- VIRISH MATHEMATICAL SOCIETY
BULLETIN «

EDITOR Ray Rya,ns‘;)" é

- 'ﬁtory st,yle Al areas of mathematlcs are W ;
~ new, The Bulietm is typesét using. TEX. Authms are mvﬁ,ed to subrmt theu?

: artlcles in the form of TEX input files. Artxcles submxtted in the form of typed'

- ;manuscnpts WIH be gwen the sarfie. consxderatxon as a,rtxeles in TEX.

should “be addressed to .

Insh Mathematxcal Soczety Builetm
Department of Maﬁhemahcs
o Umversxty Coﬁege ‘
Galway
Ireland

IRISH MATHEMATICAL SOCIETY BULLETIN 21, DECEMBER 1988

CONTENTS
IMS Officers and Local Representatives ..........covvvviiininnnenn ii
TIVIS BUSINESS .+ v et evere et etee e e ittt eenaenenenateninnenanns 1
[ LS 2 T 3
Articles

Edge Sums of Hypercubes ............ Niall Graham & Frank Harary 8
Algebraic Techniques of

System Specification ............ e Mike Holcombe 13
Crossed Modules .....ovirir i, Graham Ellis 29
Recent Computations of Pi ..., Donal Hurley 38
Topological Equivalents of the

Axiom of Cholce ...vivivi i S.D. McCartan 45

History of Mathematics
The Culmination of a Dublin

Mathematical Tradition ............c.coiivnes Norman D. McMillan 49
Notes

Diagonalising a Real Symmetric Matrix and

the Interlacing Theorems ............c.oooient Donal P. O’Donovan 63
Conference Reports ... ..co.vvneuiiiiiiiiiiiiiiiiiiiiiiei i 68
Book ReVIEWS . ..\ttt ettt e 70

Problem Page .........cooviiiiiiiiiiiiiiii Phil Rippon 73




THE IRISH MATHEMATICAL SOCIETY
OFFICERS AND COMMITTEE MEMBERS

IRISH MATHEMATICAL SOCIETY

FIRST SEPTEMBER MEETING

President Prof. Sedn Dineen Department of Mathema‘pics
b gni)vltarsity College September 9, 1088
ublin
ice- Dr. Fergus Gaines Department of Mathematics
})’:‘:ident nE 1 University College The Irish Mathematical Society held an Ordinary Meeting in Trinity College,
Dublin - Dublin, from 10 am to 5:30 pm on Friday, September 9 1988. Thirty-six
Secretary Prof. A.G. O’Farrell Department of Mathematics ; members and eight non-members attended.
xayﬁggtﬁ College 1. The President, Professor S. Dineen, took the chair, and opened the
Tay

meeting. He noted that this was the Society’s first September meeting,
for the purpose of hearing scientific papers, and that it was hoped to
continue it in future years. He invited proposals in time for the Christ-
mas meeting from schools that would consider hosting the meeting in
September 1989.

Treasurer Dr. Gerard M. Enright Department of Mathematics
Mary Immaculate College
Limerick

Committee Members: M. Brennan, N. Buttimore, R. Critchley, B. Gold-

smith, D. Hurley, T. Hurley, R. Ryan, R. Timoney. 2. The minutes of the meeting of March 30 1988 were read, approved, and
signed. There were no matters arising.

LOCAL REPRESENTATIVES 3. Dr. Stephen Gardiner, of University College, Dublin, was introduced by

Cork RTC Mr. D. Flannery the President and presented an invited paper on Integrals of subharmonic
Uucce Dr. M. Stynes functions.

Dublin DIAS Prof. J. Lewis ) . '
Kevin St. Dr. B. Goldsmith 4. At 11 am, the meeting adjourned for tea.

NIHE Dr. M. Clancy ' 5. At 11:30, Dr. T.W. Korner, of Cambridge University, was introduced
TCD Dr. R. Timoney by A.G. O’Farrell, and presented an invited talk on Molekills out of
UCDh Dr. F. Gaines ~ Mountains.
Dundalk RTC Dr. E. O'Riordan ~ 6. At 12:30, the meeting adjourned for lunch.
Galway UCG Dr. R. Ryan
Limerick MICE Dr. G. Enright 7. At 14:00, the meeting divided into two groups, to hear contributed short
NIHE Dr. R. Critchley talks.
Thomond Mr. J. Leahy Group A, chaired by Dr. John McDermott, heard the following:
Maynooth Prof. A. OFarrell Professor Bryan Cain, of Iowa State University and University College,
Waterford RTC Mr. T. Power

Dublin, on Sylvester’s theorem eziended.

Professor T. Laffey, of University College, Dublin, on Rings with a finite

il
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mazimal subring.

Dr. D. Lewis, of University College, Dublin, on The Condition of an
ergenvalue,

Group B, chaired by Dr. R.M. Timoney, heard the following:

Dr. C. Nash, of Maynooth, on Sheaf cohomology and functional integra-
tzon.

Dr. D. Wilkins, of Trinity College, Dublin, on Finiie Gaussian curve-
ture.

Dr. D. O'Donovan, of Trinity College, Dublin, on Diagonalising a real
symmetric matlriz.

8. At 15:00, the meeting reassembled in the Geography Theatre, with the
President in the chair, for the panel discussion on The impact of comput-
ers on the mathemaltical curriculum. Short position papers were read by
M. Klimek, A. Wickstead, and T. Murphy, and there was an animated
discussion.

9. At 16:00, the meeting adjourned for tea.

0. At 16:30, Professor W.K. Hayman F.R.S., of York University, was in-
troduced by Professor B. Twomey, and presented an invited lecture on
Bases of posilive conlinuous funciions.

11. Professor Twomey expressed the meeting’s gratitude to the speakers and
the organisors, and the meeting closed at 17:30.

G. O'Farrell,

cretary

NEWS

Support for Conferences

The Trish Mathematical Society can provide limited support for confer-
ences held in Ireland. Application should be madein advance of the con-
ference to the Committee through the Treasurer.

Personal Items

» Professor Mario Matos from the University of Campinas, Brazil, will

be visiting the Mathematics Department of UCD during the months of
January and February 1989.

Professor Jose Isidro from the Universidad de Santiago de Com-
postela will be visiting the Mathematics Department of UCD from March
to June 1989.

John Miller of TCD and Bugene O’Riordan of Dundalk RTC are
invited keynote speakers at the Conference on Discretization Methods
in Flow Problems to be held in Magdesprung, East Germany, April 3-7,
1989.

Michael Clancy is on sabbatical leave from NIHE Dublin for 1988/89.
He is spending the year at the University of Notre Dame.

Robin Harte, Siobhdn Vernon and Con G’Leary of the Mathemat-
ics Department UCC have all availed themselves of the early retirement
scheme.

Brendan McCann has taken up a one-year apppointment in the Math-
ematics Department at UCC.

Don Barry of the Statistics Department at UCC is on leave of absence
at the Statistics Department, Yale University until January 1989.

Se4n Tobin has taken sabbatical leave from the Mathematics depart-
ment of UCG for the academic year 1988/89. He is presently visiting
the Mathematics Department of the University of Manitoba.

Paddy Quinlan of the Mathematical Physics Department at UCC has
retired. He was appointed Professor of Mathematical Physics at UCC
in 1951.
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e George Kelly has been appointed temporary acting head-of the Math-
ematical Physics Department at UCC.

Honorary Degree Awarded to J.G. Clunie

On May 17 1988, at a special conferring ceremony in University College Cork,
Professor Jim Clunie was conferred with an honorary Doctorate of Science by
the National University of Ireland. He was introduced by Professor P. Barry,
who gave the following address:

Professor James Gourlay Clunie is a Scottish mathematician of the first
rank. He was born in St. Andrews on 26 October 1926 and attended Madras
School in St. Andrews: he was DUX of the school in 1944. He entered the
University of St. Andrews in 1945 having won that University’s Bursary Com-
petition: he was ranked number one in the competition for all the faculties.
He graduated in 1949 with First Class Honours in Mathematics. He took his
Ph.D. in 1952 at Aberdeen University under the supervision of the late A.J.
Macintyre.

He was appointed to a lectureship at the University of North Staffordshire,
Keele in 1952 and taught there until 1956 when he joined the Professor Walter
Hayman FRS at the expanding Department of Mathematics at the Imperial
College of Science and Technology, London. He taught at Imperial College
until 1980 being appointed Professor of Mathematics in 1964. From 1980 to
1085, he was Senior Research Felow at the Open University, Milton Keynes,
and he has been Honorary Research Associate at the University of York since
1085, Tn 1959-60 he visited Massachusettes Institute of Technology.

During his twenty-five years at Imperial College, the Mathematics Depart-
ment there gained world-wide recognition as one of the foremost centres for
complex analysis. It attracted scholars from far and near, among them several
Trish mathematicians who learned their trade from the masters Hayman and
Clunie.

Professor Clunie has published more than 65 research papers, a little more
than half of these in collaboration with seventeen or more mathematicians,
ample testimony to his openess to new ideas, wide-ranging interests and ver-
satility. These show him to be a mathematical analyst of real power and
resourcefulness. e soon became an authority on the Wiman-Valiron method.
Te worked generally on power series, univalent functions, entire and meromor-
phic functions. The quality of his output can be judged by the high opinion
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held of it by co-workers in his field, and the number of references to it. In
so many of his papers he has contributed an original technique, later used
by others; ‘by Clunie’s methed’ 1s a frequently used phrase. Recently, he has
proved a conjecture of Polya’s on the final set of an entire function, open since
1942.

He supervised over ten research students, particularly notable among them

 being Milne Anderson, David Brannan, Q.1 Rahman, Terry Sheil-Small, Derek
 Thomas and our own Brian Twomey.

Professor Clunie took a full share of mathematical administration. The
London Mathematical Society has an even wider standing than its name would
suggest. He served on its council for several years, was a Vice-President in
1967-68 and shared in the editing of its journals. He co-organised major

international conferences in England and co-edited the ensuing proceedings.

His association with Irish Mathematicians began in the mid-fifties when
he struck up a friendship with the late Paddy Kennedy, whose memory we
cherish. Since then his circle of Irish friends has expanded, to the undoubted
benefit of mathematics in Ireland. He has served the NUT in several different
capacities. He was the Extern Examiner in Mathematics for the periods 1974-

76 and 1983-85, and acted as a substitute in 1968 and 1986. As well, he has

served on appointments and promotions boards in several of the NUI colleges.
He has watched with interest the growth of the Irish Mathematical commu-

' nity and through his formal and informal work, greatly aided its development.

Always a friendly face at converences and rational in discussion, he has

~ been unfailingly helpful and generous to younger colleagues. He has a gift

for patient encouragement. He has been particularly helpful to the growing

- mathematical community in Ireland. He has had a truly distinguished record
' as a mathematician. We honour him for his work, and the manner of its doing.

Millenium Scholarship

~ Brendan Boulter of NTHE (Dublin) was recently awarded a Millennium Sci-

ence and Technology Scholarship, worth £7000, to undertake research leading
to a Ph.D. The scholarship scheme was established by the Minister for Science

~ and Technology and support includes £28,000 from the private sector, £70,000
- from the Irish- American Partnership and £63,000 from the Minister’s Science
- and Technology budget. Brendan’s research will be primarily concerned with
~ the development of parallel algorithms for initial and boundary value prob-

lems, with particular emphasis on exploiting the advantages of supercomputer
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architecture. Brendan, a graduate of the DIT, has just completed an M.5c.
at NIHE (Dublin) under the supervision of Dr. john Carroll.

Computer Algebra at UCG

Recently UCG completed the signing of a joint contract with the EC for
a project on [ntelligent Computer Algebra Systems. This project aims to
bring together research workers in the University of 5t Andrews, Scotland,
in Technisches Hochschule Aachen, West Germany, and at University College
Galway, under the EC Stimulation Action programme popularly known as
“twinning” .

Computer Algebra may simply, but not exclusively, be described as the
symbolic manipulation of algebraic Mathematical expressions—compare word-
processing or data-base management which manipulate words and characters.
Tt has had applications in such diverse areas as coding theory, data encryption,
communication network design, crystallography and solid state physics as well
ss within Mathematics itself.

The three Colleges have common interests in Algebra and have come to-
gether for this project. The project directors are respectively Dr Edmund
Tobertson at 8t Andrews, Professor Joachim Neubuser at Aachen and Dr Ted
Hurley at Galway. This whole area will revolutionise the teaching and power
of Mathematics and is making accessible to research workers in many diverse
areas hitherto unworkable Mathematical algorithms.

The programs, written in the C language, will be developed on the Digital
VAY machines in Galway and St Andrews and on & MASSCOMP in Aachen.
Rapid communication over the electronic computer networks has been estab-

lished between the Colleges so that results or software developed in one can

be instantly communicated to the others.

Dr. Fred Klotz

Fred Klotz, who died in a tragic accident earlier this year, was well known

to many of our members. He was a lecturer in Mathematics m St. Patrick’s

College, Dublin. Fred was the instigator and jomnt coordinator of the LOGO

courses for mathematically gifted children in Ireland. He is commemorated

by the Fred Klotz Memorial Trophy, which i1s awarded at the Irish National
Logo Contest.
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Irish Girl Wins International Computing Contest

The Internationl Problem Solving Contest (ICPSC) is now in its eighth year.
In 1987 an elementary LOGO division was introduced and the winner was

~ John Farragher from Limerick. This year, the winner was Anne Chazarreta,
' a twelve year old sixth class pupil from Scoil an Spioraid Naoimh (Girls),
- Bishopstown, Cork.

For the last three years, experimental courses using the computer language
LOGO for mathematically able children have been conducted at various cen-

 tres throughout Treland. The Cork centre is at Colaiste an Spioraid Naoimh,
Bishopstown and is directed by Michael Moynihan and Declan Donovan.

IMS MEMBERSHIP

Ordinary Membership of the IMS is open to all persons interested
in the activities of the Society. Application forms are available from the
Treasurer and from Local Representatives. Special reciprocity rates apply
to members of the IMTA and of the AMS.

Institutional Membership is a valuable support to the IMS. Institu-
tional members teceive two copies of each issue of the Bulletin and may
nominate up to five students for free membership.

Subscriptions rates are listed below. The membership year runs
from 1st October to 30th September. Members should make payments
by the end of January either direct to the Treasurer or through Lo-
cal Representatives. Members whose subscriptions are more than eigh-
teen months in arrears are deemed to have resigned from the Society.

Ordinary Members IRL5
IMS-IMTA Combined IR£6.50
Reciprocity Members from IMTA IR £1.50
Reciprocity Members from AMS  US$6
Institutional Members IR£35

Note: Equivalent amounts in foreign currency will also be accepted.




~ Edge Sums of Hypercubes

in this way are shown.
ARTICLES Qs
1 3
Edge Sums of Hypercubes 4
1
Niall Graham Frank Harary
H1
Introduction
A hypercube may be defined recursively in terms of the cartesian produét of . 1
raphs as defined in [1, p.23] and in [2]: Figure 1. 4h od : chis
¢ , The labelled hypercubes of dimensions 1,2 and 3 with edge weights.
K n=1 . :
n = { CSZA %« O n> 2 (1) With each hypercube @, we may now associate a set [, and a multiset

M, of the weights on the edges of N (Qn). Thus Ly = My = {1621, (;1,152} f;}d
L= {1,2,4,5,6,8,9,10,12,13} while M5 = {1,2,4,4,5,6,8,9,10,10,12, -
Note that the numbers from 1 to 13 which are not in the set Lg are 3,
and 11. When expressed in binary form, th(_ase numbers are 11, 111 and 1011.
The fact that they all end in 11 is no coincidence, as we shall see.

