, and so, we cannot correct
¢ error. For example (10101) could have come f : i
rom a single error in eith
: iii()()) or (11101). Secqnfily, double errors go undetected. For instance :;ro::
o e second a.nd ﬁ{th dzglts of (11011) result in a received word (10010), which
00 ;hcor.rect since 1t satisfies the parity check 1+ 040+ 1 = 0 )
CheCkS: ;Vd;ahbel}lllll'd coding ;heory is to look for more sophisti;:ated “parity
1ch will improve the performance of the ab intr 1
extra redundant digits (like 1 i ok code) e itzoducing
: gi @ni1 in the parity check code) we i
Qn the incorrect digit and detect more errors. Of course) if t;::e h;?i;?

if only one error

——
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redundant digits the code will become inefficient: t}}e .actua.I message
part of the codeword and transmission will bec‘cmfm
s have as few redundant digits

many
will make up only a small
time-consuming and expensive. So good code .
as possible and detect or correct as many errors as possible.

The ISBN Code

The ISBN numbers, which are used to classify books, are another e.xampl_e ?f
a code. Again just one check digit is involved, but this time the arithmetic 1s

done modulo 11. In a typical ISBN number
0 — 474 — 00130 — X

the first nine digits a1, az, ..., a9 3I¢ the information digits, and the check
digit a0 18 calculated from the formula

9
a0 = Znan (mod 11).
n=1

If, as in the above example, this check d.igit is 10, it is wntteg‘l as Jz( It rlz
easy to see that this code again detects all single errors. The coe c(;en S}? aiso
used (instead of the 1 used in the parity chffcl‘tz code) so-that the code ‘v}le aed
detect all transposition €rrors, where two digits are accidentally 1nter<.d atng .
Transpositions are among the most common errors that occur whixil ' ata are
communicated by humans (rather than by ele.:ctrm. or magnetic fields!) ;

1 will discuss binary codes in the rest of this article, but obYlously a blicus;
gion of why modulo-11 arithmetic is used here would fit well into an abstract

algebra course.

Constructing an error-correcting code

To illustrate the ideas involved, I shall show how to construct one of the family

of Hamming codes. These codes can correct single errors or, alternatively,

detect double errors. o ‘
: Suppose we allow ourselves four check digits, instead of the single check

digit in the above parity check code, and suppose ’that our data consists

Error Correcling Codes

of strings of n information digits (a1, es,. ..,6n). Each of the check digits
@nil,-- -y Onta Will come from an equation of the form

@ny1 = sum of some of a,az,...,8n

and these same four equations will be used as check equations for the re-

ceived message (a1,82,-.-10n, Gni1; - .,Gny4). We can arrange these check
equations in matrix form as

Ha=0

where a is the received codeword, 0 is the zero vector and H is a matrix of
the form

H:[Q|I4]

where I, is the 4 x 4 identity matrix and @ isa4 X n matrix of 0’s and 1’s.
These equations determine whether a is a correctly encoded string of n + 4
digits. Clearly if the received codeword gives Ha # 0, then an error has
occurred. But what is the precise effect on Ha of an error in the codeword
a? We can represent the received codeword as a +e, where a is the intended
codeword, and the vector e has a 1 in each position where an error occurred
but has zero components otherwise. This is because each of the errors 0 — 1
and 1 — 0 can be obtained by adding 1 (mod 2) to the original entry. When
we test the received codeword using the matrix H we get

H(a+e) = Ha+ He=0+ He.
If there has been exactly one error, in the ith position say, then we have

He = ith column of H.

For example, an error in the first entry corresponds to havinge = (1,0,...,0)7
and the calculation of H(a + e) will yield the first column of H.

Thus to be able to detect the ezisience of one error, we just need to make
sure that each column of H is nongero (that is, not every entry in the column
is zero). If we also want to locate the position of such an error, then we just
need to make each column of H different. Notice that since the only possible
entries are 0 and 1, locating the position of an error is the same as being able
to correct that error.

In our example H has four rows and so there are 2% = 16 possible columns
to choose from, all but one of them being nonzero. Thus if we want to be
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able to correct all single errors, then H must have at most 15 columns. This
means that 4 check digits can be used to protect strings of up to 11(=15—4)
information digits. If we use 4 check digits to protect exactly 11 digits then
there is esentially only one possible marix H (since swapping the columns of
H amounts to relabelling the original digits):

H =

1
1
0
1

Once H is found we can write down the equations for the check digits
G132, 313, G14, 815 in terms of the information digits a1, a2, .., 811

From the point of view of hand-calculations (which is all T expect my
students to do), correcting single errors is a simple procedure: in the above
notation, you search among the columns of H for one that looks like He. Of
course, this is not very satisfactory if you intend to use a computer. The
searching part of the algorithm can be sidestepped though, if you are willing
to rearrange all 15 columns of the above matrix H. The idea is to use for the
ith column of H the binary representation of the number i, so that when He
is calculated it tells you directly which eniry was wrong. (See the article by
Levinson [2]).

