12 IMS Bulletin 21 1988

Proof Let i and j be adjacent nodes in Qn' expn?ssed as binary strings and Algebraic Techniques Of Syst em
let i’ and j' be the bitwise complements of i and j so that ‘ g D ecifi cation'
it =i+ =201
' y ‘ ~ Mike Holcombe

As 7 and j are adjacent, the complementary nodes ¢ and j are adjacent.
Thus, for every edge whose weight is z there exists another edge whose weight
is 2(2" = 1) - z.
References 1 Introduction
(1] F. Harary, Graph Theory. Addison-Wesley, Reading, 1969. ‘The design of complex software systems is a relatively new occupation and is

’ 3

till in its infancy. With the rapid growth in the applications of microprocessor
[2] F. Harary, J.P. Hayes and J-H. Wu, A survey of the theory of hypercube, chnology more and more areas of life are being affected and in some of this

graphs, Comput. Math. Appl., to appear. activity there is serious cause for concern. Many manufacturers are using
‘microcomputers to control safety-critical systems. Such systems are usually
‘defined to be systems, the malfunctioning of which could lead directly to
“injury or death on a small (local) or large (global) scale. Examples of recent

Department of Computer Science

New Mexico State University products and systems that have caused injury or death through inadequate
Box 3CU Las Cruces software design are :

New Mexico 88003-0099) i

USA ¢ Chemical processing plants,

& Washing machines,
o Car cruise controls,
¢ Intensive care systems,

o Industrial robots, etc.

In many of these systems there is a serious problem in the formal specifi-
_cation of the total system and its environmental interaction. Most interactive
systems involve three important components :

» the system,
e the environment,

¢ the user.

13

14 IMS Bulletin 21 1988

Each component interacts and ‘communicates’ with all the others and it is

vherefore crucially important that we take this into account at all stages of
the design process, from specification, design, validation, maintenance and

disaster analysis.

Much activity currently centres around the development of rigorous tech-

niques, often based on formal logics, for the verification of systems. For this to
be practical it is essential that the system specification is based on a complete
model of the environment and the user’s behaviour. Any verification of the

system can only be valid subject to a correct model of these two important

aspects of the total situation.

they are all that we have available. In the design of a safety-critical control
system for some industrial process, a chemical plant or a nuclear power sta-
tion, it is only possible to validate the software subject to the model of the
environment being realistic. .

The Bide Report has examined some of the problems facing the Infor-
mation Technology industry following the UK Government’s Alvey Initiative
and has stressed how important the user interface is in any computer system.
The report makes the point that, no matter Low reliable and well designed
a system is, if the user interface is not well designed and sympathetic to the

user’s needs then the success of the system as a whole is in serious doubt.

This is especially true in the case of interactive, safety-critical systems. When
we turn to the problem of modelling the actions of a user, which could be
fundamental to the safety of the system, we have a serious problem. Although
much experimental evidence has been amassed about user behaviour much

of it is contradictory and there is no body of formal theory which could act interesting mathematical problems. We will construct a specification of this
as a basis for reasoning about such important matters. Several attempts are
being made to develop rigorous design methodologies to take account of these
problems. These methodologies require the development, as df)es any method
which is trying to design the user interface, of a sensible series of models of |

user behaviour and belief. The construction of formal user conceptual models

is an area of importance and these models must be based on some sort of
foundational logic that is rich enough for the expression of possibly irrational
and ill-defined beliefs about the system. The recent work on ‘belief” logics

looks very promising in this respect [4].

Algebraic Techniques of Sysiem Specification 15

One basic problem with current specification and analysis methodologies
is that they tend to be rather specialised and cannot always deal with different
aspects of a system and its environment. We have developed a method, based

on the theory of X-machines (see [8]), which enables the formal description

and analysis of most aspects of a system and its environment in a unified
way. Systems may involve concurrent or real-time processing and yet the

 ¥-machine model is sufficiently robust that it can be used to specify such

systems. Analogue aspects of a real-time control system can be described

using X-machines with a topological basis. At the heart of such machines are
 suitable models of data types and operations which can be expressed either in
The modelling of complex environments has been an important research modzl.- theoretic forlm, Suih as.lgeuseg::n\g)::eo; Z’TZ;I}II::I;ZI?;.lsaguoszz’égf;g;l)c
activity for many years, involving, perhaps, thermodynamics, hydrodynamics, paradigms (some elementary ideas PP ! '
electromagnetics, materials theory etc. and many sophisticated models have

been produced. However even these models are far from being complete but

2 The specification of data types

One very promising approach to the design of more reliable software systems
is the formal specification of data types and operations. There are several
approaches; the two most popular are algebraic specification and model-based
specification.