Our purpose is to characterize the set

The hypercube @, of dimension n may equivalently be defined as the graph
of 2" nodes such that each node is uniquely labelled with a number expressed
as an n-digit binary string and two nodes are adjacent whenever their labels
vary in exactly one binary digit. The dimension of the edge uv, where u
(ury o tn), v =(v1,...,v,) is k if up +vg = 1 and u; = v; for i k.
Given such a labeling of Q,, we form the network N(Qp) by assigning

o0
integer weights to the edges of @ as follows. For two adjacent nodes 7 and Lo = U L, (3)
let wy; be the weight on edge ij € F(Q,), defined by et
wij =ity () that is, the set of all integers that are the weights of an edge in some N(Qn).

- We will also determine the limiting multiset

In words, each edge is assigned as its weight the sum of the two nodes with
which 1t is incident. In Figure 1, the networks formed by labelling Q1, Q4 and

Of course Lo, can also be written as the limit of the sets L.

1
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require the operation of the sum of two multisets of numbers. For multisets
Sy, Sy C ZT, define Sy + Sy = {wy + wy : w; € S;}. When Sy is a singleton
wy we abuse the notation by writing 51 + S5 = wy + 5.

To derive a recurrence relation for the sets M, we appeal to the recursive
definition (1) of @,. Note that @, may be constructed from two copies of

Qn-1. One copy of @,-1 has the usual integer values on its nodes, and thus
has the multiset M, _; of weights on its edges. The other copy is labelled
similarly with node labels all greater by 277!, Thus its edge weights are all

k I DA -
greater by %71 + 277" = 27, A pair of nodes, one from each copy of Qn-1, Proof We have already shown that f(4z+3) = 0. We now consider the other

are adjacent whenever their labels differ by 271, as the edges joining them lie
in the nth dimension of @J,,. Consequently, M,, may be written as the union

of M,_; with the elements of 2"~! 4+ M,,_;, along with the weights on the

edges joining the two copies of @pn..1. Thus, since the base case is My = {1}
as seen in Figure 1, we find that

My = Moy | @+ M) {20 + 2k 0 <k <2772} (5)

As L, is the set of the multiset A4, it follows that

Ln=Mar | J@ 4 Lo {2 4200 <k <2272 (6)

for alln > 1. Let Z7 be the set of all positive integers and write Zo = ZTU{0}.
Using this notation we are now able to state our main result.

Theorem 1 A positive integer z is the weight of some edge in N(Q,) for
sufficiently large n if and only if z # 3 (mod 4). Thus z € Z¥ is not a

hypercube weight just if z = 4z +3 for some z € Zy, I.e., the binary expression

of z ends in 11.

Proof Let o008 and «108 be adjacent nodes in Q,, where o and g are

binary strings. The weight on the edge joining these nodes is then «0150,
found by base 2 addition. As @ and # may both be null strings we see that

the resultant string «0140 can be any even number. An odd sum may only
arise if the summands vary in their least significant digit, that is, between

nodes with labels @0 and o1 for some binary string o. Obviously, their sum

is @01 and odd numbers of the form a1l cannot be formed in this way. Thus

IMS Bulletin 21 1988
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the only admissible odd numbers are those of the form 4z + 1. Combining this

, with the fact that all even numbers are admissible, the result is established.
To characterize those numbers which are edge sums for some hypercube, we

 As well as characterizing all the integers in Lo, we may also find the multi-
plicity of each integer in M.

Corollary 1a The multiplicity f(y) of the integer y in My, Is given by

|logy y) y=2z
fy)=4{ 1 y=4de+1 (7)
0 y=4zx+3

two cases. Without loss of generality let 7 and j be adjacent nodes in @y, with
i < j. Clearly, j = i+ 2% for some k with 0 < k < n. Then the integer y
found by adding 7 to j is

8

Obviously, when y is odd we require that k = 0 and the solution, if any, is
unique. We have already seen that when y = 4z + 1 for some integer ¢ > 0
such a solution does exist. For even y = 2m we see that y = i + 2¥~1, which
has as many solutions as there are values of 2¥~! which are less than m, that
is, 2¥ < 2m = y. All such solutions are admissible and thus the multiplicity
of y = 2m is given by the number solutions of the diophantine equation (8).
The number of such solutions is obviously given by |log, y].

y=2+2F

Using (6) and (7), we find L4 and My:
Ly = {1,2,4,56,8,9,10,12,13,14,16,17,18,20,21,
22,24,25,26,28,29} ©)
My, = {1,2,4,4,5,6,8,8,9,10,10,10,12,12,13, 14, 16,

17,18,18, 20,20, 20, 21,22, 22, 24, 25, 26,26, 28, 29}

Note that (for n < 4) the sets L,, and multisets M, are symmetric about the
value 2% — 1. We now show that this is true in general.

Corollary 1b A number z is the weight of some edge of Q,, if and only if its
reflection about 2" — 1, viz., z4+2(2* =1~ 2) = 2**1 =2~ 2, is an edge weight
of Q.
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Proof Let i and j be adjacent nodes in Qn' expn?ssed as binary strings and Algebraic Techniques Of Syst em
let i’ and j' be the bitwise complements of i and j so that ‘ g D ecifi cation'
it =i+ =201
' y ‘ ~ Mike Holcombe

As 7 and j are adjacent, the complementary nodes ¢ and j are adjacent.
Thus, for every edge whose weight is z there exists another edge whose weight
is 2(2" = 1) - z.
References 1 Introduction
(1] F. Harary, Graph Theory. Addison-Wesley, Reading, 1969. ‘The design of complex software systems is a relatively new occupation and is

’ 3

till in its infancy. With the rapid growth in the applications of microprocessor
[2] F. Harary, J.P. Hayes and J-H. Wu, A survey of the theory of hypercube, chnology more and more areas of life are being affected and in some of this

graphs, Comput. Math. Appl., to appear. activity there is serious cause for concern. Many manufacturers are using
‘microcomputers to control safety-critical systems. Such systems are usually
‘defined to be systems, the malfunctioning of which could lead directly to
“injury or death on a small (local) or large (global) scale. Examples of recent

Department of Computer Science

New Mexico State University products and systems that have caused injury or death through inadequate
Box 3CU Las Cruces software design are :

New Mexico 88003-0099 ) i

USA ¢ Chemical processing plants,

& Washing machines,
o Car cruise controls,
¢ Intensive care systems,

o Industrial robots, etc.

In many of these systems there is a serious problem in the formal specifi-
_cation of the total system and its environmental interaction. Most interactive
systems involve three important components :

» the system,
e the environment,

¢ the user.

13
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Each component interacts and ‘communicates’ with all the others and it is

vherefore crucially important that we take this into account at all stages of
the design process, from specification, design, validation, maintenance and

disaster analysis.

Much activity currently centres around the development of rigorous tech-

niques, often based on formal logics, for the verification of systems. For this to
be practical it is essential that the system specification is based on a complete
model of the environment and the user’s behaviour. Any verification of the

system can only be valid subject to a correct model of these two important

aspects of the total situation.

they are all that we have available. In the design of a safety-critical control
system for some industrial process, a chemical plant or a nuclear power sta-
tion, it is only possible to validate the software subject to the model of the
environment being realistic. .

The Bide Report has examined some of the problems facing the Infor-
mation Technology industry following the UK Government’s Alvey Initiative
and has stressed how important the user interface is in any computer system.
The report makes the point that, no matter Low reliable and well designed
a system is, if the user interface is not well designed and sympathetic to the

user’s needs then the success of the system as a whole is in serious doubt.

This is especially true in the case of interactive, safety-critical systems. When
we turn to the problem of modelling the actions of a user, which could be
fundamental to the safety of the system, we have a serious problem. Although
much experimental evidence has been amassed about user behaviour much

of it is contradictory and there is no body of formal theory which could act interesting mathematical problems. We will construct a specification of this
as a basis for reasoning about such important matters. Several attempts are
being made to develop rigorous design methodologies to take account of these
problems. These methodologies require the development, as df)es any method
which is trying to design the user interface, of a sensible series of models of |

user behaviour and belief. The construction of formal user conceptual models

is an area of importance and these models must be based on some sort of
foundational logic that is rich enough for the expression of possibly irrational
and ill-defined beliefs about the system. The recent work on ‘belief” logics

looks very promising in this respect [4].

Algebraic Techniques of Sysiem Specification 15

One basic problem with current specification and analysis methodologies
is that they tend to be rather specialised and cannot always deal with different
aspects of a system and its environment. We have developed a method, based

on the theory of X-machines (see [8]), which enables the formal description

and analysis of most aspects of a system and its environment in a unified
way. Systems may involve concurrent or real-time processing and yet the

 ¥-machine model is sufficiently robust that it can be used to specify such

systems. Analogue aspects of a real-time control system can be described

using X-machines with a topological basis. At the heart of such machines are
 suitable models of data types and operations which can be expressed either in
The modelling of complex environments has been an important research modzl.- theoretic forlm, Suih as.lgeuseg::n\g)::eo; Z’TZ;I}II::I;ZI?;.lsaguoszz’égf;g;l)c
activity for many years, involving, perhaps, thermodynamics, hydrodynamics, paradigms (some elementary ideas PP ! '
electromagnetics, materials theory etc. and many sophisticated models have

been produced. However even these models are far from being complete but

2  The specification of data types

One very promising approach to the design of more reliable software systems
is the formal specification of data types and operations. There are several
approaches; the two most popular are algebraic specification and model-based
specification.

The algebraic approach to data type specification involves the definition
of data types in terms of universal algebras. Let us suppose, as before, that
our system involves a collection of sets and functions or operators. There may
be some sets that are constructed of products of other sets and so on. We
specify first a collection of basic sets and operators. In our examples we will
consider the specification of data types needed in the design of a simple word
processor, since that is a system that many people may now be familiar with.
The most important set is the set of finite sequences of letters and numerals
which we call seq[Char]. Although this is a basic set it does involve some

data type from the more primitive type Char.

Let Char denote the set of all possible symbols to be used for the con-
struction of documents, so Char = {4,q,B,b,...,2,2,0,1,...,9,0}, where
O represents a blank space.

The main operations that we wish to carry out with sequences are

1. construct sequences,

2. combine sequences,

S
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3. test to sce if a sequence is the null séquence,
4. extract the leftmost symbol of a string,

5. delete the leftmost symbol from a string.

These operations will be defined using functions. We first identify the sets
Char, seq[Char] and Bool, the 2-valued truth set. There are then some

function declarations:

null : — seq[Char]
| : Char x seq[Char] — seq[Char]
* seq[Char] x seq[Char] — seq[Char]
isnull seq[Char] — Bool
head seq[Char] — Char
tail seq[Char] — Char

Here we are postulating that a null sequence, denoted by ~, exists and this
is defined by the first function declaration. The next thing we can do is to
generate sequences of length 1 using the second function and perhaps write
a|” as < a > etc. Then b] < a > would represent < ba > and so on. Further

applications of the functions described above could be
head(cl(al)) = ¢, tail(cl(al(]"))) = a|(b]"))

and so on.

However we have not given a precise semantics for these functions and this

is done using equations like the following :

x

1l

head(z)|tail(z)

x*(y*z) = (gj*y)*z
rx = “*xx=uz etc.
isnull(") = T

where 2,7y, z € seq[Char]. The precise choice of the equations to describe the
semantics of the data type is not uniqely determined as long as the algebraic&i
model that these equations represent is consistent with the original system

requirement.

Algebraic Techniques of System Specification 17

 To take a more abstract view we can postulate the existence of a set
of ‘sorts’ that will, eventually, be replaced by explicit sets like Char and
seq[Char]. Let us call these sorts s, $3,...,3,. Then we define various oper-
ators wy : — Sz, Wo ! §1 X 82 — 82, w3:32x32—+sz,w4:32->33etc.to
represent null, |, *, ¢snull and so on.

We can now define the abstract concept of a data algebra. A signature
is a pair & = (5,Q) where S is a set of sorts, and @ = {0 ,} is a set of
operators indexed by pairs of the form (z,s) where € S*, s € § (5" is
the free semigroup generated by S, z is called the ‘arity’ of the operators in
2.s). Thus wy € Qy 4,5, ete. A T-algebrais a pair A = (S4,84) containing
family S4 of carrier sets s, for each sort s € 5, and a family of operations
W4 iS1A X X Sp g — 84 for each operator w € Q,, 4, 5.
 Now a specification consists of a pair D = (I, E) where T is a signature

nd E is a set of T-equations. A D-algebra is any Z-algebra which satisfies
le set of equations E. A central result of the theory is that there exists an
nitial D-algebra (in the categorical sense). This initial D-algebra can then
serve as a model for the specification of the system.
Such algebraic specifications can be ‘implemented’ using a language such
‘as OBJ which is available for many mainframe computers. The standard
reference for this work is now [9].

In model-based specifications the data types are defined in terms of sets
and functions or operations defined on these sets with a semantics preseribed
by a collection of predicate sentences or an explicit (possibly recursive) con-
_struction.

Example. Consider the possible fundamental data type associated with a
imple word processor. We form the set, seq[Char], of all finite sequences or
~words from Char, including the empty word ", constructed above. Usually
~we will write a sequence in the form < abedefg >.

The set DOC is defined to be the product

seq[Char] x seq[Char]

and this represents the state of a simple document with a document of the
form (e, §) representing the situation

amf

that is, the string of symbols corresponding to o and the string corresponding
to B with the cursor over the first symbol of 3. It is possible to introduce a
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deft’.

more realistic representation of a document broken u
pages, windows etc. at a later stage. -

We .Wﬂl use the notation Z, see [5], and declare each function with it
semantics given below it.

lgebraic Techniques of System Specification 19
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, The approach taken in [5] takes this view. A less constructive approach
P into lines, paragraphs yhich just describes the properties that a function must satisfy without actu-
ally describing how this function can be constructed'is also used in practice.
The book [6] describes some simple examples of this approach. VDM is an-
other, similar, approach with a more structured implementation environment

move
delete
insert
print

which is discussed in [7].

DOC %* DOC @ L] L]
‘ namic system specification
DOC 4 DOC 3 Dy Y p
DOC 4 Char £ DOC Although data type specification is of great importance there are several as-
DOC — seq[Char] pects of a system that are better specified by a more ‘dynamic’ model. The

use of various types of machine is becoming more widely used for the formal

dom move = domdelete = {1,r |1 # “}
(V(I,7) : DOC;a : Char)
move(lx < a>,r)=(I,<a>+r);
delete(lx < a>,r) = (I,7);
nsert(l,r)a = (I« < a>,r);
print(l,r) =l*r

specification of systems.

We discuss the concept of an X-machine, which is a general model of
computation with the intention of using this model in the specification of
computer systems.
~ The main mathematical model of computation is the Turing Machine.
~ Athough this has received much study in a variety of theoretical areas it is
not used by software engineers for the specification of systems, the principle

reason being that the model is based at a very low level of abstraction and is
_ not very amenable to analysis and system development. Less general models,

' Using these definitions we can describe more complex data types and func
tions and consequently build up a more detailed and realistic specification o
the data types and operations associated with the system. For example w
need to be able to move in the opposite direction to the way the function mov
works. This can be done by constructing a simple function that ‘reverses’
string of characters and then apply this in com

function‘ (before and aftgr) suitably adapted for the type Doc. We can then relates to previously studied concepts such as Turing Machines, push down
define higher level functions which include direction f

such as finite state machines, machines with stacks and/or registers and Petri

Notes. (1) .The notation f:A4 A4 B means that the function is partial andi:' nets, however, are the basis of many system specification and development
not necessarily completely defined.

(2) The notation “:” is often used in place of € and 4 — B
all functions from A to B. means the set of

(3) We use f a to represent f(a).
(4) dom means domain.

- methodologies. .
The use of graphical elements in a specification methodology is attractive
_ from the point of view of user understanding, conveying dynamic information,
~ and system refinement. Since the Turing Machine model is impractical and the
 finite state machine model is too restrictive, it would seem that the graphical
advantages possessed by these models are not going to be available for gen-
eral system specification. However, there is a much more appropriate model
of computation that can, when combined with suitable data type methods,
provide us with an appropriate environment for the description and analysis
of arbitrary systems. Since this model also has very promising capabilities for
use in discussing concurrent systems, it seems worthy of further investigation.

