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due to John Machin (1680-1752). Machin substituted the Gregory formula
for arctan into his formula to get 100 decimal places of 7 in 1706.

In 1844 Johann Dase (1824-1861) computed = correctly to 200 decimal
places using the formula

T 1 1 1
1= arctan (-2-> + arctan (g) <+ arctan (g)

and in 1853 William Shanks published 607 places, although the digits after the
597th place were incorrect. This error was not discovered until 92 years later
when D.F. Ferguson produced 530 digits in one of the final hand computations.
Two years later Ferguson used a desk calculator to get 808 digits.

The advent of digital computers saw a renewal of efforts to calculate even
more- digits of #. The first such computation was made in 1949 on ENIAC
(Electronic Numerical Integrator and Computer) and 2037 digits were pro-
duced in 70 hours by John Von Neumann and his colleagues. In 1958 F.
Genuys computed 10,000 digits on an IBM 704. In 1961 D. Shanks and J.
W. Wrench Jr. calculated 100,000 digits in less than nine hours on an IBM
7090 [7]. The million-digit mark was set by J. Gilloud and M. Bouyer in 1973
in a feat that took under a day of computation on a CDC 7600. All these
computations used series for arctan and identities such as Machin’s.

Despite the increased speed of the computers, it was realised that there
were limits to the number of digits which could be produced. An examination
of the rate of convergence of the arctangent series shows that the arctangent
method uses O(n) full-precision operations to compute n decimals of 7. By an
operation we mean one of +, X, <+, , /. For example, the Shanks and Wrench
computation of 100,000 decimals used 105,000 full-precision operations. Thus
there are two basic time costs involved in doubling the number of digits;
firstly, the number of operations increases by a factor of two, and secondly,
the time for each full-precision operation is about twice as long. So doubling
the number of digits lengthens computing time by a factor of four.

In 1975 Brent and Salamin [4,6], independently discovered an algorithm
that dramatically lowered the time needed to compute large numbers of dig-
its of m. The Brent-Salamin algorothm requires only O(logn) full-precision
operations for n digits of 7, and the ideas used go back to the work of Gauss
and Legendre in the early part of the 19th century. The formula for the al-
gorithm exploits the speed of convergence of the defining sequences for the
arithmetic-geometric mean of two numbers.
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1 Early History
We first give 2 brief sketch of the history of computing 7. Details can be founc
" [IC];)mputations of the number 7 go back to the time of Archimedes (287
912 BC). He inscribed and circumscribed regular polygons on a circle witl
Jiameter 1. He began with hexagons and doubled the number of sides to ge
pi)l‘ygons of 96 sides which yielded the estimate

10 1
37—1<7T<3-7-

By continuing to double the number qf sides, one is n principle able. to ge
ag many decimal places of 7 as one desires. However, the convergence is .slow
since the error decre§5e§ by about a fac}tor of four per 1t<?rat1011. ‘Untll th
Jdiscovery of calculus in the 17th century, efforts at calculating = relied on th

method of Archimedes. | |
" wWith the use of caleulus, series were discovered for m. The formula o

Leib]‘liz T ) 1 1 1+
1= T3tyT

has a very slow convergence rate. Various other series and formulae were used
1 . .
¢ computation of 7, some of the more famous being

in th
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james Gregory (1638-1675), and

™ _ darctan | - ctan [ =
Z»— arctan ’5‘ — arcta 239
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2 The Brent-Salamin Algorithm

If @ and b are two positive real numbers, with a > b, then we have the famili
arithmetic-geometric mean inequality

Thus, from two positive numbers a and b we get a second pair, (a+b)/2 ar
Vab. 1f we iterate this process we obtain sequences {an} and {b,} defined

ot bn bn+l = \/m:

n41 = 2 3
The sequence {a,} is strictly decreasing and bounded below, while the s
quence {b,} is strictly increasing and bounded above. A simple computatio
beginning with a2, — b2, shows that

b0:b)

o = a,

1
ant1 — bn-l—l < §(an - bn)

and so one concludes that the sequences have a common limit, which is denote
by AG(a,d). It can also be shown that

s < an=bo)?
rtl T Ikl < GAGla,b)

so that a, — b, approaches 0 quadratically.
Gauss (1777-1855) studied these limits in his work on elliptic integrals.
complete elliptic integral of the first kind is given by

"/ do
0 va2cos2f+b2sin’é
The change of variable ¢ = atan § yields

K(a,b) =

K(a,b) = /00 dt
o V(2 +a?) (2 41?) ;
A further substitution helps to make the connection between this integral an
AG(a,b). If we put w = (t — $2/1)/2 in the last integral, we get
. du
af) (u* + 07)

K(a,b) =

/ooo~ V(ut +

1\"((11, bl)
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Repeating this, we have
K(a,b) = K(ay,b1) = ... = K(ap,by) =...