The algebraic approach to data type specification involves the definition
of data types in terms of universal algebras. Let us suppose, as before, that
our system involves a collection of sets and functions or operators. There may
be some sets that are constructed of products of other sets and so on. We
specify first a collection of basic sets and operators. In our examples we will
consider the specification of data types needed in the design of a simple word
processor, since that is a system that many people may now be familiar with.
The most important set is the set of finite sequences of letters and numerals
which we call seq[Char]. Although this is a basic set it does involve some

data type from the more primitive type Char.

Let Char denote the set of all possible symbols to be used for the con-
struction of documents, so Char = {4,q,B,b,...,2,2,0,1,...,9,0}, where
O represents a blank space.

The main operations that we wish to carry out with sequences are

1. construct sequences,

2. combine sequences,

S

16 IMS Bulletin 21 1988

3. test to sce if a sequence is the null séquence,
4. extract the leftmost symbol of a string,

5. delete the leftmost symbol from a string.

These operations will be defined using functions. We first identify the sets
Char, seq[Char] and Bool, the 2-valued truth set. There are then some

function declarations:

null : — seq[Char]
| : Char x seq[Char] — seq[Char]
* seq[Char] x seq[Char] — seq[Char]
isnull seq[Char] — Bool
head seq[Char] — Char
tail seq[Char] — Char

Here we are postulating that a null sequence, denoted by ~, exists and this
is defined by the first function declaration. The next thing we can do is to
generate sequences of length 1 using the second function and perhaps write
a|” as < a > etc. Then b] < a > would represent < ba > and so on. Further

applications of the functions described above could be
head(cl(al)) = ¢, tail(cl(al(]"))) = a|(b]"))

and so on.

However we have not given a precise semantics for these functions and this

is done using equations like the following :

x

1l

head(z)|tail(z)

x*(y*z) = (gj*y)*z
rx = “*xx=uz etc.
isnull(") = T

where 2,7y, z € seq[Char]. The precise choice of the equations to describe the
semantics of the data type is not uniqely determined as long as the algebraic&i
model that these equations represent is consistent with the original system

requirement.

Algebraic Techniques of System Specification 17

 To take a more abstract view we can postulate the existence of a set
of ‘sorts’ that will, eventually, be replaced by explicit sets like Char and
seq[Char]. Let us call these sorts s, $3,...,3,. Then we define various oper-
ators wy : — Sz, Wo ! §1 X 82 — 82, w3:32x32—+sz,w4:32->33etc.to
represent null, |, *, ¢snull and so on.

We can now define the abstract concept of a data algebra. A signature
is a pair & = (5,Q) where S is a set of sorts, and @ = {0 ,} is a set of
operators indexed by pairs of the form (z,s) where € S*, s € § (5" is
the free semigroup generated by S, z is called the ‘arity’ of the operators in
2.s). Thus wy € Qy 4,5, ete. A T-algebrais a pair A = (S4,84) containing
family S4 of carrier sets s, for each sort s € 5, and a family of operations
W4 iS1A X X Sp g — 84 for each operator w € Q,, 4, 5.
 Now a specification consists of a pair D = (I, E) where T is a signature

nd E is a set of T-equations. A D-algebra is any Z-algebra which satisfies
le set of equations E. A central result of the theory is that there exists an
nitial D-algebra (in the categorical sense). This initial D-algebra can then
serve as a model for the specification of the system.
Such algebraic specifications can be ‘implemented’ using a language such
‘as OBJ which is available for many mainframe computers. The standard
reference for this work is now [9].

In model-based specifications the data types are defined in terms of sets
and functions or operations defined on these sets with a semantics preseribed
by a collection of predicate sentences or an explicit (possibly recursive) con-
_struction.

Example. Consider the possible fundamental data type associated with a
imple word processor. We form the set, seq[Char], of all finite sequences or
~words from Char, including the empty word ", constructed above. Usually
~we will write a sequence in the form < abedefg >.