We start with the definition of the X-machine and show how this definition

position with the existing move

parameters ‘right’ and Machines and finite state machines. Then we examine some elementary aspects
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of the theory of X-machines and conclude with a few examples. It should be
remarked that although these machines were introduced in 1974 [9] they have
not received much attention.

Let X be any non-empty set, henceforth referred to as the fundamental

data type, and @ a finite set of relations defined on X. Thus ® consists of

relations of the form ¢: X — X. If one prefers we can regard each ¢ as a
function, which is possibly incompletely specified, from the set X into the set
P(X), the set of all subsets of X' (also known as the power set of X).

Intuitively X represents the set of data to be processed and ¢ are the
set of functions or relations that carry out the processing. In some cases th
data type X can represent internal architectural details, such as contents o
registers etc. and it is in this way that the model can assume its full generality

Clearly we need to specify some relationship between the input and outpu
information of the overall system and the data type X, especially when X
contains information that is not directly involved with the system input an
output. This is done by specifying two sets, ¥’ and Z, to represent the inpu
and output information respectively. In many cases, as in much processing
these sets are free semigroups or subsets of free semigroups (i.e., language
over some finite alphabet).

Two coding relations, o: Y — X and §: X — Z describe how the input
is coded up prior to processing by the machine, and how the subsequentl
processed data is then prepared (or decoded) into a suitable output forma
Some examples will demonstrate how this works in a few basic cases.

Finally we need to describe some suitable control structure that will actu-
ally determine how the processing is performed. This structure is very similar

to the state transition graph of a finite state machine and will appear familia;
However, this appearance masks a model of considerable computational pow
since much of the similarity with finite state machines is concerned with th
control of the processing and not with the fype of processing that the m
chine performs. Nevertheless, the similarities with finite state machines ar
extremely useful since they allow us, at times, to apply techniques for tl
analysis of machines that have proved to be tremendously successful.

The final ingredient is the state space of the machine, which consists of
finite set, @, of states and a function

FQx®—P(Q)

called the state transition funcition.

IMS Bulletin 21 1988
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For many purposes this state space can be described using a graph which
has the elements of Q) at the nodes (vertices) and for each ¢,¢1 € Q,oed

here is a labelled arc s

¢

precisely if g1 € F(q,9).

Tt is also necessary to identify a subset I C Q of initial states and a subset
T C Q of terminal states. An initial state will be indicated in the state space
by being the target of an unlabelled and sourceless arrow, e.g.,

- q

sereas a final state will be described by being the source of an unlabelled
d targetless arrow, thus:

gs

Fig.1 The state space of an X-machine.

In Fig. 1 states ¢; and ¢, are initial states and states ¢4, ¢s and g¢¢ are
rminal states. This example is of a non-deterministic machine; witness the
vo arrows leaving ¢; labelled with ¢1. It is also incomplete in the sense that
o arrow labelled with ¢; leaves state gs.

The formal definition of an X-machine is presented in the following defi-
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Definition. An X-machine is a 10-tuple:
M=(X,9,Q,FY Z«pI1T),
where
X, Y, Z are non-empty sets;

® is a set of relations on X;
Q is a finite non-empty set;

Algebraic Techniques of Sysiem Specification 23

If al any stage we find that the result of a partial computation

($10¢20...4)((¥))

is the empty set for some k < n then we will regard that computation as
halting and the output, if any, is obtained by applying B as before. Fig. 2
_gives a diagrammatical interpretation of the process.

F:Q x & — P(Q) is a, possibly partial, function;
oY — X and B: X — Z are relations;
IC Qand T C Q are subsets.

Remark. The relations appearing in the definition are often functions or
partial functions in many examples. The definition is presented here for the
record in its most general setting. The set P(Q) denotes the power set (or set
of subsets) of Q.

We call Y the inpul type and o the input relation. The set Z is the output

type and B is the output relation.

The process of computation that this machine performs can be described *:

by choosing an element y € ¥ from the input type and studying how this
element is processed. ;
First the input relation is applied to the element y to produce an element
or set of elements a(y) of X.
Next a path in the state space of the machine is selected that starts from
2 state in 7 and ends in a state from 7. There may, in a non-deterministic or

input data type machine data type

v (61
Y, input encoding
do .
P2
¥3

— .,
a1

finite state control

incomplete machine, be many or none. If a path is selected it will determine

a sequence from ®* using the labels of the arcs of the path in order. If th
labels of the arcs are ¢1, ¢2,. .. ,&n then the word

$r10¢20...9n

defines a composite relation (or function) on the set (or type) X. (In this

notation we apply the relation ¢; then ¢» and so on, which is a common

practice in algebra but may seem unusual elsewhere!)
When this composite relation is applied to o(y) we obtain an element or
subset of X and this yields an element or subset of the output type Z o

applying 3.
The result of the computation is thus

B((610d20...8n)(a(¥)))

©1 ... @n is the label
of a successful path.

@;: X — X are relations decoding

qo: start state
g1 final state

Fig. 2 An X-machine computation.
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4 Some examples of X -machines _ [ and ‘right’ if d = R. Further details and examples of Turing machines
vill be found in many texts on the theory of computer science.
The most general model of computation so far investigated in any detail is Added to this is a start state go and a set T C @ of terminal states. The

the Turing machine model and its equivalent theories. There is, however, i :iial tape contains a string of characters from the set T which 1s input to
» newcomer to the scene that is claimed to be more general, namely the {}. machine in the state go. Processing consists of applying a sequence of
Quantum computer of Deutsch [10]. We do not intend to enter the controversy ,ppropriate tuples so that if at any stage the machine is in state ¢ and is
surrounding this new model and its relevance to computer science at this stage, fieading the tape symbol @ then any tuple of the form
merely note its existence. We will, however, demonstrate that the Turing
machine is just a special case of the X-machine defined above.

Before we examine the connections between X-machines and other ma-
chines we need to introduce some terminology.

Let © be any non-empty set. Some relations will now be defined on the
set ©* of all finite sequences or words in &. For any ¢ € T we define some
fundamental relations:

(Q:q,a‘g) 91: d)

here ¢ €Q, ' € SU{"}, d € {L, R} can be applied to vield the next state
I the symbol ¢ replaced by the symbol & and the tape head moved either
eft or right.

If the tape head moves left then the processing takes 2 tape of the form

Ly T — X7 (Vz € %) ¢Lo = oz [0102... 0%, 041 .. 0n
L;h o — T (Vz € T¥) et ={yeT loy=1z} ’
Ry T =% (V2 € £¥) 2R, = 20

R;LETY = (vee o) eR;l={yel |yo =2z}
left : T* x ¥ - T* x &*

(a,b)left = (reverse(tail(reverse(a))), head(reverse(a)) * b)

. vith the head reading the symbol o3 and either produces a resultant tape of
he form

[0102 ... Ok=1, 04 Ok41 - - On)

where o), is the new symbol printed on the tape after applying the tuple or

(The purpose of the last string processing function will become clearer when [0102 ... Ok=1,0k41 .- O]
we consider a later example, essentially it transfers the last symbol of the first
word to the front of the second word. The standard functions reverse, head

and tail are assumed to be defined already as is concatenation, *.)

For a right move the resultant tape is of the form

/
[0'10'2 ---O’kﬂ'k+1,0’k+2~--0’n]

The Turing machine model. The essential features of a Turing machine Or

consist of an alphabet d, a finite set of states Q and a finite set of n-tuples [0109. .. Obt1, 0842 .. 0n)
(n =40t 5) which describe the behaviour of the machine under various
circumstances. The set of 5-tuples that we will use here will be elements of
the form

In some cases the tuple may involve the replacing of a symbol on the tape
by a blank.

Tn the context of an X-machine we first define the set X as

(Q)QIa 9>011d)
where ¢,q1 € @; 6,01 € TU " where * denotes a blank; and either d = L or ' X=2"xL*

4 = R. The interpretation of such a tuple is that if the macl}ine is in state ¢ The set of states is Q and the initial and terminal states as in the Turing
and the current symbol being scanned is 6 then the next state is q1, the symbol. jyachine case. For each tuple of the form

g, is printed on the tape instead of ¢ and the read-write head is moved ‘left’ if

(g,0,¢',0',L)
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we insert an arrow from ¢ to ¢’ labelled by the relation being the empty string, and

R;l X La/

on X. For each tuple of the form

G X = where 8(a,b) = a.

Iﬂl it is necessary to only carry out computations starting from a given initial
1o '~state we will define T to be the singleton set containing this state,

(@040, F)  The X-machine computes exactly the same sequential function as does the
iginal finite state machine.

In the previous section we gave the general definition of an X-machine and
ustrated this with some examples to show that the concept is fully general.
this section we will briefly review some of the theory of X-machines, al-
ough at this time this theory is not as well deveioped as it might be. The
Anition of the behaviour of an X-machine can be made in terms of the

action or relation that 1t computes or in terms of the language it recognizes.
Let M =(X,®,Q,F,Y, 2, 8,1,T) be any X-machine. If

we insert an arrow from ¢ to ¢’ labelled by the relation

o= (R;'x1)o (R x1)oleft

ete. The definition of the input and output relations for the X'-machine a
given next.

a, 3.5 — T x TF

(a)a = (*,a)

(a,0)f=a
This interpretation is of a Turing machine that behaves as a function on &
If the machine halts during a computation this means that there is no arro

leaving the current state which has, as a label, an applicable relation. The
result is then obtained by use of the decoding relation.

é1 do dn
Ciqo — g2~ gy o >

presents a sucessful path in the state space of M, so that o € Jand g, € T,
_then the relation

lef =dr10¢20...00p: X — X

il be called the relaiion defined by that labelled path. The behaviour of M
then

Finite state machines. The classical model of a finite state machine can
be represented as an X-machine in the following way. ;

Let Q be a finite state set, & a finite input set and Q a finite output set;
then a finite state machine is a quintuple M| = U le|: X — X

A=(QL,QFG) fwhere the union is taken over all the successful paths in the state space.

where F1Q x T 4 Q and G:Q x £ > Q are partial functions defining the' The relation compuled by the machine is then defined as
next state and output functions. _ Y =7
The X-machine is defined as follows, The set X = Q* x T*, the set of fu=caolMlof ¥V —

states is Q and the sets of final and initial states are also equal to Q. The set  For the recognition of languages we define the output set to be * and the
of relations @ are defined as follows. If ¢,¢' € @, ¢ € I, § € Q are such thaloutput function f: X — 7 yields a subset

F(q,0) = ¢ and G(g,0) = 6 then we insert an arrow from state ¢ to state ¢
labelled by the relation . “fu
¢=RoxLs [y.
The input and output codes are given by The article [1] discusses some of the applications of this material. We can

W T X where a(a) = (*, ) ; evelop a methodology for the description of systems by a combination of the
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data type methods of the first sections with the machine based methods of Crossed M odules

he latter ones. In situalions when archilectural features of the syslem are
important, these can be incorporated into the X-machine by defining the set

X suitably, perhaps including models of registers etc. Graham Ellis
References Crossed modules were invented almost 40 years ago by J.H.C.Whitehead
[1] M. Holcombe, X-machines as a basis for dynamic system specificatio his work on c'ombmatorlal homotopy the(?ry [VV] They have since found
Software Engineering Journal (in press). aportant roles in many areas of mathematics (including homotopy theory,
mology and cohomology of groups, algebraic K-theory, cyclic homology,
[2] M. Tolcombe, Formal methods in the specification of the human-machineombinatorial group theory, and differential geometry). Possibly crossed mod-
interface, Int. CIS Journal 1(1) (1987), 24-34. es should now be considered one of the fundamental algebraic structures. In
{ g
, , , . . , is article we give an account of some of the main occurrences and uses of
(3] M Hoic,(?m!?e: Goal-directed (iask"anai’ys‘iﬁ and formal interface specifi ossed modules and we describe some recent developments in their theory.
tions, Int. CIS Journal 1(4) (1987), 14-22. Before presenting the definition of a crossed module, we shall consider
[4] R. Faginand J.Y. Halpern, Belief, awareness and limited reasoning, A several motivating examples. Throughout G denotes an arbitrary group.

Department of Computer Science
University of Sheflield

e aeat 0T . : .
Intel. 34 (1988), 39-76. ‘Example 1 Let N be a normal subgroup of G. The inclusion homomorphism
B. Suffrin, Formal specificaiion of a display oriented fext editor, SciencelV — G together with the action 9n = gng™" of G on N is a crossed module.

f Comp. Prog. 1 (1932), 157-202. o
of Gomp. Prog. 1{ : xample 2 If M is a ZG-module then the trivial homomorphism M — G

1. Hayes, Specification case studies, Prentice-Hall, 1686. hich maps everything to the identity is a crossed module.

C.B. Jones, Systematic software development using VDM, Prentice-Tlal

‘Example 3 Let §: H — G be a surjective group homomorphism whose kernel
1086. ]

lies in the centre of H. There is an action 9h = §hi~! of G on H where §

S a1 . . .

S. Eilenberg, Aulomata, languages and machines, Academic Press, 1974 en.()tes. any element in 97!(g). The homomorphism & together with this
ction is a crossed module.

Thrle 8 Tahr. | al ebraic ficaly vol,
gA%gg%;;;i;ég}:lgérg;g;fa;ggg%ms of Algebraic specification, vol xample 4 Suppose that G is the group Aut(K) of automorphisms of some
roup K. Then the homomorphism K — G which sends an element z € K to
D.A. Deutsch, The guantum compuler and lhe Church-Turing thesisthe inner automorphism K — K, k ckz~! is a crossed module.

Proc. Royal. Soc. A 400 (1985), 97-117.

Each of these examples consists of a group homomorphism with an action
f the target group on the source group. Before stating the precise algebraic
roperties needed by such a homomorphism for it to be a crossed module, let
s consider some more substantial examples.

xample 5 Let X be a topological space in which a point zo has been chosen.
Recall that the fundamental group m1(X,zo) consists of homotopy classes of

29
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continuous maps f : [0,1] — X with f(0) = f(1) = zo. (Two such maps are,'im(y,mo) on m(X,Y, zo) which makes the boundary homomorphism into a
homotopic if one can be continuously deformed into the other in such a Wa¥§crossed module. To understand this action note that there is a continuous
that the image of 0 and 1 remains 2o throughout the deformation.) We thinkﬁmap

of these maps as paths in X beginning and ending at zo; the appropriate

picture is - :

X T

Zo f o

Composition of paths yields a (not necessarily abelian) group structure
T (Xv 130) :

Now if ¥ is a subspace of X containing the point z¢ then we can consid
the second relative homotopy group m2(X,Y, 2o). This group consists of &
motopy classes of continuous maps g : [0,1] x [0,1] — X from the unit squ
into X which map three edges of the square onto the point zo and the four
edge into Y. The appropriate picture of such a map g is

from the unit square onto four faces of the unit cube which sends s to s, ¢
to ¢ and so on. Now given a path f:[0,1] — Y representing an element of
of 71 (Y, z0), and a square g : [0,1] x [0,1] — X representing an element of
m2(X,Y, z0), we can construct a continuous map f g from the four faces of the
unit cube to the space X by using g to map the face uvyz, and mapping each
rizontal line in the remaining three faces by f. On composing /g with p we
t a map which represents an element of 74(X,Y, o). It can be checked that

e assignment (f, g) — f g o p induces an action of (Y, zo) on ma(X,Y, z0).

'&7

Zo X To

xample 6 Let M and N be normal subgroups of G. A non-abelian tensor
oduct M ® N has been introduced by R. Brown and J.-L. Loday [B-L}]; it
the group generated by the symbols m® n (m € M and n € N) subject to
e relations

Zo

Juxtaposition of squares

mm'@n = (mm'm~'@mn'm ™) (men)

Y Y Y m@nn = (m@n)(nmn~!@nn'n"?)

zo] x |o0 4 %] x |To =20 Eaco o rall m,m’ € M and n,n’ € N. In general M ® N is a non-abelian group.
' however conjugation in G by an element of M (resp. N) leaves all the
ements of N (resp. M) fixed then M ® N is precisely the usual abelian tensor
roduct of abelianised groups M/M'® N/N’. For any normal subgroups M
nd N there is a homomorphism 8 : M @ N — G defined on generators by
O(m®n) =mnm~'n"! . There is also an action of G on M @ N defined on
enerators by 9(m @ n) = (¢mg~! ® gng™?). This homomorphism and action
a crossed module.