By continuity of the integral K in its arguments, we have

7 s < = —_ir_-

K (a, b) =K (AG(a,b),AG(a:b)) - 2AG(a,b)
/2

AG(ajb) / dé =

0 va2cos? +b2sin? §

This was used to compute elliptic integrals by Gauss.
A second relation of Gauss relates the arithmetic-geometric mean AG(a,b)
to complete elliptic integrals of the second kind. These integrals are

5 ()

7/2 :
E(a,b) = / Va2 cos? 0 + b2 sin?§ df
0
Since the elliptic integrals satisfy the homogeneity relations
K(ha, \b) = -i-K(a,b), E(Aa, M) = \E(a, b)

the variables can be normalised to @ = 1. There is a relation between these
due to Legendre (1752-1833). For0 < z < 1and 0 < y < 1, where 2?4y? =1,

2

For a proof of this, see (2] and [3]. Using the relation (2), Gauss then proved
the following:

K(1,2)E(1,y) + K(1,y)E(1,2) - K(1,2)K (L, y) = .’éi

E(a,b) = [a® = > 2" (a2 = 82)| K(a,b)

n=0

3)

~ The details of this are in [3].

Following the presentation in [5], we now derive a formula for . If in (2,
v =1/V2, then with K = K(1,1/v/2) and E = E(1,1/+/3), we have

OKE - K? = g (4)
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T the Gauss relations (1) and (3),ifa=1and b = 1/V2, then If we now define

_ 4a;",+1
1— 3 0n; 20 (af — b%)

K= and E=(1-9S)K (5) Tn

r
2AG(1,1/v/2)
then from error analysis, it can be shown that 7, converges to 7 quadratically
[276]. This means, roughly, that the number of correct digits doubles from one
value of 7, to the next.

The Brent-Salamin algorithm was implemented in Japan in 1983 by Y.
Kanada, Y. Tamura, S. Yoshino and Y. Ushiro to compute 16,000,000 digits
in less than 30 hours.

In recent years the algorithm has been modified by the brothers J onathan
and Peter Borwein (natives of St. Andrews, Scotland, and both at Dalhousie
University, Novia Scotia) to obtain iterative algorithms for computing 7. De-
tails of these are in [2] and [3]. These algorithms are now being implemented to
compute 7. In January 1986, D.H. Bailey of the NASA Ames Research Cen-
ter produced 29,360,000 decimal places using one of the Borwein algorithms
iterated 12 times on a Cray-2 supercomputer. A year later, Y. Kanada and
his colleagues carried out one more iteration to obtain 134,217,000 places on
a NEC SX-2 supercomputer. Earlier this year Kanada computed 201,326,000
digits on a new supercomputer manufactured by Hitachi, requiring only six
-~ hours of computing time.

where

IeS)
§=S 2" (a2 —12)
n=0

From (4) and (5)

K21 -8)-K*= %

that is,
72

1AGQ 1/VD)

b
2(l--ZS)—§

giving - ,
3 2 (AG(1,1/v2))
"= 1-25

But

o0
1-25 = 1= 2"(a;—-b3)

n=0
= 1-(1- %) - ign (a2 —2) 3 Utility
n=1

One may ask what is the point of all of this, since about 40 decimal places is
1l one requires for any application imaginable. One use is that the calculation
f 7 has become a benchmark in measuring the sophistication and reliability
f the computers that carry it out. In addition, pursuit of more accurate ways
1as led researchers into intriguing and unexpected areas of number theory.
Finally, a statistical analysis of the first 10,000,000 by Y. Kanada shows that
he digits are distributed in a way that is expected from the conjecture that
7 is normal. This means that the frequency of appearance of each string s of
 digits of length m is asymptotically equal to 107™™ i.e.,

sinceag=a=1land bp=b= 1/v/2. Thus

1 [eo]
1-25:5—22"@3-65)
n=1

Substituting this into (6) we get

4 (AG(L,1/VE)) :
T= ) 3 .
1=y on, 22 (af - b7) lim N(s,n) _ 1o-m

n—00 n

This was discovered by Salamin in 1973 [6] and independently by Brent at the
same time [4].
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where N(s,n) is the number of occurrences of s in the first n digits of .
Because of this, the digits of 7 are sometimes used in algorithms to generate
sequences of random numbers.
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Topological Equivalents of
the Axiom of Choice

S.D. McCartan

Recall that, within the terms of Von Neumann-Bernays-Gddel set theory,
one form of the axiom of choice (abbreviated AC) is stated as follows:

If {X; : i € I} is a non-empty disjoint family of non-empty sets,
then there exists a set C such that CN X; is a singleton for each
t€ 1.

The axiom of choice has become virtually indispensable in mathematics since
a large number of important results have been obtained from it in almost
all branches of the subject without leading to a contradiction. However, al-
though this axiom is consistent with, yet independent of, the other axioms of
set theory, its status has long been a source of controversy and not all mathe-
maticians are willing to accept it. Perhaps the principal appeal of the axiom
of choice resides in the extensive list of its logical equivalents which exist in
apparently disparate areas of mathematics. A fairly comprehensive dossier of

~ these was compiled by the Rubins [4] in 1963.

Most topologists side with the majority of mathematicians, assume the
axiom of choice, and do not hesitate to use it whenever necessary. Indeed
some would argue that the following proposition (usually known as Tychonoff’s
theorem) constitutes the single most important result in general topology:

The product of a family of non-empty compact topological spaces
is compact.

~ The point here is that Tychonoff’s theorem is logically equivalent to the axiom

of choice (see [3]). In this note some other such topological equivalents are

. introduced.

Classically a topological space (X,7) is said to be a Tp-space (T1-space) if

and only if for every pair of distinct pointsin X there exists a 7-neighbourhood

of one which does not contain the other (exist r-neighbourhoods of each which
do not contain the other). Properties like Ty and 73, when possessed by a
topological space, essentially express a degree of separation enjoyed by the
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