The set DOC is defined to be the product

seq[Char] x seq[Char]

and this represents the state of a simple document with a document of the
form (e, §) representing the situation

amf

that is, the string of symbols corresponding to o and the string corresponding
to B with the cursor over the first symbol of 3. It is possible to introduce a

18

deft’.

more realistic representation of a document broken u
pages, windows etc. at a later stage. -

We .Wﬂl use the notation Z, see [5], and declare each function with it
semantics given below it.

lgebraic Techniques of System Specification 19
IMS Bulletin 21 195~A g

, The approach taken in [5] takes this view. A less constructive approach
P into lines, paragraphs yhich just describes the properties that a function must satisfy without actu-
ally describing how this function can be constructed'is also used in practice.
The book [6] describes some simple examples of this approach. VDM is an-
other, similar, approach with a more structured implementation environment

move
delete
insert
print

which is discussed in [7].

DOC %* DOC @ L] L]
‘ namic system specification
DOC 4 DOC 3 Dy Y p
DOC 4 Char £ DOC Although data type specification is of great importance there are several as-
DOC — seq[Char] pects of a system that are better specified by a more ‘dynamic’ model. The

use of various types of machine is becoming more widely used for the formal

dom move = domdelete = {1,r |1 # “}
(V(I,7) : DOC;a : Char)
move(lx < a>,r)=(I,<a>+r);
delete(lx < a>,r) = (I,7);
nsert(l,r)a = (I« < a>,r);
print(l,r) =l*r

specification of systems.

We discuss the concept of an X-machine, which is a general model of
computation with the intention of using this model in the specification of
computer systems.
~ The main mathematical model of computation is the Turing Machine.
~ Athough this has received much study in a variety of theoretical areas it is
not used by software engineers for the specification of systems, the principle

reason being that the model is based at a very low level of abstraction and is
_ not very amenable to analysis and system development. Less general models,

' Using these definitions we can describe more complex data types and func
tions and consequently build up a more detailed and realistic specification o
the data types and operations associated with the system. For example w
need to be able to move in the opposite direction to the way the function mov
works. This can be done by constructing a simple function that ‘reverses’
string of characters and then apply this in com

function‘ (before and aftgr) suitably adapted for the type Doc. We can then relates to previously studied concepts such as Turing Machines, push down
define higher level functions which include direction f

such as finite state machines, machines with stacks and/or registers and Petri

Notes. (1) .The notation f:A4 A4 B means that the function is partial andi:' nets, however, are the basis of many system specification and development
not necessarily completely defined.

(2) The notation “:” is often used in place of € and 4 — B
all functions from A to B. means the set of

(3) We use f a to represent f(a).
(4) dom means domain.

- methodologies. .
The use of graphical elements in a specification methodology is attractive
_ from the point of view of user understanding, conveying dynamic information,
~ and system refinement. Since the Turing Machine model is impractical and the
 finite state machine model is too restrictive, it would seem that the graphical
advantages possessed by these models are not going to be available for gen-
eral system specification. However, there is a much more appropriate model
of computation that can, when combined with suitable data type methods,
provide us with an appropriate environment for the description and analysis
of arbitrary systems. Since this model also has very promising capabilities for
use in discussing concurrent systems, it seems worthy of further investigation.

We start with the definition of the X-machine and show how this definition

position with the existing move

parameters ‘right’ and Machines and finite state machines. Then we examine some elementary aspects

20

of the theory of X-machines and conclude with a few examples. It should be
remarked that although these machines were introduced in 1974 [9] they have
not received much attention.

Let X be any non-empty set, henceforth referred to as the fundamental

data type, and @ a finite set of relations defined on X. Thus ® consists of

relations of the form ¢: X — X. If one prefers we can regard each ¢ as a
function, which is possibly incompletely specified, from the set X into the set
P(X), the set of all subsets of X' (also known as the power set of X).

Intuitively X represents the set of data to be processed and ¢ are the
set of functions or relations that carry out the processing. In some cases th
data type X can represent internal architectural details, such as contents o
registers etc. and it is in this way that the model can assume its full generality

Clearly we need to specify some relationship between the input and outpu
information of the overall system and the data type X, especially when X
contains information that is not directly involved with the system input an
output. This is done by specifying two sets, ¥’ and Z, to represent the inpu
and output information respectively. In many cases, as in much processing
these sets are free semigroups or subsets of free semigroups (i.e., language
over some finite alphabet).

Two coding relations, o: Y — X and §: X — Z describe how the input
is coded up prior to processing by the machine, and how the subsequentl
processed data is then prepared (or decoded) into a suitable output forma
Some examples will demonstrate how this works in a few basic cases.

