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data type methods of the first sections with the machine based methods of Crossed M odules

he latter ones. In situalions when archilectural features of the syslem are
important, these can be incorporated into the X-machine by defining the set

X suitably, perhaps including models of registers etc. Graham Ellis
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Each of these examples consists of a group homomorphism with an action
f the target group on the source group. Before stating the precise algebraic
roperties needed by such a homomorphism for it to be a crossed module, let
s consider some more substantial examples.

xample 5 Let X be a topological space in which a point zo has been chosen.
Recall that the fundamental group m1(X,zo) consists of homotopy classes of
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continuous maps f : [0,1] — X with f(0) = f(1) = zo. (Two such maps are,'im(y,mo) on m(X,Y, zo) which makes the boundary homomorphism into a
homotopic if one can be continuously deformed into the other in such a Wa¥§crossed module. To understand this action note that there is a continuous
that the image of 0 and 1 remains 2o throughout the deformation.) We thinkﬁmap

of these maps as paths in X beginning and ending at zo; the appropriate

picture is - :

X T

Zo f o

Composition of paths yields a (not necessarily abelian) group structure
T (Xv 130) :

Now if ¥ is a subspace of X containing the point z¢ then we can consid
the second relative homotopy group m2(X,Y, 2o). This group consists of &
motopy classes of continuous maps g : [0,1] x [0,1] — X from the unit squ
into X which map three edges of the square onto the point zo and the four
edge into Y. The appropriate picture of such a map g is

from the unit square onto four faces of the unit cube which sends s to s, ¢
to ¢ and so on. Now given a path f:[0,1] — Y representing an element of
of 71 (Y, z0), and a square g : [0,1] x [0,1] — X representing an element of
m2(X,Y, z0), we can construct a continuous map f g from the four faces of the
unit cube to the space X by using g to map the face uvyz, and mapping each
rizontal line in the remaining three faces by f. On composing /g with p we
t a map which represents an element of 74(X,Y, o). It can be checked that

e assignment (f, g) — f g o p induces an action of (Y, zo) on ma(X,Y, z0).

'&7

Zo X To

xample 6 Let M and N be normal subgroups of G. A non-abelian tensor
oduct M ® N has been introduced by R. Brown and J.-L. Loday [B-L}]; it
the group generated by the symbols m® n (m € M and n € N) subject to
e relations

Zo

Juxtaposition of squares

mm'@n = (mm'm~'@mn'm ™) (men)

Y Y Y m@nn = (m@n)(nmn~!@nn'n"?)

zo] x |o0 4 %] x |To =20 Eaco o rall m,m’ € M and n,n’ € N. In general M ® N is a non-abelian group.
' however conjugation in G by an element of M (resp. N) leaves all the
ements of N (resp. M) fixed then M ® N is precisely the usual abelian tensor
roduct of abelianised groups M/M'® N/N’. For any normal subgroups M
nd N there is a homomorphism 8 : M @ N — G defined on generators by
O(m®n) =mnm~'n"! . There is also an action of G on M @ N defined on
enerators by 9(m @ n) = (¢mg~! ® gng™?). This homomorphism and action
a crossed module.

) Zo

yields a (not necessarily abelian) group structure on T (XN, Y, 20). ’
By restricting to the fourth edge of the unit square we obtain a boundar
homomorphism 8 @ mo(X,Y, z0) — m (Y, z0). Moreover there is an action ¢
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Example 7 Let A be an associative ring with identity, let GL(A) be the  Bearing Example 2 in mind, it is readily seen that free ZG-modules are
general lincar group, and let E(A) be the subgroup of GL(A) generated by .o instance of free crossed modules.

the elementary matrices e;;(A) with ¢ # j and X € A (recall that e;;(A) has I's  Another instance of free crossed modules arises from Example 5. For sup-
on the diagonal, ) in the (7,7) position, and 0 elsewhere). The group E(A) is ,ose that the space X can be constructed by choosing a point z¢ in X, then
a normal subgroup of GL(A), and the non-abelian tensor square E(A)® E(A) ,ttaching copies of the unit interval [0,1] to 2o by gluing the end potmts 0
is known as the Steinberg group and denoted St(A). (This definition of the ,,4 1 of each copy to zq, and then finally attaching copies of the unit square
Steinberg group is equivalent to the usual definition [B-L].) As a special case 1 1] x [0,1] by gluing the edges of each copy along the various copies of the
of Example 6 we have a crossed module 0 : St(A) — GL(A). Tt can be shown 4it interval in some fashion. In other words, suppose that X is a reduced 2-
that §(St(A)) = E(A). The groups K1(A) = Coker(9) and Ka(A) = Ker(0 dimensional CW-space. The copies of the unit interval in X are called I-cells
are known as the first and second algebraic K-theory groups of A. and the copies of the unit square are called 2-cells. Let Y be the subspace of X,
onsisting of the 1-cells; in the jargon, Y is the I-skeleton of X. It was shown
by J.H.C.Whitehead [W] that in this situation the boundary homomorphism
9 m(X,Y, 20) — (Y, zo) is a free crossed module. It is free on the function