The same code can also be used to detect double errors, but this time
correction is not possible. The same calculation as before shows that with two
errors H(a + €) = He is a sum of two columns from H, and since all these
columns are different, their sum (modulo 2, of course) must be nonzero. So
the error is detected. But with our matrix H the sum of any two columns is
another column, since H contains all possible nonzero columns. So this double
error would be indistinguishable from some other single error.

This is as far as [ take my students. After all, it is a course on linear
algebra. In an abstract course, you could go further: to correct two or more
errors you really need to construct finite fields of order 2™, My colleague,
Kevin O’Meara, offers such a course to third-year students. My main aim is
to whet their appetities by showing what can be achieved using a few simple
ideas, and by making them aware that there is still more to be achieved.

Error Correcting Codes
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Cayley-Hamilton for Eigenvalues

Robin Harte

The Cayiey-Hamilton theorem says that a linear operator T: X — Xona
finite dimensional space X = C" satisfies its characteristic equation:

pr(T) =0 (1)

where
pr(T) = (2 = M) (z = A)” .o (2 — M) (2)
is the characteristic polynomial of T; thus Ay, Az, ..., Ag are the distinct eigen-

values of T and vy, va, . . ., vk are their (algebraic) multiplicitzes. It is familiar
that, if the inverse T~ ! exists, then it can be expressed as a polynomial in T'
with the help of (2); dividing across by the non-vanishing constant term of pr
and bringing it across the equality sign gives

pr(T)T = I = Tpp(T) (3)

This note arises from the problem of calculating the eigenvectors associated
with the eigenvalues A;. In the process we rediscover a well-known theorem
(which was obviously not well enough known to the author!).

Begin with the observation that (1) may well be valid for polynomials pr
other than the characteristic polynomial: it is possible for (1) to hold with
integers v; in (2) smaller than the full algebraic multiplicities. If pr is the
polynomial given by (2) we shall write

pr(T) = (z~—)\1)(z—A2)...(z—/\k), (4)

and call this the reduced polynomial of T; then it may or may not happen
that '

Br(T) = 0. (5)
If (5) holds we shall call the operator T reduced. The well-known theorem (4,
Chapter IV Theorem 5] is simply stated:

Theorem IfT:X — X is a linear operator on a finite dimensional space then

T reduced <= T diagonal. (6)
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Proof Diagonal means of course that T is a direct sum of scalars:

X =

k
j=

k
(@ = 3D)7H0) = T - D 7HO)s (7)
j=1

1

if this happens then (5) follows at once by considering pr(T) separately on each
eigenspace. For forward implication in (6) we need the notion of “exactness”
(2, 3, Chapter 10]: the pair (R, S) of operators on X is called ezact if

R™(0) = 5(X). (8)
Inclusion one way is just the condition
RS =10; 9)

for the opposite inclusion it is sufficient that there are operators S’ and R’ on

X for which
RR+ S8 =1I. (10)

We have this, in particular, when R and S are polynomials in T without
common divisor: if

5=¢(T) and R=rT) with ged(g,7) =1 (11)

then the Euclidean algorithm for polynomials gives polynomials ¢'(z) and ' (2)
for which
¢'(2)q(z) +7'(2)r(2) = 1,

giving (10) with §' = ¢'(T)and R' = #/(T). This happens many times over if
T is reduced: if (5) holds then we get (11) with

S=g(T)=T-XI R=r(T) =J@ - x1) (12)
i#j

Further, in this case, everuthing in (9) and (10) commutes, so that also
5-1(0)= R(X), R7'(0)n ST1(0)=0 and S(X)+R(X)=X; (13)

thus
X =5"0)eR*0).
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Forward implication in (8) is now induction on the number k of distinct eigen-

alues A;; for if T: X — X is diagonal on each of its inva—rilant iubs_pla.%es
;'1(0) ;r;d R™(0) then it is diagonal on their direct sum 5—1 (0);5 ( 1)
On S~1(0) the operator T coincides with the scalar A;I; on B (0) T has only

k — 1 eigenvalues.

This theorem is not new, and can be found for exam?li in .; acobson [41}1 ZV:
i i i the Euclidean algorithm has some charto;
believe our direct deduction from : . i
tkexe same argument gives, with no assumptions about T, the “primary decom

position” .

k
Xx=5(T-XI)7"(0)= @(T — N I)7H(0).