Finally we need to describe some suitable control structure that will actu-
ally determine how the processing is performed. This structure is very similar

to the state transition graph of a finite state machine and will appear familia;
However, this appearance masks a model of considerable computational pow
since much of the similarity with finite state machines is concerned with th
control of the processing and not with the fype of processing that the m
chine performs. Nevertheless, the similarities with finite state machines ar
extremely useful since they allow us, at times, to apply techniques for tl
analysis of machines that have proved to be tremendously successful.

The final ingredient is the state space of the machine, which consists of
finite set, @, of states and a function

FQx®—P(Q)

called the state transition funcition.

IMS Bulletin 21 1988

Algebraic Techniques of System Specification 21

For many purposes this state space can be described using a graph which
has the elements of Q) at the nodes (vertices) and for each ¢,¢1 € Q,oed

here is a labelled arc s

¢

precisely if g1 € F(q,9).

Tt is also necessary to identify a subset I C Q of initial states and a subset
T C Q of terminal states. An initial state will be indicated in the state space
by being the target of an unlabelled and sourceless arrow, e.g.,

- q

sereas a final state will be described by being the source of an unlabelled
d targetless arrow, thus:

gs

Fig.1 The state space of an X-machine.

In Fig. 1 states ¢; and ¢, are initial states and states ¢4, ¢s and g¢¢ are
rminal states. This example is of a non-deterministic machine; witness the
vo arrows leaving ¢; labelled with ¢1. It is also incomplete in the sense that
o arrow labelled with ¢; leaves state gs.

The formal definition of an X-machine is presented in the following defi-

22 IMS Bulletin 21 1988

Definition. An X-machine is a 10-tuple:
M=(X,9,Q,FY Z«pI1T),
where
X, Y, Z are non-empty sets;

® is a set of relations on X;
Q is a finite non-empty set;

Algebraic Techniques of Sysiem Specification 23

If al any stage we find that the result of a partial computation

($10¢20...4)((¥))

is the empty set for some k < n then we will regard that computation as
halting and the output, if any, is obtained by applying B as before. Fig. 2
_gives a diagrammatical interpretation of the process.

F:Q x & — P(Q) is a, possibly partial, function;
oY — X and B: X — Z are relations;
IC Qand T C Q are subsets.

Remark. The relations appearing in the definition are often functions or
partial functions in many examples. The definition is presented here for the
record in its most general setting. The set P(Q) denotes the power set (or set
of subsets) of Q.

We call Y the inpul type and o the input relation. The set Z is the output

type and B is the output relation.

The process of computation that this machine performs can be described *:

by choosing an element y € ¥ from the input type and studying how this
element is processed. ;
First the input relation is applied to the element y to produce an element
or set of elements a(y) of X.
Next a path in the state space of the machine is selected that starts from
2 state in 7 and ends in a state from 7. There may, in a non-deterministic or

input data type machine data type

v (61
Y, input encoding
do .
P2
¥3

— .,
a1

finite state control

incomplete machine, be many or none. If a path is selected it will determine

a sequence from ®* using the labels of the arcs of the path in order. If th
labels of the arcs are ¢1, ¢2,. .. ,&n then the word

$r10¢20...9n

defines a composite relation (or function) on the set (or type) X. (In this

notation we apply the relation ¢; then ¢» and so on, which is a common

practice in algebra but may seem unusual elsewhere!)
When this composite relation is applied to o(y) we obtain an element or
subset of X and this yields an element or subset of the output type Z o

applying 3.
The result of the computation is thus

B((610d20...8n)(a(¥)))

©1 ... @n is the label
of a successful path.

@;: X — X are relations decoding

qo: start state
g1 final state

Fig. 2 An X-machine computation.

24 ' IMS Bulletin 21 1988 Algebraic Techniques of System Specification 25

4 Some examples of X -machines _ [and ‘right’ if d = R. Further details and examples of Turing machines
vill be found in many texts on the theory of computer science.
The most general model of computation so far investigated in any detail is Added to this is a start state go and a set T C @ of terminal states. The

the Turing machine model and its equivalent theories. There is, however, i :iial tape contains a string of characters from the set T which 1s input to
» newcomer to the scene that is claimed to be more general, namely the {}. machine in the state go. Processing consists of applying a sequence of
Quantum computer of Deutsch [10]. We do not intend to enter the controversy ,ppropriate tuples so that if at any stage the machine is in state ¢ and is
surrounding this new model and its relevance to computer science at this stage, fieading the tape symbol @ then any tuple of the form
merely note its existence. We will, however, demonstrate that the Turing
machine is just a special case of the X-machine defined above.