The essential features of these examples are captured in the following def:
inition.
Definition A crossed module consists of a group homomorphism 0 : C — G
together with an action of G on C' such that

(i) 0(%) = g(de)g™*,
(i) deet = eelet,
forall e,c’ € Cand g € G.

H6:C — Gand d : ¢ — G are crossed modules, then we say tha
a pair of homomorphisms ¢ : C = C, ¢ : G — Gisa morphism of crosse

modules if ¥(9(¢c)) = 8(y(c)) and (%) = b(9)p(c) for all ¢ € C and g € G.

{2-cells of X} — w1 (Y, z0o)

which sends each 2-cell to the element of 71 (Y, 2o) represented by the boundary
of the 2-cell. .

To illustrate the above, suppose that X is the torus. Now the torus can
be constructed by gluing together two 1-cells and one 2-cell. In this case we
take Y to be the union of the two circles. Thus 7(Y) = F(a,b) is the free
group on two elements a, b. The crossed module 0 : m3(X,Y, o) — m1 (Y, 20)
is free on the function {w} — F(a,b), w — aba~1b"1.

Whitehead showed that the homotopy theoretic information contained in
2- dimensional reduced CW-spaces is completely captured in the algebra of free
crossed modules. More precisely he showed that if X and X’ are 2-dimensional
reduced CW-spaces with ¥ and Y’ their respective 1- skeleta, then the set
of homotopy classes of continuous maps from X to X' is bijective with the
set of (appropriately defined) homotopy classes of crossed module morphisms
from m3(X,Y,z0) — m1(Y,20) to m(X', Y, 20) — m(Y’',2z0). Using this
bijection certain homotopy theoretic problems (such as the enumeration of
the homotopy classes of maps from a compact connected closed surface to the
projective plane) can be solved purely algebraically (cf. [E]). '

The idea of studying 2-dimensional CW-spaces by means of their associated
free crossed modules has applications to combinatorial group theory. Any
presentation < V' : R > of the group G gives rise to a reduced CW-space
with one 1-cell for each generator v € V' and one 2-cell for each relator r € R.

The associated crossed module § : C' — F(V) is free on the inclusion function

An easy consequence of this definition is that for any crossed module @
C' — G the group 8(C) is a normal subgroup of G; the quotient G/o(C
is denoted by m(8). Also it is easily checked that the action of G on
induces an action of 71 (8) on Ker(d), and that Ker(9) is abelian; we deno
the m1(9)-module Ker(8) by m2(9). :

In all algebraic theories the notion of a free object is important. For
crossed module 8 : €' — G the notion of “freeness” is made precise by sayin
that & is free on a function 7 : W — G from some set W into G if:

(i) W is a subset of C;
(i) 7 is the restriction of 9 ;

(iii) for any crossed module 0" : ¢’ — G, ifv: W — (" is a function satisfyir
9'v = 8, then v induces a unique morphism ¢ : ¢’ — C'y:G—G
crossed modules with 1 the identity homomorphism.
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R — F(V) where F'(V) is the free group on V. Clearly m;(8) is isomorphic to
G. The G-module 7,(9) is known as the module of identities, and is a measur
of the “non-trivial identities among the relations.” A good introduction to thi
area can be found in [B-Tu].

A rather more algebraic use of free crossed modules is to do with th
homology of groups. For suppose that § : C' — G is a free crossed module, an
let H denote the image of § in G. It can be shown [E-P] that the commutato
subgroup [C, C] of C depends only on H. (In fact [C, C] is isomorphic to th
quotient of the non-abelian tensor product H @ H by the subgroup generate
by the elements h ® h (h € H).) Moreover the intersection [C, C] N Ker(d) i
isomorphic to Ha(H, Z), the second integral homology (or Schur multiplier) o
H.