. . -
An alternative version of the argument, passing through the medium of “Tay

i ‘bility? . is given by Gonzalesz [1]. ‘
e ?V:::T::tzp;r:tir T:X — X is “reduced” in the sense of (5) then 1its

. . with
eigenvectors can all be obtained without solving a,)ny motr; :ci\;atlc?rgxz;m;v;t; "
i ‘ t part of (13) says that the €
— T _ I and R as in (12), the first p 7 : :
forrespondjing to ); is the range or “column space” oi.' the. matrix lI-?. };mlt Oil;:
of the remaining eigenvalues. Of course in practice it will usu;,i y :t :;sR
and pleasanter to solve the equations Sz =0 than to compute the m .
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BOOK REVIEWS

METRIC SPACES: ITERATION AND APPLICATION

by Victor Bryant, Cambridge University Press (1985), STG £5.95 (paperback).
METRIC SPACES

by E.T. Copson, Cambridge Tracts in Mathematics number 57, Cambridge
University Press (1968), STG £22.50 (hardback), STG£7.95 (paperback).
INTRODUCTION TO METRIC AND TOPOLOGICAL SPACES

by W.A. Sutherland, Oxford University Press (1981), STG.£10.95 (paper-
back).

Of the three books, I like the one by Bryant the least. It claims, with some
justification, to make the subject interesting. But the result is a book which
might be more appropriately described as an introduction to iteration and
fixed point theory that includes a little on metric spaces. To be somewhat ob-
jective, the book does touch on many of the basic concepts (limits of sequences;
closed, complete, compact and connected sets). The applications include the
existence and uniqueness of solutions for ordinary differential equations. But
my basic objection is the second class treatment given {o open sets and the
less than enthusiastic treatment of continuity. On page 35, having introduced
closed sets via limits of sequences, we are told that open sets are not really
necessary because “all theorems about open sets can be stated in terms of
closed sets”. While this is undeniable, most textbooks do not take such an
upside down view, and I do not consider that one can be said to have learned
‘metric spaces’ without being comfortable with the notion of open set. Who
would like to volunteer to rewrite a standard text on multivariable analysis
(never mind ones about complex analysis, functional analysis or elementary
manifolds) mentioning only closed sets? The last chapter (marked optional) of
Bryant’s short book does make some amends by looking into continuity (even
uniform continuity and the fact that the continuous image of a compact set is
compact) and defining open sets.

This brings us to the question of what the book sets out to achieve. It
claims to be intended for courses for engineering or ‘combined honours’ stu-
dents, or really for those who have taken but not grasped a single variable
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analysis course. Perhaps it could be used as the introductory part of a course
on numerical methods for the more mathematically mature engineers, but I
think it would give a poor foundation for further study in analysis, differen-
tiable manifolds or topology.

The other two books under review are much more serious books from
the point of-view of the honours mathematics program. The excuse for this
review is that Copson is now available in paperback, but I find the book
alarmingly old-fashioned in its approach — so much so that it must have
been old-fashioned even when it first appeared in 1968. The book is written
for those whose education was based on the classic ‘Pure Mathematics’ by
Hardy and the first 20 of its 143 pages are devoted to background information
including sets, set notation, equivalence relations and functions. Most of this
introductory section (except possibly for some material on the axioms for the
real numbers and sequences) is inappropriate now. The definition of a function
is introduced gradually by recalling the notion of conformal mapping! Worse
than that we are subjected to a further section on Functions defined on an
absiract set over half way through the book.

By contrast I find Sutherland’s first chapter Review of some real analy-
sis to be written in the lively style which persists throughout the book, even
though the chapter does really just rehash things that belong in a prereg-
uisite course on analysis. Sutherland’s style is more relaxed than Copson’s
throughout. When Copson gets around to the definition of a metric space,
there is a surprising feature. He gives the ‘wrong’ definition! Well, of course
it is not actually wrong, but decidedly unusual. Left out are the requirements
that p(z,y) = p(y,z) and p(z,y) > 0 — these are deduced from a slightly
contorted version of the triangle inequality. I dislike also Copson’s approach
to examples. He leaves the examples till a few sections after the definition and
starts with the discrete metric. Perhaps this was due to the effect of Bourbaki
(who might have started with the empty metric space?).

Both Copson and Sutherland treat the examples of £ spaces early on, but
[ think they are misguided in never really treating them as normed spaces.
In fact both of these books assume quite a degree of maturity on the part of
the reader and reach more or less equal sophistication — the Baire category
theorem, solutions of differential equations via the contraction mapping prin-
ciple and the Arzeld-Ascoli theorem are treated. An early section on normed
spaces would fit in well.