Before we examine the connections between X-machines and other ma-
chines we need to introduce some terminology.

Let © be any non-empty set. Some relations will now be defined on the
set ©* of all finite sequences or words in &. For any ¢ € T we define some
fundamental relations:

(Q:q,a‘g) 91: d)

here ¢ €Q, ' € SU{"}, d € {L, R} can be applied to vield the next state
I the symbol ¢ replaced by the symbol & and the tape head moved either
eft or right.

If the tape head moves left then the processing takes 2 tape of the form

Ly T — X7 (Vz € %) ¢Lo = oz [0102... 0%, 041 .. 0n
L;h o — T (Vz € T¥) et ={yeT loy=1z} ’
Ry T =% (V2 € £¥) 2R, = 20

R;LETY = (vee o) eR;l={yel |yo =2z}
left : T* x ¥ - T* x &*

(a,b)left = (reverse(tail(reverse(a))), head(reverse(a)) * b)

. vith the head reading the symbol o3 and either produces a resultant tape of
he form

[0102 ... Ok=1, 04 Ok41 - - On)

where o), is the new symbol printed on the tape after applying the tuple or

(The purpose of the last string processing function will become clearer when [0102 ... Ok=1,0k41 .- O]
we consider a later example, essentially it transfers the last symbol of the first
word to the front of the second word. The standard functions reverse, head

and tail are assumed to be defined already as is concatenation, *.)

For a right move the resultant tape is of the form

/
[0'10'2 ---O’kﬂ'k+1,0’k+2~--0’n]

The Turing machine model. The essential features of a Turing machine Or

consist of an alphabet d, a finite set of states Q and a finite set of n-tuples [0109. .. Obt1, 0842 .. 0n)
(n =40t 5) which describe the behaviour of the machine under various
circumstances. The set of 5-tuples that we will use here will be elements of
the form

In some cases the tuple may involve the replacing of a symbol on the tape
by a blank.

Tn the context of an X-machine we first define the set X as

(Q)QIa 9>011d)
where ¢,q1 € @; 6,01 € TU " where * denotes a blank; and either d = L or ' X=2"xL*

4 = R. The interpretation of such a tuple is that if the macl}ine is in state ¢ The set of states is Q and the initial and terminal states as in the Turing
and the current symbol being scanned is 6 then the next state is q1, the symbol. jyachine case. For each tuple of the form

g, is printed on the tape instead of ¢ and the read-write head is moved ‘left’ if

(g,0,¢',0',L)

26 IMS Bulletin 21 19885{;1]gebmz'c Techniques of Sysiem Specification 27

we insert an arrow from ¢ to ¢’ labelled by the relation being the empty string, and

R;l X La/

on X. For each tuple of the form

G X = where 8(a,b) = a.

Iﬂl it is necessary to only carry out computations starting from a given initial
1o '~state we will define T to be the singleton set containing this state,

(@040, F) The X-machine computes exactly the same sequential function as does the
iginal finite state machine.

In the previous section we gave the general definition of an X-machine and
ustrated this with some examples to show that the concept is fully general.
this section we will briefly review some of the theory of X-machines, al-
ough at this time this theory is not as well deveioped as it might be. The
Anition of the behaviour of an X-machine can be made in terms of the

action or relation that 1t computes or in terms of the language it recognizes.
Let M =(X,®,Q,F,Y, 2, 8,1,T) be any X-machine. If

we insert an arrow from ¢ to ¢’ labelled by the relation

o= (R;'x1)o (R x1)oleft

ete. The definition of the input and output relations for the X'-machine a
given next.

a, 3.5 — T x TF

(a)a = (*,a)

(a,0)f=a
This interpretation is of a Turing machine that behaves as a function on &
If the machine halts during a computation this means that there is no arro

leaving the current state which has, as a label, an applicable relation. The
result is then obtained by use of the decoding relation.