) Zo

yields a (not necessarily abelian) group structure on T (XN, Y, 20). ’
By restricting to the fourth edge of the unit square we obtain a boundar
homomorphism 8 @ mo(X,Y, z0) — m (Y, z0). Moreover there is an action ¢
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Example 7 Let A be an associative ring with identity, let GL(A) be the  Bearing Example 2 in mind, it is readily seen that free ZG-modules are
general lincar group, and let E(A) be the subgroup of GL(A) generated by .o instance of free crossed modules.

the elementary matrices e;;(A) with ¢ # j and X € A (recall that e;;(A) has I's  Another instance of free crossed modules arises from Example 5. For sup-
on the diagonal, ) in the (7,7) position, and 0 elsewhere). The group E(A) is ,ose that the space X can be constructed by choosing a point z¢ in X, then
a normal subgroup of GL(A), and the non-abelian tensor square E(A)® E(A) ,ttaching copies of the unit interval [0,1] to 2o by gluing the end potmts 0
is known as the Steinberg group and denoted St(A). (This definition of the ,,4 1 of each copy to zq, and then finally attaching copies of the unit square
Steinberg group is equivalent to the usual definition [B-L].) As a special case 1 1] x [0,1] by gluing the edges of each copy along the various copies of the
of Example 6 we have a crossed module 0 : St(A) — GL(A). Tt can be shown 4it interval in some fashion. In other words, suppose that X is a reduced 2-
that §(St(A)) = E(A). The groups K1(A) = Coker(9) and Ka(A) = Ker(0 dimensional CW-space. The copies of the unit interval in X are called I-cells
are known as the first and second algebraic K-theory groups of A. and the copies of the unit square are called 2-cells. Let Y be the subspace of X,
onsisting of the 1-cells; in the jargon, Y is the I-skeleton of X. It was shown
by J.H.C.Whitehead [W] that in this situation the boundary homomorphism
9 m(X,Y, 20) — (Y, zo) is a free crossed module. It is free on the function

The essential features of these examples are captured in the following def:
inition.
Definition A crossed module consists of a group homomorphism 0 : C — G
together with an action of G on C' such that

(i) 0(%) = g(de)g™*,
(i) deet = eelet,
forall e,c’ € Cand g € G.

H6:C — Gand d : ¢ — G are crossed modules, then we say tha
a pair of homomorphisms ¢ : C = C, ¢ : G — Gisa morphism of crosse

modules if ¥(9(¢c)) = 8(y(c)) and (%) = b(9)p(c) for all ¢ € C and g € G.

{2-cells of X} — w1 (Y, z0o)

which sends each 2-cell to the element of 71 (Y, 2o) represented by the boundary
of the 2-cell. .

To illustrate the above, suppose that X is the torus. Now the torus can
be constructed by gluing together two 1-cells and one 2-cell. In this case we
take Y to be the union of the two circles. Thus 7(Y) = F(a,b) is the free
group on two elements a, b. The crossed module 0 : m3(X,Y, o) — m1 (Y, 20)
is free on the function {w} — F(a,b), w — aba~1b"1.

Whitehead showed that the homotopy theoretic information contained in
2- dimensional reduced CW-spaces is completely captured in the algebra of free
crossed modules. More precisely he showed that if X and X’ are 2-dimensional
reduced CW-spaces with ¥ and Y’ their respective 1- skeleta, then the set
of homotopy classes of continuous maps from X to X' is bijective with the
set of (appropriately defined) homotopy classes of crossed module morphisms
from m3(X,Y,z0) — m1(Y,20) to m(X', Y, 20) — m(Y’',2z0). Using this
bijection certain homotopy theoretic problems (such as the enumeration of
the homotopy classes of maps from a compact connected closed surface to the
projective plane) can be solved purely algebraically (cf. [E]). '

The idea of studying 2-dimensional CW-spaces by means of their associated
free crossed modules has applications to combinatorial group theory. Any
presentation < V' : R > of the group G gives rise to a reduced CW-space
with one 1-cell for each generator v € V' and one 2-cell for each relator r € R.

The associated crossed module § : C' — F(V) is free on the inclusion function

An easy consequence of this definition is that for any crossed module @
C' — G the group 8(C) is a normal subgroup of G; the quotient G/o(C
is denoted by m(8). Also it is easily checked that the action of G on
induces an action of 71 (8) on Ker(d), and that Ker(9) is abelian; we deno
the m1(9)-module Ker(8) by m2(9). :

In all algebraic theories the notion of a free object is important. For
crossed module 8 : €' — G the notion of “freeness” is made precise by sayin
that & is free on a function 7 : W — G from some set W into G if:

(i) W is a subset of C;
(i) 7 is the restriction of 9 ;

(iii) for any crossed module 0" : ¢’ — G, ifv: W — (" is a function satisfyir
9'v = 8, then v induces a unique morphism ¢ : ¢’ — C'y:G—G
crossed modules with 1 the identity homomorphism.
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R — F(V) where F'(V) is the free group on V. Clearly m;(8) is isomorphic to
G. The G-module 7,(9) is known as the module of identities, and is a measur
of the “non-trivial identities among the relations.” A good introduction to thi
area can be found in [B-Tu].

A rather more algebraic use of free crossed modules is to do with th
homology of groups. For suppose that § : C' — G is a free crossed module, an
let H denote the image of § in G. It can be shown [E-P] that the commutato
subgroup [C, C] of C depends only on H. (In fact [C, C] is isomorphic to th
quotient of the non-abelian tensor product H @ H by the subgroup generate
by the elements h ® h (h € H).) Moreover the intersection [C, C] N Ker(d) i
isomorphic to Ha(H, Z), the second integral homology (or Schur multiplier) o
H.

Crossed modules also have a role in the cohomology of groups. It has lon
been known that the second cohomology group H?(G, A) of G with coefficient
in a G-module A is bijective with the set of isomorphism classes of extension
of G by A. (Recall that a pair of group homomorphisms

theorem states that if a space X is the union of pathwise connected open
subspaces U and V such that the intersection U NV is pathwise connected
and contains a point 2 , then the fundamental group 71(X, 20) is isomorphic
to the amalgamated sum

m1(U, %) m1(V,20) ;

E3

T (UnV,z0)
in other words the fundamental group construction preserves certain amalga-
mated sums. It has been shown by Brown and Higgins [B-Hi] that the crossed
module construction on pairs of spaces given in Example 5 also preserves cer-
tain amalgamated sums. This new “2-dimensional Van Kampen theorem” is
a useful tool in algebraic topology, and has led to several new results. Perhaps
more importantly it has led to a successful search for an algebraic structure
which will model n-dimensional homotopy theoretic phenomena, and which
will satisfy some sort of Van Kampen theorem.

It has long been known that a crossed module 8 : C' — G is equivalent to a
set ) which possesses both a group structure and the structure of a category,
he group multiplication being compatible with the category composition o in
he sense that (zoy)(2'oy') = zz’oyy’ for all z,2’, y,y’ € Q such that the left
hand side of the equation is defined. As a group, Q is the semi-direct product
C x G. The category composition on @ is defined for those pairs of elements
¢,g) and (¢, g') satisfying ¢’ = 8(c)g, and is given by (¢, ¢') o (¢, g) = (de,9).
n [L] J.-L. Loday used this description of a crossed module to show that
rossed modules are equivalent “up to homotopy” to connected CW-spaces
X whose homotopy groups 7;(X,z,) are trivial for ¢ > 2. He went further
and showed that groups possessing n compatible category structures, which
we now call cat*-groups, are equivalent “up to homotopy” to connected CW-
paces X with m;(X,20) = 0 for i > n + 1. His method was to assign to
ach space X a space W containing n subspaces Uy, ..., U, C W, and then
o construct from the (n + 1)-tuple (W, Uy,...,U,) a cat"-group.

It has since been shown [B-L] that this construction of a cat”-group from
n (n + 1)-tuple of spaces satisfies a Van Kampen type theorem (that is, it
reserves certain amalgamated sums). The technicalities involved in using this
-dimensional Van Kampen theorem have lead to some interesting algebraic
roblems, such as the computation of amalgamated products of cat”™-groups.
n [GW-L] it was shown that algebraic problems about cat?-groups are often
etter reformulated using a non-trivial equivalence between cat?-groups and
lgebraic structures known as crossed squares. (Intuitively a crossed square

AL B2 0

is an eztension of G by A if p is surjective, i is injective, Im(7) = Ker(p), an
the module action of ¢ € G on a € A corresponds to conjugating by som
§ € p~(g).) In the mid 1970 various people (see [ML] for an incomplete lis
of references) discovered an analogous interpretation of the third cohomolog
group HS(G,A) in terms of crossed extensions of G by A: a sequence o
homomorphisms '

AL oL N2

is a crossed extension of G by A if p is surjective, 7 is injective, Im(7) = Ker(9)
Im(9) = Ker(p), and 9 is a crossed module such that the resulting action o
N/0(C) on A corresponds to the module action of G on A. This interpretatio
has been used by Huebschmann [Hu] to obtain some new exact sequences in the
cohomology of groups. In his recent book K.MacKenzie [MK] notes that the
interpretation of H3(G, A) carries over to the case of Lie groups and smooth
morphisms. This leads him (via a more general result about Lie groupoids
to a reformulation of the Cech classification of principal bundles which work:
entirely in terms of abelian Cech cohomology. ‘

One of the most fruitful areas in the theory of crossed modules stems from
work by R. Brown and P.J. Higgins [B-Hi] on generalising to higher dimensions
Van Kampen’s famous theorem about the fundamental group of a space. Thi
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is a crossed module in the category of crossed modules. Thus it consists
of a morphism of crossed modules together with an “action” of the target
crossed module on the source crossed module, and certain algebraic condition
are satisfied.) More generally in [E-S] the notion of a crossed n-cube wa
introduced and shown to be equivalent to a cat™group. Since the publicatio
of [L] in 1982 over 55 articles have been published on the subject of catn
groups; a fairly comprehensive bibliography can be found in [B].

Finally we should mention that by imitating in other algebraic setting
the equivalence between cat!-groups and crossed modules, one arrives at th
notion of a crossed module in these settings. Crossed modules of Lie algebras
turn out to be useful in studying the cyclic homology of an associative algebr
[K-L]. Crossed modules of commutative rings are useful in studying the Koszu
Complex [P]. And many of the (topologically motivated) results on crosse
modules of groups, such as the description of group cohomology, carry over t
these other settings. '

(E-S ] G.J. Ellis and R.J. Steiner, Higher dimensional crossed moduies

and the homotopy groups of (n+1)-ads, J. Pure Applied Algebra 46
(1987), 117-136. ~ '

[GW-L ] D. Guin-Walery and J.-L. Loday, Obstructions ‘a Uezcision ¢n
K-théorie algébrique, Evanston Conf. on Algebraic K-Theory 1980,
Lecture Notes in Math. 854 (Springer, Berlin, 1981), 179-216.

(Hu ] J. Huebschmann, Group extensions, crossed pairs and an eight
term ezact sequence, J. Reine und Angewandte Math. 321 (1981),

150-172.

[K-L ] C. Kassel and J -L. Loday, Eztensions central d’alg ‘ebres de Lie,
Annales de L’institut Fourier, 32 (1982), 119-142.

[L ] J-L. Loday, Spaces with finitely many homotopy groups, J. Pure
Applied Algebra 24 (1982), 179~202.
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due to John Machin (1680-1752). Machin substituted the Gregory formula
for arctan into his formula to get 100 decimal places of 7 in 1706.

In 1844 Johann Dase (1824-1861) computed = correctly to 200 decimal
places using the formula

T 1 1 1
1= arctan (-2-> + arctan (g) <+ arctan (g)

and in 1853 William Shanks published 607 places, although the digits after the
597th place were incorrect. This error was not discovered until 92 years later
when D.F. Ferguson produced 530 digits in one of the final hand computations.
Two years later Ferguson used a desk calculator to get 808 digits.

The advent of digital computers saw a renewal of efforts to calculate even
more- digits of #. The first such computation was made in 1949 on ENIAC
(Electronic Numerical Integrator and Computer) and 2037 digits were pro-
duced in 70 hours by John Von Neumann and his colleagues. In 1958 F.
Genuys computed 10,000 digits on an IBM 704. In 1961 D. Shanks and J.
W. Wrench Jr. calculated 100,000 digits in less than nine hours on an IBM
7090 [7]. The million-digit mark was set by J. Gilloud and M. Bouyer in 1973
in a feat that took under a day of computation on a CDC 7600. All these
computations used series for arctan and identities such as Machin’s.

Despite the increased speed of the computers, it was realised that there
were limits to the number of digits which could be produced. An examination
of the rate of convergence of the arctangent series shows that the arctangent
method uses O(n) full-precision operations to compute n decimals of 7. By an
operation we mean one of +, X, <+, , /. For example, the Shanks and Wrench
computation of 100,000 decimals used 105,000 full-precision operations. Thus
there are two basic time costs involved in doubling the number of digits;
firstly, the number of operations increases by a factor of two, and secondly,
the time for each full-precision operation is about twice as long. So doubling
the number of digits lengthens computing time by a factor of four.

In 1975 Brent and Salamin [4,6], independently discovered an algorithm
that dramatically lowered the time needed to compute large numbers of dig-
its of m. The Brent-Salamin algorothm requires only O(logn) full-precision
operations for n digits of 7, and the ideas used go back to the work of Gauss
and Legendre in the early part of the 19th century. The formula for the al-
gorithm exploits the speed of convergence of the defining sequences for the
arithmetic-geometric mean of two numbers.

Recent Computations of Pi

Donal Hurley

1 Early History
We first give 2 brief sketch of the history of computing 7. Details can be founc
" [IC];)mputations of the number 7 go back to the time of Archimedes (287
912 BC). He inscribed and circumscribed regular polygons on a circle witl
Jiameter 1. He began with hexagons and doubled the number of sides to ge
pi)l‘ygons of 96 sides which yielded the estimate

10 1
37—1<7T<3-7-

By continuing to double the number qf sides, one is n principle able. to ge
ag many decimal places of 7 as one desires. However, the convergence is .slow
since the error decre§5e§ by about a fac}tor of four per 1t<?rat1011. ‘Untll th
Jdiscovery of calculus in the 17th century, efforts at calculating = relied on th

method of Archimedes. | |
" wWith the use of caleulus, series were discovered for m. The formula o

Leib]‘liz T ) 1 1 1+
1= T3tyT

has a very slow convergence rate. Various other series and formulae were used
1 . .
¢ computation of 7, some of the more famous being

in th
3 g5 g7

arctan:n::c—%—+—5—-———7—+...

james Gregory (1638-1675), and

™ _ darctan | - ctan [ =
Z»— arctan ’5‘ — arcta 239

due to
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2 The Brent-Salamin Algorithm

If @ and b are two positive real numbers, with a > b, then we have the famili
arithmetic-geometric mean inequality

Thus, from two positive numbers a and b we get a second pair, (a+b)/2 ar
Vab. 1f we iterate this process we obtain sequences {an} and {b,} defined

ot bn bn+l = \/m:

n41 = 2 3
The sequence {a,} is strictly decreasing and bounded below, while the s
quence {b,} is strictly increasing and bounded above. A simple computatio
beginning with a2, — b2, shows that

b0:b)

o = a,

1
ant1 — bn-l—l < §(an - bn)

and so one concludes that the sequences have a common limit, which is denote
by AG(a,d). It can also be shown that

s < an=bo)?
rtl T Ikl < GAGla,b)

so that a, — b, approaches 0 quadratically.
Gauss (1777-1855) studied these limits in his work on elliptic integrals.
complete elliptic integral of the first kind is given by

"/ do
0 va2cos2f+b2sin’é
The change of variable ¢ = atan § yields

K(a,b) =

K(a,b) = /00 dt
o V(2 +a?) (2 41?) ;
A further substitution helps to make the connection between this integral an
AG(a,b). If we put w = (t — $2/1)/2 in the last integral, we get
. du
af) (u* + 07)

K(a,b) =

/ooo~ V(ut +

1\"((11, bl)

Recent Computations of Pi

Repeating this, we have
K(a,b) = K(ay,b1) = ... = K(ap,by) =...