Crossed modules also have a role in the cohomology of groups. It has lon
been known that the second cohomology group H?(G, A) of G with coefficient
in a G-module A is bijective with the set of isomorphism classes of extension
of G by A. (Recall that a pair of group homomorphisms

theorem states that if a space X is the union of pathwise connected open
subspaces U and V such that the intersection U NV is pathwise connected
and contains a point 2 , then the fundamental group 71(X, 20) is isomorphic
to the amalgamated sum

m1(U, %) m1(V,20) ;

E3

T (UnV,z0)
in other words the fundamental group construction preserves certain amalga-
mated sums. It has been shown by Brown and Higgins [B-Hi] that the crossed
module construction on pairs of spaces given in Example 5 also preserves cer-
tain amalgamated sums. This new “2-dimensional Van Kampen theorem” is
a useful tool in algebraic topology, and has led to several new results. Perhaps
more importantly it has led to a successful search for an algebraic structure
which will model n-dimensional homotopy theoretic phenomena, and which
will satisfy some sort of Van Kampen theorem.

It has long been known that a crossed module 8 : C' — G is equivalent to a
set ) which possesses both a group structure and the structure of a category,
he group multiplication being compatible with the category composition o in
he sense that (zoy)(2'oy') = zz’oyy’ for all z,2’, y,y’ € Q such that the left
hand side of the equation is defined. As a group, Q is the semi-direct product
C x G. The category composition on @ is defined for those pairs of elements
¢,g) and (¢, g') satisfying ¢’ = 8(c)g, and is given by (¢, ¢') o (¢, g) = (de,9).
n [L] J.-L. Loday used this description of a crossed module to show that
rossed modules are equivalent “up to homotopy” to connected CW-spaces
X whose homotopy groups 7;(X,z,) are trivial for ¢ > 2. He went further
and showed that groups possessing n compatible category structures, which
we now call cat*-groups, are equivalent “up to homotopy” to connected CW-
paces X with m;(X,20) = 0 for i > n + 1. His method was to assign to
ach space X a space W containing n subspaces Uy, ..., U, C W, and then
o construct from the (n + 1)-tuple (W, Uy,...,U,) a cat"-group.

It has since been shown [B-L] that this construction of a cat”-group from
n (n + 1)-tuple of spaces satisfies a Van Kampen type theorem (that is, it
reserves certain amalgamated sums). The technicalities involved in using this
-dimensional Van Kampen theorem have lead to some interesting algebraic
roblems, such as the computation of amalgamated products of cat”™-groups.
n [GW-L] it was shown that algebraic problems about cat?-groups are often
etter reformulated using a non-trivial equivalence between cat?-groups and
lgebraic structures known as crossed squares. (Intuitively a crossed square

AL B2 0

is an eztension of G by A if p is surjective, i is injective, Im(7) = Ker(p), an
the module action of ¢ € G on a € A corresponds to conjugating by som
§ € p~(g).) In the mid 1970 various people (see [ML] for an incomplete lis
of references) discovered an analogous interpretation of the third cohomolog
group HS(G,A) in terms of crossed extensions of G by A: a sequence o
homomorphisms '

AL oL N2

is a crossed extension of G by A if p is surjective, 7 is injective, Im(7) = Ker(9)
Im(9) = Ker(p), and 9 is a crossed module such that the resulting action o
N/0(C) on A corresponds to the module action of G on A. This interpretatio
has been used by Huebschmann [Hu] to obtain some new exact sequences in the
cohomology of groups. In his recent book K.MacKenzie [MK] notes that the
interpretation of H3(G, A) carries over to the case of Lie groups and smooth
morphisms. This leads him (via a more general result about Lie groupoids
to a reformulation of the Cech classification of principal bundles which work:
entirely in terms of abelian Cech cohomology. ‘

One of the most fruitful areas in the theory of crossed modules stems from
work by R. Brown and P.J. Higgins [B-Hi] on generalising to higher dimensions
Van Kampen’s famous theorem about the fundamental group of a space. Thi
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is a crossed module in the category of crossed modules. Thus it consists
of a morphism of crossed modules together with an “action” of the target
crossed module on the source crossed module, and certain algebraic condition
are satisfied.) More generally in [E-S] the notion of a crossed n-cube wa
introduced and shown to be equivalent to a cat™group. Since the publicatio
of [L] in 1982 over 55 articles have been published on the subject of catn
groups; a fairly comprehensive bibliography can be found in [B].

Finally we should mention that by imitating in other algebraic setting
the equivalence between cat!-groups and crossed modules, one arrives at th
notion of a crossed module in these settings. Crossed modules of Lie algebras
turn out to be useful in studying the cyclic homology of an associative algebr
[K-L]. Crossed modules of commutative rings are useful in studying the Koszu
Complex [P]. And many of the (topologically motivated) results on crosse
modules of groups, such as the description of group cohomology, carry over t
these other settings. '
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