é1 do dn
Ciqo — g2~ gy o >

presents a sucessful path in the state space of M, so that o € Jand g, € T,
_then the relation

lef =dr10¢20...00p: X — X

il be called the relaiion defined by that labelled path. The behaviour of M
then

Finite state machines. The classical model of a finite state machine can
be represented as an X-machine in the following way. ;

Let Q be a finite state set, & a finite input set and Q a finite output set;
then a finite state machine is a quintuple M| = U le|: X — X

A=(QL,QFG) fwhere the union is taken over all the successful paths in the state space.

where F1Q x T 4 Q and G:Q x £ > Q are partial functions defining the' The relation compuled by the machine is then defined as
next state and output functions. _ Y =7
The X-machine is defined as follows, The set X = Q* x T*, the set of fu=caolMlof ¥V —

states is Q and the sets of final and initial states are also equal to Q. The set For the recognition of languages we define the output set to be * and the
of relations @ are defined as follows. If ¢,¢' € @, ¢ € I, § € Q are such thaloutput function f: X — 7 yields a subset

F(q,0) = ¢ and G(g,0) = 6 then we insert an arrow from state ¢ to state ¢
labelled by the relation . “fu
¢=RoxLs [y.
The input and output codes are given by The article [1] discusses some of the applications of this material. We can

W T X where a(a) = (*,) ; evelop a methodology for the description of systems by a combination of the

28

TALS Bulletin 21 198

data type methods of the first sections with the machine based methods of Crossed M odules

he latter ones. In situalions when archilectural features of the syslem are
important, these can be incorporated into the X-machine by defining the set

X suitably, perhaps including models of registers etc. Graham Ellis
References Crossed modules were invented almost 40 years ago by J.H.C.Whitehead
[1] M. Holcombe, X-machines as a basis for dynamic system specificatio his work on c'ombmatorlal homotopy the(?ry [VV] They have since found
Software Engineering Journal (in press). aportant roles in many areas of mathematics (including homotopy theory,
mology and cohomology of groups, algebraic K-theory, cyclic homology,
[2] M. Tolcombe, Formal methods in the specification of the human-machineombinatorial group theory, and differential geometry). Possibly crossed mod-
interface, Int. CIS Journal 1(1) (1987), 24-34. es should now be considered one of the fundamental algebraic structures. In
{ g
, , , . . , is article we give an account of some of the main occurrences and uses of
(3] M Hoic,(?m!?e: Goal-directed (iask"anai’ys‘iﬁ and formal interface specifi ossed modules and we describe some recent developments in their theory.
tions, Int. CIS Journal 1(4) (1987), 14-22. Before presenting the definition of a crossed module, we shall consider
[4] R. Faginand J.Y. Halpern, Belief, awareness and limited reasoning, A several motivating examples. Throughout G denotes an arbitrary group.

Department of Computer Science
University of Sheflield

e aeat 0T . : .
Intel. 34 (1988), 39-76. ‘Example 1 Let N be a normal subgroup of G. The inclusion homomorphism
B. Suffrin, Formal specificaiion of a display oriented fext editor, SciencelV — G together with the action 9n = gng™" of G on N is a crossed module.

f Comp. Prog. 1 (1932), 157-202. o
of Gomp. Prog. 1{ : xample 2 If M is a ZG-module then the trivial homomorphism M — G

1. Hayes, Specification case studies, Prentice-Hall, 1686. hich maps everything to the identity is a crossed module.

C.B. Jones, Systematic software development using VDM, Prentice-Tlal

‘Example 3 Let §: H — G be a surjective group homomorphism whose kernel
1086.]

lies in the centre of H. There is an action 9h = §hi~! of G on H where §

S a1 . . .

S. Eilenberg, Aulomata, languages and machines, Academic Press, 1974 en.()tes. any element in 97!(g). The homomorphism & together with this
ction is a crossed module.

Thrle 8 Tahr. | al ebraic ficaly vol,
gA%gg%;;;i;ég}:lgérg;g;fa;ggg%ms of Algebraic specification, vol xample 4 Suppose that G is the group Aut(K) of automorphisms of some
roup K. Then the homomorphism K — G which sends an element z € K to
D.A. Deutsch, The guantum compuler and lhe Church-Turing thesisthe inner automorphism K — K, k ckz~! is a crossed module.

Proc. Royal. Soc. A 400 (1985), 97-117.

Each of these examples consists of a group homomorphism with an action
f the target group on the source group. Before stating the precise algebraic
roperties needed by such a homomorphism for it to be a crossed module, let
s consider some more substantial examples.

xample 5 Let X be a topological space in which a point zo has been chosen.
Recall that the fundamental group m1(X,zo) consists of homotopy classes of

29