By continuity of the integral K in its arguments, we have

7 s < = —_ir_-

K (a, b) =K (AG(a,b),AG(a:b)) - 2AG(a,b)
/2

AG(ajb) / dé =

0 va2cos? +b2sin? §

This was used to compute elliptic integrals by Gauss.
A second relation of Gauss relates the arithmetic-geometric mean AG(a,b)
to complete elliptic integrals of the second kind. These integrals are

5 ()

7/2 :
E(a,b) = / Va2 cos? 0 + b2 sin?§ df
0
Since the elliptic integrals satisfy the homogeneity relations
K(ha, \b) = -i-K(a,b), E(Aa, M) = \E(a, b)

the variables can be normalised to @ = 1. There is a relation between these
due to Legendre (1752-1833). For0 < z < 1and 0 < y < 1, where 2?4y? =1,

2

For a proof of this, see (2] and [3]. Using the relation (2), Gauss then proved
the following:

K(1,2)E(1,y) + K(1,y)E(1,2) - K(1,2)K (L, y) = .’éi

E(a,b) = [a® = > 2" (a2 = 82)| K(a,b)

n=0

3)

~ The details of this are in [3].

Following the presentation in [5], we now derive a formula for . If in (2,
v =1/V2, then with K = K(1,1/v/2) and E = E(1,1/+/3), we have

OKE - K? = g (4)
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T the Gauss relations (1) and (3),ifa=1and b = 1/V2, then If we now define

_ 4a;",+1
1— 3 0n; 20 (af — b%)

K= and E=(1-9S)K (5) Tn

r
2AG(1,1/v/2)
then from error analysis, it can be shown that 7, converges to 7 quadratically
[276]. This means, roughly, that the number of correct digits doubles from one
value of 7, to the next.

The Brent-Salamin algorithm was implemented in Japan in 1983 by Y.
Kanada, Y. Tamura, S. Yoshino and Y. Ushiro to compute 16,000,000 digits
in less than 30 hours.

In recent years the algorithm has been modified by the brothers J onathan
and Peter Borwein (natives of St. Andrews, Scotland, and both at Dalhousie
University, Novia Scotia) to obtain iterative algorithms for computing 7. De-
tails of these are in [2] and [3]. These algorithms are now being implemented to
compute 7. In January 1986, D.H. Bailey of the NASA Ames Research Cen-
ter produced 29,360,000 decimal places using one of the Borwein algorithms
iterated 12 times on a Cray-2 supercomputer. A year later, Y. Kanada and
his colleagues carried out one more iteration to obtain 134,217,000 places on
a NEC SX-2 supercomputer. Earlier this year Kanada computed 201,326,000
digits on a new supercomputer manufactured by Hitachi, requiring only six
-~ hours of computing time.

where

IeS)
§=S 2" (a2 —12)
n=0

From (4) and (5)

K21 -8)-K*= %

that is,
72

1AGQ 1/VD)

b
2(l--ZS)—§

giving - ,
3 2 (AG(1,1/v2))
"= 1-25

But

o0
1-25 = 1= 2"(a;—-b3)

n=0
= 1-(1- %) - ign (a2 —2) 3 Utility
n=1

One may ask what is the point of all of this, since about 40 decimal places is
1l one requires for any application imaginable. One use is that the calculation
f 7 has become a benchmark in measuring the sophistication and reliability
f the computers that carry it out. In addition, pursuit of more accurate ways
1as led researchers into intriguing and unexpected areas of number theory.
Finally, a statistical analysis of the first 10,000,000 by Y. Kanada shows that
he digits are distributed in a way that is expected from the conjecture that
7 is normal. This means that the frequency of appearance of each string s of
 digits of length m is asymptotically equal to 107™™ i.e.,

sinceag=a=1land bp=b= 1/v/2. Thus

1 [eo]
1-25:5—22"@3-65)
n=1

Substituting this into (6) we get

4 (AG(L,1/VE)) :
T= ) 3 .
1=y on, 22 (af - b7) lim N(s,n) _ 1o-m

n—00 n

This was discovered by Salamin in 1973 [6] and independently by Brent at the
same time [4].
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where N(s,n) is the number of occurrences of s in the first n digits of .
Because of this, the digits of 7 are sometimes used in algorithms to generate
sequences of random numbers.
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Topological Equivalents of
the Axiom of Choice

S.D. McCartan

Recall that, within the terms of Von Neumann-Bernays-Gddel set theory,
one form of the axiom of choice (abbreviated AC) is stated as follows:

If {X; : i € I} is a non-empty disjoint family of non-empty sets,
then there exists a set C such that CN X; is a singleton for each
t€ 1.

The axiom of choice has become virtually indispensable in mathematics since
a large number of important results have been obtained from it in almost
all branches of the subject without leading to a contradiction. However, al-
though this axiom is consistent with, yet independent of, the other axioms of
set theory, its status has long been a source of controversy and not all mathe-
maticians are willing to accept it. Perhaps the principal appeal of the axiom
of choice resides in the extensive list of its logical equivalents which exist in
apparently disparate areas of mathematics. A fairly comprehensive dossier of

~ these was compiled by the Rubins [4] in 1963.

Most topologists side with the majority of mathematicians, assume the
axiom of choice, and do not hesitate to use it whenever necessary. Indeed
some would argue that the following proposition (usually known as Tychonoff’s
theorem) constitutes the single most important result in general topology:

The product of a family of non-empty compact topological spaces
is compact.

~ The point here is that Tychonoff’s theorem is logically equivalent to the axiom

of choice (see [3]). In this note some other such topological equivalents are

. introduced.

Classically a topological space (X,7) is said to be a Tp-space (T1-space) if

and only if for every pair of distinct pointsin X there exists a 7-neighbourhood

of one which does not contain the other (exist r-neighbourhoods of each which
do not contain the other). Properties like Ty and 73, when possessed by a
topological space, essentially express a degree of separation enjoyed by the

45
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points in the s‘pace A non-empty subset Y of space (X, 7) is said to be dense (iii) implies (). Replace the word “dense” by “codense” throughout the
(codense ) if and only if there exists no non-empty 7-open (r-closed) subset H g  argument above.

of X such that Y N H is empty. Let us call Y thick if and only if there exists 5
no non-empty 7-open and r-closed subset H of X such that ¥ N H is empty.  However, DT} and CT; are false.
Evidently if Y is either dense or codense then it is thick. : é

Given some topological invariant property P, consider the following state- } Example Let X be the set of real numbers and consider the nested topology
ments: r={GCX:G=/(q, oo) a € X}U {0, X} (where {a,00) denotes the interval

(M P) every topological space (X, 7) has a subspace (Y, 7|Y) (where 7]V is {-’0 €X:a< x}) It is immediate that any subspace of (X,7) is nested,
the relativization of 7 to Y), with property P, which is maximal (with respect = that any 71 subspace is therefore a singleton and bounded, whereas any dense
to inclusion); (codense) subspace is unbounded above (below). Observe that any amgietgn

(DP) every topological space (X, 7) has a subspace (¥, 7|Y'), with property subspace is a maximal Tl subspace which is neither dense nor codense.
P, which is dense (in (X, 7));

(C'P) every topological space (X, 7) has a subspace (Y, 7|Y"), with property
P, which is codense (in (X, 7));

(TP) every topological space (X, 7) has a subspace (Y, 7|Y), with property
P, which is thick (in (X, 7)).

It is clear that either of DP or C'P implies TP. Schnare (5] showed that .

In view of the equivalences obtained by Schnare, if T, is any hereditary
invariant property lying in logical strength between Ty and T} (including those
separation axioms discussed in [1] and [2]), it is tempting to conjecture that
| MT, is equivalent to AC. So far this remains an open question. Although
. DT, implies DT, and CT, implies CTy, so that, by Theorem 1, each implies

< e abov est (f i
MTy and MTy are each equivalent to AC, and, here, his results are used to ﬁgét%esti );11221 than ;osete{ll ::; tg;;ngﬂ d C(.:,Si ilekfig:n g::;m%ym?gg}; dai"fj
confirm that the same is true for DTy and CTo. l that a space is called a Tgs-space if and only if every singleton subset is either

Theorem 1 The following statements are equivalent: ~ open or closed), in the example, every Ts-subspace is at most a doubleton
(i) AC . - while, indeed, every doubleton subspace is a maximal Tgg-subspace which is
(i) DT, _ neither dense nor codense. That is, for instance, DTgs and CTgg are false.

(iil) CTh. On the other hand, we have:

Proof ‘(i) implies (ii). Let (X, 7) be any topological space so that, by hypoth- Theorem 2. The following statements are equivalent:
esis and [5], there exists a maximal T, subspace (Y, 7]Y). Then Y is dense in (i) AC

(X, 7), otherwise there exists a T-open subset [ (of X') which is disjoint from (”') TT,
'Y and contains a point z, so that, since {z} is 7|Z-open, the subspace (Z,7|2)

is Ty, thereby contradxctmgj the mammahty of Y (where Z =Y U {z}). | quf Since AC implies MTl’ .a,nd TTh unphes'TT? implies TTo, it only
(1) implies (ili). Replace the word “dense” by “codense” and the word | [omains t‘o ve.rlfy tha‘% MT; implies TTy and TTO implies AC.

“open” by “closed” throughout the argument above. 1 MTy lmpl‘ies TTY: Lfat (X, 7) be any topological space 50 tha,?, b%’ hypoth-

(i1) implies (i). Let {X; : 7 € I} be a disjoint family of non-empty sets, let* S, tﬁere exists &_l. maximal Ty subspace (Y, r|Y). Then Y is th_xck e (X’ T)’

= (X € T}, and consider the partition topology . otherwise there exists a 7-open and 7—clo§ed subse.t H (of X) which is disjoint

from Y and contains a point z, so that, since {z} is 7|Z-open and r|Z-closed,

r={GCX:GNX;#0implies X; C G}  the subspace (Z,7|Z) is Ty (where Z =Y U {z}), thereby contradlctmg the

= maximality of Y.
If (Y, 7|Y) is a dense Ty subspace of (X, 7), then, by its density, Y meets each =~ 77p implies AC: Repeat the argument of (ii) implies (i) in Theorem 1,
X; but, since Y is Tp, in exactly one point. - with the word “dense” replaced by “thick”.
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Remarks It is interesting to contrast and compare M P, DP, CP and TP
for a general invariant P. For example, if P is “connected”, M P is true
(since, as is well known, the maximal connected subspaces are the connected
components), DP is false (since, as is well known, the closure of a connected
subspace is connected), CP is false (since each connected subspace of a dis-
connected space, being contained in a component, is therefore disjomnt from
any other (closed) component) and TP is false (since each connected subspace
of a locally connected disconnected space, being contained in a component, is
therefore disjoint from any other (open and closed) component).
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HISTORY OF MATHEMATICS

The Culmination Of A Dublin
Mathematical Tradition

On The Maxwellian Struggle For A New

. Mathematical Physics And The Birth Of Relativity

N.D. McMillan

This paper is to celebrate the centenary of the Hertz Exporimatum Crucis
that proved the FitzGerald electromagnetic theory of radio transmission.

Fitzgerald And The Electromagnetic Description
of Light Propagation.

FitzGerald’s chosen field of study in Dublin University for his Fellowship exam-
inations in the period 1871-1877 was MacCullagh’s mathematical researches.
This study perhaps uniquely prepared him to comprehend the full significance
of James Clerk Maxwell’s development of an electromagnetic theory of light
in 1865, which had until 1879 remained largely ignored, except for a handful
of “electricians” from outside of the establishment of science and engineering.

FitzGerald and his uncle George Johnstone Stoney in Dublin, were the first
mathematicians from the established universities to see Maxwell’s work as the
departure point for a programme of mathematical researches that would pro-
vide a unifying theory for physics. If successful of course, such a unified theory
would have also established Cambridge and Dublin at the unchallenged head
of developments in British science. There was at the time a determined ide-
ological challenge to the scientific leadership based on the mathematicians in

This article is an abridged version of a longer, fully referenced article. Copxes of the
latter can be obtained from the author.
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the established universities by “the practical men of science”, and this threa
was particularly keenly felt by FitzGerald in Trinity’s Engineering School [1

The Dublin Cambridge alliance had been developing since 1827 and this link
was strengthened by Stoney’s work in the 1860s, before Maxwell moved to.

Cambridge, in applying his kinetic theory to optical, astronomical and ther
modynamic problems.

FitzGerald realised, perhaps in 1876, that MacCullagh’s mechanical equa
tions were the key to the problems of electrodynamics and worked on thos
also of Cauchy, Neumann and Green. It was the great treatise of Maxwe
which sparked FitzGerald’s first significant work. FitzGerald realised tha
MacCullagh’s mechanical equations could be transposed into the new electr
dynamic form to provide a full theoretical description of the reflection an
refraction of light at a boundary, leading as did MacCullagh’s equations ea
lier, to Fresnel’s law for both polarizations and to the MacCullagh’s equation
for the amplitude of the refracted and reflected rays on refraction.

FitzGerald in 1879 produced three important papers on “Electromagneti

Theory of the Reflection and Refraction of Light” published by the Scientific
Transactions of the Royal Dublin Society. These papers were significant in a

number of ways. FitzGerald here produced what were the first real applic
tions of the new Maxwellian theory. The papers were subsequently rewritte
for the Proceeding of both the Philosophical Transactions of the Royal Soc

ety and Part IT in the Philosophical Transactions of the Royal Society. This

work establish FitzGerald as an important mathematical physicist in Britair
Finally, it was Maxwell himself who refereed the papers.

It is worth noting that FitzGerald’s papers did not really require any gre
new development of mathematical method, as he explained himself: “Follov
ing a slightly different line from his (Maxwell) T obtained the same results
to Wave propagation, reflection and refraction as to those obtained by Ma
Cullagh” [2]. TFitzGerald had however been forced to pay careful attentio
to the physical interpretation of the mathematical equations. e had clearly

been helped in this respect by the heroic, but tragic, efforts of MacCullagh
to find a physical interpretation for his mechanical equations that required
a very unusual medium, the ether, through which the wave could propagate.

Unfortunately for MacCullagh, this ether, if mechanical in its operation, had
to be an elastic solid of a type physically unknown, in that it had a strain

energy dependent on the rotation of the volume element, rather than that ob-:

served in solids, in which the strain energy is dependent upon the deformation incredibly ambitious, since he sought to produce an analytical method for op-

of the volume element. MacCullagh had introduced into the mathematical d
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scription of light the curl, by in essence, solving the problem of the form of
the equations for light in a medium. For the new electrodynamic theory such
physical requirements could be explained without contradiction, and perhaps
it was this contradiction which led to MacCullagh’s suicide.

FitzGerald’s methods in this work were essentially mathematical and he
inclined in any case strongly to the view at this time that a description of
optical and electrical phenomena in terms of an elastic solid ether was incon-
sistent with physical requirements, since this would need to be soft enough
to allow the free motion of planets yet be “The means by which tramcars are
driven by shearing stresses” [3]. On the other hand the ether could not be “as

in as jelly "as it is the possession of properties analogous to rigidity that re-
quire explanation” [4]. Significantly, it was at this time when FitzGerald was
unfettered with any of the burden of model building that he made his greatest

athematical advances, which began with this work of subsuming MacCul-

gh into the body of Maxwellian theory, while he was in revolt against “the
thraldom of the material ether” [5]. He never was however able to completely
break with the mechanical notions.

he Maxwellian Programme in Dublin

For the Maxwellians to establish themselves at the leadership of world science,
first and foremost they required a consistent mathematical theory, which could
address any practical problems in electrodynamics or optics. They also sought
to extend their domain into the whole body of physics and chemistry, and in
articular in this respect, thermodynamics. It is essential to understand these
points, if the Dublin mathematicians concern with ether modelling is to be
fully appreciated. It is also necessary to see that Stoney and FitzGerald in the
80s inaugurated an entire programme of research and educational reform.

