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Finally, if M is singular, no conclusions can be drawn concerning the nature

of the stationary point &.
We conclude with some examples.

Example 1 A sufficient condition for f(z,y) to have a minimum at a sta-

tionary point (a,b) subject to a side condition parametrised by = = 1(t),
f:m: fa:y

y = pa(t) is
@ (fo Fy) (w’{ )
fz'y fyy)(‘P’2>+ ‘plzl 20

(¢ ¢2) (
,y) =1 - 2zy. Then f has a maximum at (0,0) subject

Example 2 Let f(z
a minimum at (0, 0) subject to

toy — £3 = 0, but has neither a maximun nor
y—z2=0.In both cases we have M = 0.

= 1— 2zy — 20z — 2Yz has a stationary

point at (0,0, 0). Parametrising the side condition y = z by ¢(r, 5) = (r,8,9),

we find that
0 -2
M= ( -2 =2 )

s a maximum at (0,0, 0) subject toz =Y = 2
o —z = y = z. The point (0,0,0) is a

Example 3 The function f(z,¥,2)

which is indefinite. f(z, ¥, z) ha
but has a minimum at (0,0,0) subject t
saddle point subject to y = 2.
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A Note on Integrating Composed Functions |
\

Paul Barry :

This note groups together several concepts that are met at different places in
a first course on real analysis in a way that allows graphical representation.
It provides a generalisation of the formula (see [1]):

7(v) b
[ syt [ 1(@)do=b50) - o1 (2
1(a) a
which has a certain pedigree—see 2], [3] and particularly [4], where a proof
is given in the case where f and f -1 are assumed only to be integrable.

We shall use the (Riemann-)Stieltjes integral as given, for instance, in [7]. |

We deal only with definite integrals.
We begin by recalling the formula for integration by parts for the Stieltjes |

integral. Let u,v:[c,d] ~ R, and assume the integral fcd u dv exists. Then

(1)

d d
/c udv+ /c vdu = u(d)v(d) — u(c)v(c) (2)

Figure 1
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~Finally, if we assume that g~ ! exists and is continuous, then another appeal

to the formula for substitution in a Stieltjes integral yields

A particular case of this is illustrated in figure 1 where u and v are in.
creasing. In this special case, note that y = vo u~1(z) represents the curve iy |

the (z, y)-plane which also has parametric representation ¢ — (u(t), v(t)). K ¢ g(d) F(b)
moreover u and v are differentiable, we note that i ‘ /c (v dgly) = /( | f-I (g—l(z)) dg (g—l(z)) = /( ) F_l(z) dz
% gic Fla
dy = o (u_l ( x)) (u—l)’ (z) E ‘ Hence we get the following formula relating the integral of a composed function
dz ” | and its inverse:
B ",( ) F(b) b
u (u=1(z)) () / F~Y(z)dz +/ F(z)dz = bF(b) — aF(a) (5)
shows the link between the chain rule and the derivative of a parametrised | F(a) @
curve. 'y
We now apply these results to the following situation, where for sinplicit

we shall assume that f : [a,b] — [, d] is strictly increasing, with f(a)=cand 4

F(b) = d. Let g: [c,d] = R be integrable with respect to f~1. Then from (2)
we obtain

d d
/ fldg+ f gdf-t = Fd)eld) - FH)ele)
FHFE) g (£(8)) — £~ (£(a)) 9(f(a))

Il

Letting F = go f, we get

d d L
14 +f df 1 =bF(b) —aF(a 3 .
[riage [ oam=or0) - oF@) CiE o\ G g
By imposing stronger conditions on f and/or on g, we can find more manage- fiag= f Bd
able forms of (3). For example, if we assume that f is continuous, then the | 5 - 3
formula for change of variable in a Stieltjes integral yields the following: P 0
igure

-1

/;d M y) dgly) = /jf_l(i

-1

d F G b
[swao= [, ot 47 e = [ Fads

Hence we obtain (not surprisingly!)

d) b
£ (7(e) da1(a)) = [ = dF(@)
)

a The special case g(y) = y yields (1). Formulas (3)-(5) are illustrated in a
special case in figure 2. Notice that in this case the curve z = F(z) has
parametrisation y — (f~*(y), 9(y)). In the case that f and g are differentiable,
the F'(z) = ¢'(y)/(f*)'(v) = ¢'(y) f'(z) as we would expect.

As an example in this latter case, we take f(z) = tanz On [0,7/4], and

9{y) = y% on [0,1]. Then (3} and (5) yield

1
/ arctan+/z dz + /
0 0

and

wf4 1 2

tan2$dz=2/

1
ya.rct;anydy-i—/
0 0

b b
f s dF(z) + /a Flz) dz = bF(3) — aF(a)
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In particular, we find (see figure 3):

! T
/ arctany/zdz = — — 1
0 2

Yanx

A less elementary but perhaps more instructive example is obtained by
taking f(z) = €* and g(y) = [y]. Using (3), we get

n In (r)
[ wydl+ " ) do = n ingo ©)

The first integral here is 35 In (5) = In(n!). Hence we obtain

In (n)
nln(n) — / [e®] dz, or
0

n

In(n!)

n! —_——
cfé ( )[e’] dz

- By estimating the integral appearing here, we can obtain some simple bounds

NOTES

on n!. For example

In (n) In (n)
/ [e“]dz</ edr=n-1
0 0

and hence
n n
nl>e (—)
e
x
i
ln(n) €T
y=e
In(n)
‘[ [e*]dx
o
Lnnl
0 1 PR
Figure 4

On the other hand, subtracting the areas of the triangles in figure 4

In (n) In (n) n
/; [e"] d= > /0 e dz — 2—: % (In(5) — In(5 — 1))

1
n—l—Eln(n)
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which yields n! < ey/n(n/e)". Hence at very little expense (6) yields the
following well known bounds:

e (g)n <nl< e\/ﬁ(g)n




\
68 IMS Bulletin 20, 1983

Reverting to the gemeral case, where f is arbitrary and a(y) = [yl we “
obtain the formula

S e [Vela=sei-er@l

F(a)<n<f(b)
For example, Ezlv’ yn=N3-— f(fv[:cz] dz.

So far we have only considered increasing functions. The reader may be
interested in deriving and interpreting graphically the following equation:

N 1 N~°
S x4 M) ae=nt
T " 1

I would like to record my indebtedness to my colleague Tom Power fo |
references [4] and (8].
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