Copson is slightly more complete in some respects, but the main difference
in content is that Sutherland launches into general topological spaces more
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nes: pactness are studied before functio
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one wants to do so in the course, but it may sli
¢ slight
onl);;xave, time to cover basic metric spa::e concepts{{ tehtly affct those who
Copsol:la}f; s lacking :n 1tlhesse books? There is probably scope for more pictures
as none at all, Sutherland has a few and B :
of the books considers al i ical i e o e sk None
gebraic topological ideas (like the fund
amental
although Sutherland shows us a trefoil knot as an example of a homeomgol;c}))?i)z

embedding of the circle in space and i 6bi
ey o oo e o D also deals with Mobius bands as quotient

Richard M. Timoney
School of Mathematics
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AN INTRODUCTION TO HILBERT SPACE
by N. Young, Cambridge University Press.

In the Ver lntEI estlllg a{te! Wol‘d to An 1ntr0duct10n l',O Hllbel’t Space 3

Nicholas Young quotes the followi
matician’s Apology™: owing passage from G.H. Hardy’s “A Mathe-

B v
1 gave never done anything useful. No discovery of mine has
glla e, or is likely to make, directly or indirectly, for good or ill
e least difference to the amenity of the world.” ’

Th- o »

ingli Zt;a::r:fft},l ;vhl'ch}; is'we shall see, is contradicted in this book, is interest
ch for what it says about Hardy’s attitude to nati .

ot s : mathematics;
gzgtutl}gl it hterte at third hand and out of context. What is important ;?;I}tairf
other statements like it, is that the i i :

y were interpreted in i
and had a profound influence o i i e ey
n the teaching of mathematics i i

cs in these isl

One of the consequences has been the traditional undergraduate teJ:tll)sozllidiszi
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pure mathematics which I call a grammar. The grammar launches without
warning into a description of a given mathematical idiom, duly listing rules,
declensions, exceptions and irregularities. It ends as abruptly as it has begun,
leaving the unfortunate student with a strong feeling of kinship with the Schol-
ars of Minoan Linear B who, having brilliantly deciphered that impenetrable
script, found almost nothing to read in it.

The present book is in a very different tradition and is inspired by a totally
different conception of the nature and role of mathematics. This is no gram-
mar, but a literary work with a strong narrative line, inspired by two unifying
themes. By the time one has reached the rather impressive conclusion, one is
in no doubt that the subject has substance, that one is not dealing with an
empty formal shell of theorems and corollaries but rather with a fascinating
aspect of reality.

The book succeeds in giving a concise and lucid account of the elementary
theory of Hilbert spaces. This is done very economically (the whole book is
less than 240 pages long) and with modest technical equipment. For instance,
Lebesgue integration is not assumed and, although it is mentioned from time
to time, it is not essential to the understanding of the text. But there is much
more. As already mentioned, there are two important unifying themes, that
give the book a sense of purpose. Barly on, at the end of a first chaper of
only ten pages, we meet one of these, in the form of an inner product space of
complex valued rational functions, analytic on the unit circle. We are shown
an elegant connection between the inner product of two such functions and
their poles in the unit disc.

For a while these functions drop out of the picture and the second theme
is developed, in conjunction with the familiar material on orthonormal sets,
Fourier series, functionals, duality and linear operators. This second theme
is Sturm-Liouville systems and linear partial differential equations. Their de-
scription is interwoven with the general properties of Hilbert spaces and inter-
est is kept high by the many examples, problems and exercises. Finally a very
satisfying synthesis is achieved between orthonorrhal systems and solutions of
second order partial differential equations.

The focus then returns to the first theme and the early example is expanded
into the theory of Hardy spaces. In spite of Hardy’s own passionate profession
of uselessness, an interesting discursive chapter, an interlude in the author’s
own words, describes an application of these spaces to engineering problems
of automatic control.

Multiplication operators are introduced and described clearly and econom-

:
.
i
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PROBLEM PAGE

Editor: Phil Rippon

om a computer experiment 10 1teration

of the commomest purposes to which
delbrot set, defined

My first problem this time arose fr

theory. Over the last few years, one '
comp}:lters have been put has been the plotting of the Man

as follows.

First put -
Zpy1(c) = zﬂ(c)2 4+¢, n=0,1,...