Stoney’s mathematical researches really prepared the ground for the devel-
opment of the Maxwellian programme in Dublin and he was a major influence
on his younger relative FitzGerald. Stoney’s early researches integrated into
the Dublin programme, once this took final shape after 1879. Stoney had
begun in 1861 a geometrical study of the examination of the conditions of
propagation of undulations of planewaves in media. This interest in produc-
g MacCullagh type geometrical procedures to generalize the treatment of
optics, continued through his long and active life, with particularly important
evelopments of these methods as late as 1897. Stoney’s objective here was
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tics by which i resolved any wave {ront into flat wavelets, and thereby to
do for optics what the calculus had done for geometry. In his last really ma-
jor paper in 1896, Stoney extended his methods by resolving the wavefronts
into spherical wavelets, to demonstrate the mechanism of image formation by
interference.

The mathematical techniques evolved by Stoney in his optical researches,
were subsequently applied to his major work on spectroscopy. His other major
interest of thermodynamics began by his application of Maxwell’s estimate of
mean free path of a molecule, to obtain an estimate of the number of molecules
present in a unit volume, and then in 1858 he demonstrated that inherent
in Boyle’s law was a model of a gas as an assembly of particles in constan
motion and that such a gas could not be a continuous homogeneous substance
A decade later Stoney demonstrated that the motion of the gas molecules was
related to the emitted radiation wavelengths using a comparative study of th
relative magnitudes of the mechanical and optical components of the kineti
model. Te then applied the kinetic theory to the interpretation of emission
from the sun and stars. and also to the atmosphere of planets and satellites

These researches aimed to integrate optical and thermodynamic principles,

the essential foundation for a unifying mechanistic ether theory.

Stoney and FitzGerald both saw the discovery of the Crooke’s force as.
a vital experimental test of theories linking radiation and kinetic theories.
Stoney developed a kinetic-radiation theory of Crooke’s radiometer m 1876
and two years later FitzGerald improved the mechanical theory of Crooke’s

Force. In these researches Stoney showed there was a distinction between
the translatory motion of the molecule, that determines its temperature, and
other internal motions within the molecule to “occasion the spectral lines”.

Stoney’s “molecular” model of 1868, was of course non-electromagnetic and
entirely mechanical, with the action resulting from mechanical vibrations of

molecules producing a series of waves in the ether. Stoney extended this model
in 1871 to propose an explanation for the harmonic sequences of spectral lines.
Stoney subsequently applied his theory to hydrogen molecules, to obtain good
theoretical match with Angstrom’s measurements.

Both Stoney and Fitzgerald carried out an impressive range of thermo-
dynamic researches, which are outside the scope of this discussion, except
to point out that they related in the most part to attempts to establish the
relation of kinetic principles to the spectroscopic and other optical and elec-
tromagnetic phenomena such as Fluorescence.

The reforming Maxwellians of course required to present a rationalized
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new view of science and there is considerable evidence that Stoney, and sub-
sequently FitzGerald with Trouton, spent considerable efforts in attempts to
introduce radical reforms in scientific terminology and concepts. Stoney was a

‘member of the BAAS 1862 Committee to consider the standard of resistance,

and this committee eventually sat for fifty years with Stoney being a member
for all but the last ten. Almost from the outset in 1863 Stoney took a lead with
adical proposals suggesting a qualitative vocabulary for dimensional analysis
flengthine, massine, timine, forcine, velocitine and so forth, and very signifi-
antly for charge, electrine. In 1873, when the BAAS committee recommended
complete new system of units, Stoney submitted a minority report. Stoney
roposed a totally radical unified electrostatic and electromagnetic system of
nits. This proposed system was based upon fundamental quantities in na-
ure. He consequently proposed for the unit of charge, the “atomic” charge
f the electron, which Stoney named and was the first to obtain a value for
his fundamental charge. He brilliantly derived the value of charge from Fara-
ay’s Law of electrolysis. Stoney’s system aimed to remove the necessity of
tablishing connecting co-efficients between quantities in a system of units.
Trouton and FitzGerald carried out studies on Ohm’s Law in Electrolysis
etween 1886 and 1888 for the BAAS and this work made the distinction
etween ionization of solutions, in which electrical seperation of charges occurs
pmpletely, and ordinary dissociation, in which it does not. It was in this
ork FitzGerald introduced the term fonization. FitzGerald’s notebooks are
ndeed quite full with his notes on ideas for systems of units and nomenclature.
His grasp of these questions led to FitzGerald’s suggestion one month after
J. Thomson’s discovery of the Cathode ray particles, or corpuscles as he
med these, that the cathode particle wasin fact a free electron. Furthermore
he proposed the very useful, but unused term electronization, for the process
molecular decomposition involved in the formation of cathode streams.
~ The use of the term electron, itself inexplicably had only been adopted by
he Maxwellians in 1894, following the growing collaboration of FitzGerald,
Lodge, Heaviside and Larmor, in which they employed rather indiscriminately

 the term “ion” in their correspondence. This situation changed from 19th July

94 when FitzGerald wrote to Larmor, “Johnstone Stoney was here just now
and he will send a copy of his paper on the double line and ¢, Stoney was
ather horrified at calling these ionic charges ‘ions’. He or somebody called
them ‘electrons’ and the ions is the atom and not the electric charge”.
~ The discovery and naming of the electron [6], was according to Joly [7] the
most important service Stoney rendered science. Stoney had another claim
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to fame, which is most appropriate for the man whose vision presaged th
modern ST system. Stoney introduced the term “oscillator frequencies” in hj
pioneering work on spectroscopy [8], which were the reciprocal wavelength an
became known in due course as wavenumbers.

FitzGerald’s interest in mechanical models no doubt can be originally
traced to Stoney’s passion for molecular and atomic theory. FitzGerald
certainly did his most important work from 1879 using only matl
paradigms. TFitzGerald’s soft quarto notebook contains work on ether mod-
elling and it appears such models assumed some importance in his tl '
from 1881. This notebook is undated until the 1887 Honours Lectures,
first notes in the volume concern calculations on the electromagnetic action of
charging spheres. This would date his first serious studies in ether modelling
about 1881, and demonstrate that in this book, these attempts continued in
a substantial way up until 1887(?), by which time he had converted to the

liquid vortex-sponge ether model, which had first been proposed by Kelvin in

1867.
From about 1884 FitzGerald’s
prefered model

of the ether, he knew that he was against a solid ether, the

Jelly ether, and the stagnant ether, which was wholely unable to accountf
had been impressed by J.J. Thomson’s

for electromagnetic phenomena. e
1883 study which had shown that the simple vortex theory predicted th

the enertia of atoms ought to increase, and their velocity increase, as the
temperature rises, a fact at variance with observations, FitzGerald was t
declare that “to suppose atoms to be simply ring vortices in a perfect liqui
can hardly be an adequate theory”. He was inclined towards a moving liqui
model , and in 1885 he published his well known “bands-and-wheels” mode
of the ether.
axes connected to their neighbours by rubber bands around their rims in hi
ether model, did impressively mimic Maxwell’s electromagnetic field. Ligh
propagation was demonstrated by an impulsive angular displacement given t

a wheel which caused the disturbance to move out from this centre as a wave o
tightened stretched rubber bands. The purpose of this model, was explaine

in an unpublished paper , but its main purpose was to show how Maxwell’
“electric displacement” could in fact be represented by a change of structure
(tightening bands)

despite his philosophical idealism was in physics a convinced materialist. From

mind was crystallizing with respect to his

FitzGerald’s rectangular array of spinning wheels on vertical .
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85

ortex-sponge model, which he believed was a “likeness” of the ether and not
imply an analogue like his model. For FitzGerald ether modelling was a search
for the ultimate questions of science for he declared, “with the innumerable
ossibilities of fluid motion it seems almost impossible but that an explanation
f the properties of the universe will be found in this conception” [9].

The ultimate development of the ether model produced by FitzGerald was

haps that given in his letter to Heaviside on the 23 August 1893: “If the
ther is ultimately an incompressible liquid, and T can’t conceive any simpler

othesis, there must be actions between different things (whirls, vortices,

The most important Dublin atomic model was the famous Stoney Atomic
Model, which he proposed in his classic paper An Analysis of the Spectrum
of Sodium in 1891. This was an energy model of the atom, in which the
accelerated motions of the electrons in the atom or molecule, was resolved by

ourier’s theorem and resulted in the splitting of the spectroscopic lines into
doublets and triplets. This was a Maxwellian electromagnetic atomic model.
The idea of the model that the electron from its own elliptical (apsidal) motion
would produce emissions with split states. These ideas are very close to the
modern concept of two “spin” states of the electron, while the idea of apsidal

development of Stoney’s ideas.
There were other aspects of the Maxwellian
erve a mention. FitzGerald in his central

was able to establish a dominant influence

programme in Dublin which

[11], which carried out very important observational, photographic and photo-
 metric astronomical measurements. FitzGerald also inspired and supervised

and thus to demonstrate that Maxwell’s theory was not
“unmechanical”. This point was of particular importance to FitzGerald, who

1885 FitzGerald became increasingly convinced of the truth and reality of the

ie production of two classic Maxwellian textbooks , by his former student
homas Preston On Light and On Head, Stoney inspired the first textbook
and a number of others such as Minchin in the Dublin

i
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The Dawn Of The Theory Of Relativity

In the years 1881 to his death in 1901, FitzGerald’s fertile mind was workin
almost incessantly on the conundrum of the ether, which of course as we no
know with the benifit of hindsight, was a struggle to establish a relativisti
basis for physics. The ideas which dominated his thinking were profoun
and most contradictory to common sense, and classical physms FitzGerald’
inner mental struggle disrupted his sleep and he was tormented by insomnia
He appeared to the contemporary scientific community as an electromagneti
crank, but he was a prophet of a new but only partially crystallized worl
view,

In the light of this situation, and the fact that FitzGerald started to teac
the contraction hypothesis in Dubhn University about 1881, it was quite sig:
nificant that he composed a verse for the BAAS Meeting that year on J.J
Thomson which ends on very personal note, “Feels that fools be but am will
ing to play the part”.

It was at these yearly meetings i particular that Fitzgerald found a forur
to sound his bizarre ideas. Larmor was to explain, “he was the life and sou
of the debate, he was always ready with some semi-paradoxical but wholl
suggestive idea” [11]. The most outlandish of these ideas was the contractio
hypothesis.

FitzGerald’s electromagnetic departures, which led to his great discover
had began with the reworking of the MacCullagh equations, that contained a
inversive geometrical analysis of space. This work was done using Hamiltonia
algebra that itself incorporated a vectorial view of space and time. Trinit
also produced during the second half of the nineteenth century, a numbe
of important geometers, but in particular George Salmon’s researches wer
of importance to the theories of FitzGerald. Salmon worked principally o
the theory of invariants and covariants of algebraic forms to the geometr
of curves and sufaces, and in this research collaborated with the “invarian
twins” Cayley and Sylvester in Cambridge.

Hamilton had produced a non-commutative algebraic description of spac
mvolving a time dimension. The formal break with Euclidean geometry was
however left to Riemann to achieve in 1854. In 1868 Pliicker published A Ne
Geomelry of Space, which took up Hamilton’s idea of space being defined b
a set of lines, “a cosmic haystack of infinitely thin, infinitely long straws”
Later Lie and Klein extended and unified these two mathematical develop
ments and showed that Euclidean space is related to four dimensional spac
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by transformational groups.
- FitzGerald was attempting to produce an ether theory which would unify
these geometric theories and electromagnetism. Following Stoney’s discovery
of the electron this modelling centred on the electron theory. With the dis-
covery by spectroscopists of intra-atomic processes, FitzGerald had to refine
\is conceptions as he explained most candidly to his collaborator Heaviside in
1889, “I admire from a distance those who contain themselves till they worked
to the bottom of their results but as I am not in the very least sensitive to
ving made mistakes I rush out with all sorts of crude notions in the hope
at they may set others thinking and lead to some advance” [14].
The epoch making breakthrough in thought had been made by FitzGer-
s introduction of the first relativistic principle, but he failed to identify this
the key to progress on the exposition of space-matter theories in physics.
his failure caused him to historically lose the credit for his great discovery
and this misfortune was compounded by some very harsh quirks of fate, as
1l be explained below.
FitzGerald’s involvement with the Dutchman Heinrich Antoun Lorentz
853-1928) arose from his first major paper The Electromagnetic Theory of
ilze Reflection and Refraction of Light. In the review of this paper by Maxwell
for the Philosophical Transactions the great man noted that the paper related
to the work of Lorentz. It was in 1882 that FitzGerald first published a paper
On Electromagnetic Effects due to the Motion of the Earth, in the Transac-
ions of the R.D.S., and showed that he had at this early date developed a
eoretical Maxwellian based notion of this important question, which had a
central bearing on the famous Michelson-Morley experiment (1887).
It seems that the later development of Relativity has distorted the percep-
n of the contemporary importance of this experiment, but FitzGerald cer-
ainly believed, as has been fully explained in the ether model discussion, that
‘gross matter” was held together by electrical forces and was to be explained
y ether theories. FitzGerald had discussed this hypothesis with Lodge in
1892 and his tentative claim to priority has recently been dramatically borne
out [15], and his priority established by the discovery of his lost publication
n the journal Science. The FitzGerald-Lorentz correspondence which is pre-
served in the Lorentz collection at the Algemeen Rijksarchief, The Hague,
reveals the events which unfolded in 1894. Lorentz wrote on November 10th,
94 to FitzGerald mentioning Lodge’s comments in Aberration problems of
zGerald’s hypothesis on the negative result of Mr. Michelson’s experiment.
rentz sent him a number of the proceedings of the Dutch Academy of Sci-
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ences (1892}, in which he considered the subject of aberration on the basis
of his development of the theory of the refraction of light and he asked, “you
would oblige me very much by telling me if you have published your hypoth-
esis. I have been unable to find it, and yet I should want to refer the reader
to it”. FitzGerald’s reply dated 14th November 1894, is centrally important
and will be quoted in full,

My dear sir,
I have been for years preaching and lecturing on the doctrine that
Michelson’s experiment proves, and is one of the only ways of prov-
ing, that the length of a body depends on how it is moving through
the ether. A couple of years after Michelson’s results were pub-
lished, as well as I recollect, T wrote a letter to *Science” the Amer-
ican paper that has recently become defunct, explaining my view,
but I do not know whether they ever published it, for T did not
see the journal for some time afterwards. I am pretty sure that
your publication is then prior to any of my printed publications
for I have looked up several places where I thought I might have
mentioned it but cannot find that I did. I certainly never wrote
any special article about it as I ought to have done for the in-
formation of others besides my students here. I am particularly
delighted to hear that you agree with me, for I have been rather
laughed at for my view over here. I could not even persuade my
own pupil Mr. Preston tointroduce this criticism into his book on
Light published in 1890 although I pressed upon him to do so and
it was only after reiterated positiveness that I induced Dr. Lodge
to mention it in his paper; but now that I hear you as an advocate
and authority I shall begin to jeer at others for holding any other
view. Thank you very much for your papers. I can make out their
general drift and wish [ were able to reciprocate by replying to you
in Dutch.
Yours most sincerely,
Geo. Fran. FitzGerald.

Lorentz generously gave FitzGerald credit for independently establishing the

hypothesis in his 1895 paper, and it was from this that Einstein developed
the terminology “Lorentz-FitzGerald contraction”, which was the only reason
“that the Irishman’s name became associated with this relativistic hypothesis.

The 1889 letter to Science, however, properly establishes FitzGerald’s priority - |
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as this sets forward clearly this hypothesis and provides a physical meaning
the Michelson-Morley experiment. Lorentz’s contribution to this contrac-
tion idea however is real and significant, because he set out to discover the
wditions that the Maxwellian laws of Electromagnetism should be invari-
t, that is, have the same form in a moving and stationary frame to use
he modern relativistic concept, and it was he therefore, and not FitzGerald,
who generalized Hamilton’s algebra of time and set Einstein on his path of

In 1881 J.J. Thomson began a new departure in theoretical electrodynam-
in his investigation which aimed to determine directly the effects produced
moving charged bodies, by means of Maxwell’s equations of the electric
ld combined with the appropriate conditions at the surface. The theory
obed the behaviour of a charged body as to whether it carried along with it
electric field. An important result of the paper was that the magnetic field
Jius produced, possessed a kinetic energy which carried along by an electron
volves an addition to its effective mass. In his paper on J.J. Thomson’s
experiment FitzGerald pointed out that the analysis offered did not give the
correct magnetic force and that Thomson had added a term to make a vec-
tor potential circuital and, “thus on closer examination, each portion of the
electric charge is found to act independently; and so far from being able to ex-

| clude the electric charges from view by merging them in interfacial conditions,

it turns out that their convection is the sole cause of phenomena of the electric

field. When considered for the point of view of the aether, the hypothesis is

that the total current is circuital, which lies at the very root of Maxwell’s

theory, involves and is equivalent to the magnetic influence of moving charges,
ich was verified experimentally before this time by Rowlands, though doubt

still occasionally arises on the part of unsuccessful experimenters” [16,17].
This statement is extremely important in understanding the relationship

| between FitzGerald’s work and that of Stoney. It is also the basis of Larmor’s
| claim that MacCullagh originated electronic theories. MacCullagh worked
back from the experimental description of “crystalline reflexion” by Brewster
_and Seebeck to discover his function of the Lagrangian type, but he was unable
to conceive of any kind of material elastic medium, as ordinarily understood,
~ whose properties were represented by his equations, because internal stress
| forces could not produce the unbalanced torque his treatment demanded, and
‘that a mechanical theory of this type can subsist only if there are polar
| forces (e.g. quasi-magnetic) capable of compensating the torque, or if there
is a kinetic reaction torque arising from a distribution of gyrostatic rotations
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forming a part of the constitution of the medium” [17].

FitzGerald did not for a long period do any further work on this question, - f
as he was occupied in other related studies of the generation and detection |
of electromagnetic radiation. In 1893 he produced a significant paper On the |
Period of Vibration of Disturbances of Electrification of the Earth. Then in |
1900 with the growing acceptance of his theories, he was inspired to write |

four papers on the topic and he suggested an experiment to test the nature of
the ether. This experiment, like the Michelson Morley experiment before it

yielded a null result. The experiment was shown eventually by Lorentz to be

equivalent to the earlier null result, but this was after FitzGerald’s death.

Summary

Stoney and FitzGerald were both leader of the Unionist faction of the Irish

scientific community whose power base in Dublin was the R.D.S. The great:
Protestant mathematical tradition in Dublin, which culminated in a glorious
fashion with their work, was eclipsed following the victory of Nationalism
early in our own century. Their influence continued least in part, in the work
of other Trish mathematicians working in the Royal College of Science, the
National University and the Queen’s Colleges, and more recently the Dublin
Institute for Advanced Studies.

FitzGerald was the theoretical father of modern radio and the initiator
and prophet for a new relativistic electromagnetic world view. Stoney was
the theoretical father of electron theories, and therefore of modern theoretical
chemistry. The Dublin mathematicians were consequently the most significant
axis of the Maxwellians, in their very significant theoretical battle for the new
physics and chemistry.

The very important scientific developments described above can only be

properly understood in the context of Irish history, but only then within the

general context of the international developments of mathematical physics.
FitzGerald philosophically was an idealist and follower of George Berkeley.

This Trinity philosophical commitment was a considerable inspiration to him |

in proposing his non-common sense theories. His famous hypothesis was not
in any way a flight of absolute idealism, and we can see now with historical re-

ignorant of the facts. FitzGerald, paradoxically for an absolute idealist, in his
work in physics, demonstrated theoretically the inextricable relationship be-

tween theory and practice, and the impossibility of ever absolutely separating

[8] G. J. Stoney,
search that this was no ad hoc hypothesis, as so frequently suggested by those |
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the Saction of the mind from the material world,

toney’s discovery of the electron inau i

: ; : gurated a new era in theoretic
chemxgtry and a_ton:uc phygcs, but his identification of its charge as the ﬁf:é
quantu’zed quantity in physics marks the experimental birth of quantum theor;*
S?oney s c?ns§quent exposition of electron theories prepared the way Wit};
FitzGerald’s discoveries, for our own modern quantum mechanical view whieh

- has arisen in our own century to replace older philosophical tenents such ag

- those of Berkeley,
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Diagonalising a Real Symmetric Matrix

and the Interlacing Theorems

Donal P. O’Donovan

In most linear algebra textbooks the diagonalisation of a real symmetric
matrix is accomplished by first proving that the eigenvalues are real and then
proceeding to the orthogonal diagonalisation. Anton’s book [1] notes in the
preface that the first part of this can require an excursion into the theory

of complex vector spaces. The purpose of this note is to show that a more
| direct route is possible if one proves the realness of the eigenvalues and the
| orthogonal diagonalisation simultaneously.

In itself this would be of very little interest, at least for mathematics stu-

| dents, who usually handle C" as readily as R". However what one is led to,
| is something much more, namely the Cauchy inequalities, between the eigen-
| values of any finite dimensional self adjoint operator and its compressions 3],
| and also to the Courant-Fisher min-max formulae for the characteristic num-
| bers [2[, and these are topics not usually found in Linear Algebra textbooks.
| So, many mathematicians must be unaware of them. Yet the interlacing that
| one finds is both elegant and useful. For example it gives in several lines,
| the proof, that a symmetric matrix is positive if the principal minors are all
~ positive.

I find linear operators a better setting for diagonalisations than matrices,

“  so we work with them. Recall that if U is any subspace of an inner product
| space V, and T : V — V is a linear operator then the compression of T to
| U is just the operator PyT : U — U, where Py is the orthogonal projection

onto U. For students who prefer matrices, if an orthonormal basis uy, ..., u,
for U is expanded to an orthonormal basis uy, ...ur, Ups1...,u, for V then the

. matrix for PyT is just that block of the matrix of 7" whose entries are in both
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the first » rows and first » columns. For those who like pictures. So Cr () = <0 £ 1 is even
t]_l . tlr tln A - 20 if nis odd

: : : tir o tay But Cr()) — 400 or —oo when A — 400 according as n is even or odd.

T=1 t1 ... tpr = [PyT) = : : | So in both cases the graph of Cp(X) crosses or at least touches the ) - axis.

. . . | This gives a real root Ao (which must be > A;(S)). Now one solves for an

rhoe o eigenvector vy and applies the induction hypothesis to the compression of T

125 DRI . tan

to the orthogonal complement of g, giving the desired result.

Recall also that the characteristic numbers are just the eigenvalues of T,
repeated according to multiplicity, arranged in descending order

M(T) 2 Mo(T) ... 2 Aa(T),

We noted above the extra bit of information, namely that A > A1(S).
In fact we can deduce easily that if S is any compression of T to an n — 1
dimensional subspace then

as we shall write them. We will use C7()) to denote the characteristic poly- M(T) 2 2(8) = 2a(T) > ... 2 Xci(S) > M(T)
nomial for T', that is det (7' = M1).
which we will refer to as “interlacing”.

Theorem Let T be a symmetric linear transformation on a finite dimen- Again we proceed by induction. For n = 2 we have

sional real inner product space V, then its eigenvalues are real and T can be | ; 4
diagonalised with respect to an orthonormal basis. ' 0 !
Proof We proceed by induction on n, the dimension of V. If n = 1, the
statements are trivial, so suppose both statements are proven for n — 1. Let

X;]have dimel‘lsion fnTandg b’;lany n-l dime? sioxllal .SudbSp(?tce' hLet f b.e If 41 = 0 the result is immediate. If t; # 0, then Cp(X1(9)) = —-tf < 0, but
the compression o to U. hen we may apply the induction hypothesis  COp()) — +00 28 A — %00, s0 )\1(5) lies between the toots.

to 5, ‘obtaining real Che}racteristic numbers, A1(S), ..., An-1(S), and corre- | For arbitrary n, we have as before the matrix () for 7. First if any ; = (
sponding orthongrmal eigenvectors uy, .. o Un-1 Choosg ug to complete the then X\;(S) is an eigenvalue for T, and so are the eigenvalues of the matrix
orthonormal basis ug, u1,...us-1, and consider the matrix representation for gotten by ignoring the i row and the ith column. By the induction hypoth-

T | esis {A;(5)};z: interlace the eigenvalues of this second matrix. A moments

121 )\1(5)

i 1 . - |
to A (15) én ' | thought shows that {A;(S)} then interlace the set of all eigenvalues of T.
,1 1 - Next one sees that
T = : . (%) .
- Cru(S) = =t [T(u(S) = M(S)
tne1 0 An—l(S) o i=2

ne=1
= == T (S) = ()l
j=2
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and
n-—1
Cr(a(S)) = =B(M(S) = 2a(8)) TT(A(S) = 22(5))
j=3
= <BIN(S) 2a(S)I=1)" T 1 (5) - a(S)
1=3
and so on.

‘Thus we see that if the A;(.S) are all distinct then the signs of Cp();(S)) al-

ternate, and the roots of Cr() interlace the A;(S). If some Ap(S) = Apy1(S),

writing
n-—=1 n-1
Cr(A) =t [T4(8) =0 = S22 TT(4(5) = A
j=1 i-1  j#i

we have A\;(S) — X as a factor of Cp(X). Hence Ax(S) is an eigenvalue for T,
and it is immediate from the form of C7()) above, that

Cr(N)  _
WS = =GR
where R is the (n — 1) x (n — 1) matrix
to ty ii + 14 Thyo tn-1
11 A(S) 0 0 0
4ty 0 A(S)

k42 0 Apg2(S) . 0
faos o .. 0 0 . Ai(S)

Applying the induction hypothesis to R gives the desired interlacing.
If (1ij)i,j=1,n is an nxn matrix then the principal minors Ay (T) are defined
as
AR(T) = det(ty;)i j=1,k

We want to show that if Ax(T) > 0 for all 1 <k < nfor an n x n symmetric
matrix T then T is positive. This follows easily if we show all the eigenvalues
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re positive. Again we proceed by induction. The case n = 1 is clear. Now
pplying the induction hypothesis to (2;;)i j=1n-1 We have all its eigenvalues
ositive. Then by the interlacing n — 1 of the eigenvalues of T are positive.
hen A, (T) > 0 shows that all of them are positive.

Finally, if TC) is the compression of T to an n — r dimensional subspace,
¢ may successively invoke the interlacing r times to obtain the Cauchy in-

M(T) = X(TT) 2 Xigr(T)

follows that )
M(T) < M (TED)

ut by diagonalisation, equality can be achieved, so

Ai(T) = min A (TC=D)

~where the min is over all n — 7 + 1 dimensional compressions, and of course
A(TED) = max{(T6Do,0) : [lo]| = 1}

hich gives the desired min-max characterisation.

We can also note that the interlacing result and its consequences are ob-
lously also true for a self adjoint operator on a finite dimensional complex
_inner product space.
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CONFERENCE REPORTS

Cork Operator Conference 1988

The 3rd annual conference in Operator Theory and Operator Algebras took
place in UCC from 29 June to 2 July 1988. It was supported by the European
Office of Aerospace Research and Development, the Royal Irish Academy,
the Irish Mathematical Society and UCC. There were 33 participants from
9 countries (Canada, France, Ireland, Poland, Sri Lanka, U.K., U.S.A., West
Germany, Yugoslavia). The principal speakers were Joachim Cuntz on D
ferential structures on C*-algebras and KK-theory and cyclic cohomology and
Larry Brown on Semicontinuity and closed faces in C*algebras and Ezistence
of projections in mulliplier algebras.

The organizers wish to thank the participants and sponsors. Next year’s

conference will probably be in May.

Gerard Murphy

Groups In Galway 88

The tenth anniversary of Groups in Galway was celebrated by a three-day |
meeting (May 26-28, 1988) which was attended by some two dozen partici-
pants. There were twelve very interesting talks (details below) and the usual
generous breaks for coffee etc. Moreover, the traditional pilgrimage to the
Weir was not forgotton! It is a pleasure to thank the participants, the speak-
ers, and the sponsors (Irish Mathematical Society, Roval Irish Academy and
University College Galway) for their support.

The speakers were: G. Ellis (Galway): Groups with category structures, N,

Gilbert (Bangor): Factor stabilisers in the automorphism group of a free prod-

| s terloo): A ch {erizali the permanent by the Cauchy-Binet
uct, T. Laffey (U.C.D.): Order-transitive groups, Dr. MacHale (Cork): Auto- sity of Waterloo) characlerization of p v y

- . . - formula, R. Gow (UCD): Skew-symmetric mairices in characteristic two, R.
morphisms of groups sending many elemenis to their nth powers—a survey of

results, M. Newman (Canberra): Groups of ezponent four, G. Sherman (Terre
Haute): What is the probability that a subgroup is normal?, E. Ormerod (Can-

berra): The Wielandt subgroup of a metacyclic p-group, B. McCann (Galway):

Ezamples of normal products, B. Goldsmith (D.I.T.): Maximal order abelian
subgroups of symmetric groups, E. O'Brien (Canberra): Algorithm for the
determination of finite p-groups, S. Andreadakis (Athens): Residually finide
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NN eziensions of abelian groups, L. Kovacs (Canberra): Classification of
arieties of groups.

In 1989, Groups in Galway reverts to its usual two-day format—the meet-
hg will take place on Friday/Saturday, May 12-13. Further details should be
vailable early in 1989, from the organiser: John McDermott, Mathematlcs
epartment, University College, Galway.

ohn McDermott

ourth Dublin Conference on Matrix Theory and Its Applications

he conference was help in UCD on March 10 and 11, 1988. There were thirty
articipants, coming from Ireland, England, France, Holland, West Germany
ortugal, the United States, Canada and Japan. The Oxford University Press
ut on a display of books on linear algebra and related topics. The following
ctures were presented:

. Johnson (College of William and Mary): Precise intervals for the eigen-
alues of an hermitian and a positive definite matriz, B. Reichstein (Catholic
Umvewty of America): On a problem of expressing a cubic form as ¢ sum
| of cubes of linear forms, T.T. West (TCD): Linear operators with finite nul
ity and defect, L. Beasley (Utah State University): Linear iransformations on
Boolean matrices, G.N. de Oliveira (University of Coimbra): Invariant polyno-

 mials of partitioned matrices, R. Westwick (University of British Columbia):
Spaces of matrices of finite rank, R. Thompson (University of California at
Santa Barbara): The Schubert calculus and speciral inequalities, R. Harte
(UCC): Companion matrices revisited, T.J. Laffey (UCD): Some questions
on inleger matrices, T. Furuta (Hirosaki University): Mairiz inequalities, S.
| Barnett (University of Bradford): Routh’s array and euclidean remainders
or polynomials from an observability matriz, H. Bart (Erasmus University):
Complementary triangularization of pairs of mairices, L. Cummings (Univer-

Puystjens (University of Gent): A generalization of the kernel theorem for
Moore-Penrose invertibilily of morphisms, R. Grone (San Diego State Univer-
sity): The Laplacian of a graph

- Synopses of the conference lectures will appear in a report in Linear Algebra
and its Applications.