= =c? , and
where c is a complex number and zo = 0. Thus z1(c) = ¢, z2(c) =¢* +¢
so on. The Mandelbrot set is

M ={c:zalc) £ 0},
or equivalently, by an elementary argument,

M={c:|z(c)| <2, n=L2...1

PROBLEM PAGE 75

To plot M therefore, we calculate for each value of ¢ corresponding to a
screen pixel, the sequence z,(c), n =1,2,..., N (where N = 30, say) and we
plot the pixel if |z,(c)| < 2, for n = 1,2,..., N. The familiar set M appears
below. Increasing the value of N should in theory give a better approximation
to M, but in practice there is an optimal N depending on the screen resolution.

Recently, my colleagues David Grave, Robert Hassan and Peter ‘Strain-
Clark were using a transputer system to plot M when they came upon an
interesting relation of M, obtained by using the iteration formula

z,,+1():—z:(_c_)-2+c, n=1,2,... (1)

where zo(c) = 0. This relation of the Mandelbrot set has a rather unexpected
property.

22.1 Let z,(c) be defined by (1). Prove that the Mandelbar set
My, ={c:|z(c)| <2, n=12,...}
has rotational symmetry.

The set My, has many other intriguing properties; for example, it seems
to contain many small copies of itself as well as small copies of the Mandelbrot
set! Anyone who has a program for plotting the Mandelbrot set should be able
to plot My, by inserting a minus sign in the appropriate place.

Just one other problem this time. I've forgotten where I heard this, and
would appreciate any reference to it.

22.2 Prove that it is impossible to tile the plane with triangles in such a way
that at most 5 triangles meet at each vertex.

Now to earlier problems. First a remark about problem 11.2 (in the new
notation), which concerned sequences of the form

Gnt2 = [Gnt1] — an, n=20,1,2,...

If ao, a1, are real, then a,, is periodic with period 9. It has now been proved, by
Dov Aharanov and Uri Elias, that if ag, a; are complex, then such sequences
are always bounded (the proof looks very complicated and uses a theorem of
Moser concerning ‘twist mappings’).




IMS Bulletin 22, 1989 PROBLEM PAGE
‘ 77

The first problem of Issue 20 was as follows:
20.1 Find a formula whose value is 64, which uses the integer 4 twice, and no

operations other than: +, — %, /4 T y/ andl

The answer is
(7

of the “four fours” problem: how many of the inte-
he integer 4 four times, and the above operations?
ents in my youth expressing all the integers from

f my OU students last year showed me a note-
hich contained expressions for

4!

This problem is reminiscent
gers can you express using t
1 remember wasting idle mom
1 to 100 in this way, but one o
book he had completed some forty years ago W

all integers up to 1000 and many beyond!
E=1,2,...N (not necessarily distinct), prove

B Q e

We now claim that the i es APS, ARS, BP
: reflections of the four triangl Q
CQER, across their respective sides of the square PQRS . ine : :
i peross thel combine to completely
T i
o see this, note that the angles ASP, ASR are non-acute, so that th
, e

reflections of the triangl
electe ngles ASP and ASR together cover the quadrilateral

20.2 Given positive integers ak,
that some sum of the form

G, + Qky T oo T Tk 1§k1<k2<...<km§n

is equal to 0 mod n.
My colleague John Mason,
sum” problem. There is a very neat solution,

the form

who showed me this problem, calls it the “some
which shows that some sum of

ap + Gpg1 -+ ag 1<p<qg<n (2)

is equal to 0 mod 7. Indeed, if the n integers

ai+az+ ...+ am, M= 1,2,...n

em is equal to 0 mod 7. Otherwise, two of

are distinct mod n, then one of th
difference is equal to 0 mod 7. Either way,

them are equal mod n and so their
we get a sum of the form (2).
20.3 Show that if a square lies within a ¢

the area of the triangle.
! We may assume, by scaling the triangle

Here is a proof by paperfolding!
while keeping the square fixed, that at least three vertices of the square lie on

the triangle.

riangle, then its area is at most half
1 .

It is then clear that the reflections of triangles BPQ, CRQ across thei

) oss their

respective sides of the square to
' ther cover th i
pespect . ge er the quadrilateral P i
thz ;:ﬂ::ilgzsoijZQBB h;sca.llci)nil PD, the reflection of RC lies alox?gleé s?:ﬁ
. , e along a common line thr ’
. OII?C f:;tt;hls proof assumes that angles APS, ARS :ﬁ:g};o?l; less th °
em exceeds 45° (and at most one of them can) tlisn aastli;if :
, ar
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i int D lies on the edge of the square.
S st PRl o ot hi paperfolding approach shows that the case of

3 i { this .
Further consideration o 11 four vertices lie on sides of the triangle and

lity occurs precisely when a ' ' tangle 27
ii:a;ildz of the triangle which contains two vertices of the square 1s twi

long as the side of the square.

Phil Rippon '
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