Fergus Gaines




BOOK REVIEWS

INVERTIBILITY AND SINGULARITY FOR BOUNDED LINEAR OPERATIONS by
Robin Harte
Marcel Dekker, 1987, 528 pp, $119.50, ISBN 0-8247-7754-9

Reading the preface I was struck by the thought that this book would be
something of a journey into the author’s mind. The prospect filled me with
some trepidation. In fact the journey was both better and worse than I had
expected. Let me explain. Farly in the preface the author states

We have tried to write an introduction to operator theory accessi-
ble to students meeting the definitions for the first time.

Good, I thought. A little later T met

The reader will also probably find our obsession with incomplete
spaces tedious.

This sounded warning bells. In fact it transpired that the word accessible is
given a breath of understanding not usually accorded to the word. Of this the
author is clearly aware, and hence the honesty of the second statement.

This book really contains two books. One of these is a compendium of
the spectral theory (in all shapes and sizes) of linear operators on Banach
spaces. The second is an exploration of what happens if the space is simply
a normed linear space and not necessarily complete. If the reader’s interest is
in the first book, then tedious is probably too mild a word to use. However, if
one has a thorough understanding of the material of the first book, then the
second book has quite a lot of interest. But not as part of “an introduction
to operator theory”. Intertwining the two books means that the entire is
not, as a single entity, suitable for learning the subject. There are other
drawbacks. In the first five chapters the basic results of elementary Banach
space theory are covered. These include the big three, the open mapping,
the uniform boundedness and the Mahn-Banach theorems. As in most of
the book it is clear that the author has put a lot of thought into the means
of presentation, with creditable results. However there is also a lot of less
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important material interspersed, much of it from the second book. There is
not suflicient discrimination between the really basic material and that which
would be consigned to the exercises and notes section of other texts. This
evenhanded treatment persists throughout the book so that the multitude of
notions and notations lacks a hierarchy of importance.

Speaking of notations, there are three and a half pages of special symbols at
the end of the book. And even this is not enough. On page 40, one encounters
~ “Strictly speaking, we should write something like I, (2, T) for the restriction
. of the mapping T we shall however continue to write T9.” Then three lines
_ later one meets “I,(,T)” and two lines later “ (€2, T)”, at whose meaning
one must guess, as it is not among the aforementioned three and a half pages.

Additionally, it is confusing to have z € X on one line and z € X% 4
function space, two lines later. Items such as these and the many typographical
errors make the technical material more difficult. In the preface the author
admits to many “silly mistakes—left as a series of unspoken exercises for the
reader”. Unfortunately silly mistakes make silly exercises.

Another example of the lack of a firm editor is the use of the term Hilbert
Algebra, confessedly “in total defiance of standard terminology” to describe a
C”-algebra, whilst even acknowledging the fact that Hilbert algebra is already
in general use for something else.

! In general the book secks to illuminate even slight nuances of difference

and to treat things in great generality. Thus sequences are not confined to
. being indexed by the natural numbers N, but are indexed by any bornological
- space 2 (Chap 1, §8), to what gain is not clear. And yet in other places
;lils)tinctions are blurred. “We can treat a polynomial as a mapping” (page

The pity is that these and other instances distract the reader from the
many fine sections, for example the canonical factorisation of Theorem 2.3.3.

I have commented on chapters 1-5 which are “Normed Linear Spaces”,
“Bounded Linear Operations”, “Invertibility and Singularity” , “Banach Spaces
and Completeness”, and “Linear Functionals and Duality”. I should mention
also that the reader is introduced here to “Enlargements” §1.9, 2.7, 5.7, which
allow one to replace statements about an operator on a space X, with state-
space, and to “Com-

ments about an “enlarged” operator on an “enlarged”
position Operations” in §2.9, and §5.6. These also recur throughout the book
but one is left to wonder about their importance to the subject.

Chapter 6 is “Finite Dimensional Spaces and Compactness”.

from defining linear independence to almost upper/lower

This runs
semi-Fredholm, It
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includes a nice treatment of the equivalence of norms on finite dimensional
spaces.

Chapter 7 is “Operator Algebra and Commutativity”. This contains a lot
of basic functional analysis, for example the “Stone-Weierstrass Theorem” .
Chapter 8 is “Inner Products and Orthogonality”. The title says it all— again
basic functional analysis. Chapter 9 is “Liouville’s Theorem and Spectral
Theory™. Another good basic chapter, including the beginnings of the theory
of C*-algebras and their representations.

Chapter 10 is “Comparison of Operators and Exactness”. The introduc-
tion to this chapter states “The various kinds of invertibility have “relative”
analogues, in which one operator is compared to another. If we mix both
left and right comparisons and then specialize we come down to concepts of
“exactness” 7. Enough said.

Chapter 11 is “Multiparameter Spectral Theory”. This contains the Taylor
spectrum, an idea toward which much of the book seems aimed. There is also
useful material on the Silov boundary and Tensor Products.

A final section is a collection of “Notes, Comments, and Exercises” for
each chapter. It is clear from these that the author has researched his subject
with diligence and thoroughness, and this section adds greatly to the value
of the book as a compendium of results. In fact one is tempted to suggest
that the book might have been called “everything you ever wanted to know
about Spectral Theory, but were afraid to ask—in case you were told”. The
one thing that could be found missing is some mention of the many areas in
which Spectral Theory finds its applications, and which provide it’s Raison
d’Etre.

Much of the above comment may seem negative, so let me hasten to add
that this is a book that T am glad to have on my shelves. It has appeal on
three levels, Firstly, the standard introductory results of functional analysis
and operator theory are all there. Secondly, it collects many of the more
esoteric notions of Spectral Theory, and finally it contains the authors own
ruminations on completeness and the lack of it.

Donal O’Donovan
School of Mathematics
Trinity College Dublin.

PROBLEM PAGE

Editor: Phil Rippon

?
|
.

Here are a couple of attractive problems which fall into the category of
geometric doodling’. The first one appears in Coxeter’s book ‘An Introduction
o Geometry’, but I heard it first from my school maths teacher.

: i etiv) acute angles int
What is the minimmuwm number of (strictly) acute angled triangles into

1.1 ( ;
vhich a square can be partitioned?

he next problem was asked recently by an OU maths student at summer
school. 1t has & very neat solution and I'd be interested to hear of any refer-
ences to it.

. s,y . : [ S N i
21.2 Find a configuration of finitely many points in the plane such that the
perpendicular bisector of each pair of the points passes through at least two
of the points.

Finally, a wonderful sequence problem due to John Conway, who offered 2

1 1
prize of $1000 in July this year for a solution (his audience thought he had
- offered $10,0001).

21.3 Let a(n), n=1,2,..., be defined as follows: a(1l) = 1, a(2) = 1, and

4

a(n+1)=ala(n))+a(n+1-a{n)), n=12234,...
Thus the sequence begins:
1,1,2,2,3,4,4,4,-+ .

The problem is to determine an integer N such that

@ B i

n

< 0.05 forn >N,

DD

A solution was given three weeks later by Colin Mallow, a mathematician
working at Bell Labs. In September, a British newspaper offered a magnum
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of champagne for a solution and awarded two prizes a week later, one of which
went to a pupil from St. Paul’s School, London. The Problem Page has no
prizes to offer, but anyone who takes a closer look at this sequence will be
amazed by its properties!

Next, here are the solutions to the problems which appeared in December
1987.

19.1 To each vertex of a regular pentagon, an integer is assigned in such a
way that the sum of all five integers is positive. If three consecutive vertices
are assigned the numbers z, y, z respectively and y < 0, then the following
operation is allowed: the numbers z, y, » are replaced by z + vy, -y, z +y
respectively. Such an operation is performed repeatedly as long as at least one
of the five integers is negative. Determine whether this procedure necessarily
comes to an end after a finite number of steps.

[ am grateful to Tom Laffey for sending me the background to this prob-
lem, which appeared in the International Mathematical Olympiad at Warsaw
in 1986, including a booklet on the Olympiad published by the Australian
Mathematics Competition organisation. The U.S. student Joseph Keane was
awarded a special prize for his solution, which begins as follows:

“As with so many problems of this type the key to a solution is the discovery
of a function whose value decreases when the given operation is performed
but which is always a whole number.”

Keane goes on to show that if the five integers are v, w, z, y, z, then the
expression:

o + Jwl + 2] + Jyl + 2] +
v+ wl+w+z|+ e +yl+ly+ 2]+ |2+ v] +
vtwtzl+lwtz+yl+lety+zl+ly+z+o]+]z+0+ 0]+
vtwtztyl+lwtety+z+lz+y+z+o]+
V+z4+v+w/+|z4+v+w+z
is decreased by |s~y|—|s+y|, where s = v+ w+z+y+ 2, when the operation
15 applied to the triple 2,y,2. Since s > 0 and y < 0, this expression has the

required property, showing that the operation can be performed only a finite
nuimber of times.

A similar solution, provided by the proposer of the problem, uses the quadratic
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| expression

30— 97 4 (=) 4 = 9 (=) 4 s = ]

3

which decreases by —sy when the operation is applied to z,y,z. My own

solution uses the expression

v w? fet 4y 422
(v+w)2+(w+x)2+(x+y)2+(y+z)2+(z+w)2+
(v+w+x)2+(w+$+y)2+(r+y+2)2+(y+z+v)2+(z+v+w)2

which decreases by —sy also.

This approach to the problem generalises to n integers placed at each vertex
- of a regular n-gon, as does a remarkable alternative solution due to J.M.

Campbell of Canberra, which proves in addition that the final configuration
is independent of the order in which the operations are performed,

To explain this solution, we let a1, a2, a3, a4, as denote the integers in order
around the pentagon, and o; denote the operation which reverses the sign
of ¢; and adds a; to its pentagon neighbours. The operation o; has a very
simple effect on the sequence of progressive sums:

..,,-—(14—~=a5,—a5,0,a1,a1+a2,a1+a2+a3,...

defined by sg = 0, and s; = 3;_; +ai, 1 € Z, where a; is defined by taking the
subscript mod 5. Indeed, one easily checks that 0j SWaps any two consecutive
sums of the form s;_1, s; (taking j mod 5) and leaves all other s; unchanged.
Also, the operation o; is allowed, that is a; < 0, if and only if 85 > 8541,

and so the operations 0; can be performed until the sequence s; is sorted into
increasing order.

The fact that s; is in increasing order after only finitely many operations

follows from the observation that

Sits = 8; + 8, 1E€Z,

where s = ay + ag + az + a4 + as > 0. This implies that the number N; of

terms less than s;, which lie to the right of s;, is finite. Note that Nips = N;

3
i € Z, and also that, in sorting the sequence, the term §; moves precisely
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N; places to the right. Tence the total number of opcrations required is
Ny 4+ Nog+ Ny 4+ Ny 4+ Ny and the final configuration is indecd independent of
the order in which the operations o; are performed. Moreover, Campbell is

able to give an explicit formula for the N; and for the final numbers around
the pentagon.

The next problem is known in Maths Education circles as the Krutetskii Prob-
lem (see page 150 of ‘The Psychology of Mathematical Abilities in Schoolchil-
dren’, by V.A. Krutetskii, The University of Chicago Press) and is attributed
to Lovasz by Ross Honsberger in an article in “The Mathematical Gardner’ (a
volume dedicated to Martin Gardner). It is followed by an intriguing variant
proposed by my colleague John Mason.

19.2 A finite number of petrol dumps are arranged around a racetrack. The
dumps are not necessarily equally spaced and nor do they necessarily contain
equal volumes of petrol. However, the total volume of petrol is sufficient for
a car to make one circuit of the track. Show that the car can be placed, with

an empty tank, at some dump so that, by picking up petrol as it goes, it can
complete one full circuit.

19.3 The petrol dumps are arranged as in 19.2, but this time the total
volume of petrol is sufficient for two circuits of the track. Can two cars be
placed with empty tanks at the same dump so that, by picking up petrol as
they go, they can each complete one full circuit in opposite directions? (The
cars may cooperate in sharing petrol from the dumps.)

There are various ways to solve 19.2, but the following approach has the
advantage that it can be used to solve 19.3. Indeed, T came across it while
working on 19.3.

Suppose that pr, k = 1,2,...,n, denote the volumes of petrol at the dumps
Dy, k = 1,2,...,n, in order anticlockwise around the circuit, and that dy,
k= 1,2,...,n, denote the distances from Dy to Dyyy. If pp and dp are
measured in comparable units, say gallons, then the assumption is that:

Prtprt .o Apn>dit+dat . 4 d,. (1)

Let us take as inductive hypothesis the statement that a solution is always
possible with n dumps. Certainly, this is true for n = 1. Now consider
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n+ 1 dumps Dy,..., Doy with associated petrol py, ..
dl: ey dn-}»l: such that

., Pn+1 and distances

pr+prt .ot papr 2di+dy+ .+ dpg.

If pi > d;, for each i, then the car can start from any dump and complete the
circuit. Otherwise p; < d;, for some ¢, and we consider a new configuration
with n dumps, in which D; is removed and the petrol p; is added to Di_y.
Since (1) holds for this configuration, a solution is certainly possible, by the
_inductive hypothesis. :

: Following this solution, the car leaves D;_; with an unknown volume P of

petrol such that
P>di-1 +d;.

Since p; < d;, we deduce that P — p; > d;—q. It follows that the car could

- have completed the original n 41 dump circuit, with the same starting point,

by picking up p; gallons of petrol at D; instead of at D;_;. Thus we have a
proof by induction. -

The set up is similar in 19.3 with dumps Dy, Ds, .
..., dn and petrol py, ps, ..

..y Dy, distances dy, dy,
., Pn, but now we assume that

pr+pet+.. +pa22di+dot ..+ da). )

Once again the inductive hypothesis is that a solution is always possible with
n dumps, and this clearly holds for n = 1. Now consider n + 1 dumps
Dy, -+, Dny1 with associated petrol pi,...,pnt1 and distances dy, . vy ln,

- such that

pr+pe+... 4 pag1 2 2(di+do+ ..o+ day).

If pi > dio1 + di, for each ¢, then the two cars can begin at any dump and

complete opposite circuits by picking up at each dump exactly enough petrol
to reach the next dump. Otherwise p; < d;~1 + d;, for some i, so that

Pi = i1+ ¢i, where 0 < ¢;—1 < di—1, 0< ¢ < d;,
and we consider a new configuration with n dumps, in which D; is removed
and the petrol ¢;_1, ¢; is added to D;41, D;_1, respectively. Since (2) holds for
this configuration, a solution is certainly possible, by the inductive hypothesis.
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Following this solution, the ‘anticlockwise’ car leaves D;_1 with an unknown
volume P of petrol such that

P>di_y+4d;.

Since ¢; < d;, we deduce that P—¢; > d;_y. It follows that the ‘anticlockwise’
car could have completed the original n 4+ 1 dump circuit, with the same
starting point and without altering the petrol rations of the ‘clockwise’ car,
by picking up ¢; gallons of petrol at D; instead of at D;_ 1. Since a snmlar
argument applies to the clockwise car, we again have a proof by induction.

Remark Problems 19.2 and 19.3 are in fact special cases of a more general
problem in which the two cars have different rates of petrol consumption. The
above argument needs only slight modification to deal with this more general
problem.

Phil Rippon

Faculty of Mathematics

Open University

Milton Keynes MK7 6AA, UK

Second Dublin Differential Equations Meeting

The Second Dublin Differential Equations Meeting will be held in NTHE
Dublin on May 22-25, 1939. Invited speakers include S.S. Antman (Mary-
land), J. Carr (Ileriot-Watt), W.N. Everitt (Birmingham), J.K. Hale
(Georgia Tech.), R.E. O’Malley (Rennselaer) and V. Moncrief (Yale). The
programme will include sessions of contributed talks and workshops on
both theory and applications. Possible subjects for workshops include
bifurcation theory, singular perturbations and gelation. Financial sup-
port has been received from the Irish and London Mathematical Soci-
eties. Those interested in participating are invited to write to Dr. D.W.
Reynolds, School of Mathematical Sciences, N.I.H.E., Dublin 9.

. I'NSTB,UCTI\EQNSi TO




