Lagrange Multipliers

Tony Christofides

It is not uncommon to hear a person say “I don’t really understan.d La.
grange multipliers”. The object of this note is to offer some explanation ¢
what they are. .

We recall that a necessary condition for the real-valued function f(x)
(x = (1,...,2n) € R") to have a stationary point at a € R", subject to the
“side conditions”

g1(x)=...=ge(x) =0 (1)

is the existence of suitable Lagrange Multipliers, i.e. real numbers Ay, ..., X,
such that

f'(a) + Migy(a) + - + Axgr(a) = 0 ()

Here, of course, f',gj,...,g) are the derivatives of the relevant functions, s

that f’, for instance, is the vector

o LA
8z, ' Oz,
We shall assume throughout that we are dealing with functions which pos

sess the required degrees of difterentiability. Condition (2), together with the
equations

gi(a)=...=gr(a)=0

usually enable one to determine the points a. '

Now think of the points satisfying the side conditions (1) as a \.rane'ty V
in R™. A point a is a stationary point of f subject to (1) if the dlrect?onal
derivative of f at a “in any direction contained in V” vanishes. More‘preasely,
a is such that the directional derivative of f at a in the direction u is zero fo
every unit vector u tangent to V at a.

This directional derivative is the scalar product (f’(a),u). Thus f'(g
is in the orthogonal complement of the tangent space to V at a. Let us
denote this tangent space by TaV. Assuming that the side conditions (]
are not redundant, g¢{(a),...,g;(a) are linearly independent and span the
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normal space to V at a. Thus these vectors form a basis for the

orthogonal
complement of TV, and therefore

f'(8) + Agi(a) + - + Apgh(a) = 0

for some Ag,...,

More analytically now, let f: A — R, and gi:A—-R,fori=1,...,k be
sufficiently smooth functions—say with continuous second order derivatives—
on an open subset 4 of R™ . Suppose we have a “parametrisation” or “local
coordinate system” for V at a. Thus, we have an open subset B of R* and a
homeomorphism ¢ : B — R™ which maps B onto an open set in V containing
a. We assume that ¢ is as smooth as the other functions considered. The
existence of such a function is guaranteed by the implicit function theorem.

The problem of finding stationary points of f subject to (1) can now be
reduced to that of finding ordinary stationary points, with no si
for the function f o ¢.

Letting ¢~(a) = to, we apply the chain rule to the equation
(fop) (to) =0,

which is a necessary condition for tq to be a stationary point for f o ¢. This
gives

de conditions,

(fo <P)' (to) = f'(a)¢’(te) =0

Hence f'(a) is orthogonal to each of the columns of the matrix ©'(to), and it
is well known that these columns span Ty V.
In order to determine the nature of the stationary point a, one must look

at the quadratic part of f(a + h) — f(a) for values of h for which a + h lies
on V, i.e. those h such that a + h = ¢(to +s), s € R*. Then

fla+h) - f(a) = Q(s) + n(s)

where

Q) = 5 (£/@) (¢ (t0)s)” + 7' (a)e" (t0)(6)?)

|7(s)| being of the order of |Is|l®. Bear in mind that f"(a) is a scalar valued
bilinear mapping, while " (to) is a bilinear mapping with values in R™.

Let M be the matrix associated with the bilinear form Q. If M is non-
singular and definite then a is an extreme point of f subject to (1). If M
is non-singular and indefinite then a will be a conditional saddle point of f.
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Finally, if M is singular, no conclusions can be drawn concerning the nature

of the stationary point &.
We conclude with some examples.

Example 1 A sufficient condition for f(z,y) to have a minimum at a sta-

tionary point (a,b) subject to a side condition parametrised by = = 1(t),
f:m: fa:y

y = pa(t) is
@ (fo Fy) (w’{ )
fz'y fyy)(‘P’2>+ ‘plzl 20

(¢ ¢2) (
,y) =1 - 2zy. Then f has a maximum at (0,0) subject

Example 2 Let f(z
a minimum at (0, 0) subject to

toy — £3 = 0, but has neither a maximun nor
y—z2=0.In both cases we have M = 0.

= 1— 2zy — 20z — 2Yz has a stationary

point at (0,0, 0). Parametrising the side condition y = z by ¢(r, 5) = (r,8,9),

we find that
0 -2
M= ( -2 =2 )

s a maximum at (0,0, 0) subject toz =Y = 2
o —z = y = z. The point (0,0,0) is a

Example 3 The function f(z,¥,2)

which is indefinite. f(z, ¥, z) ha
but has a minimum at (0,0,0) subject t
saddle point subject to y = 2.
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A Note on Integrating Composed Functions |
\

Paul Barry :

This note groups together several concepts that are met at different places in
a first course on real analysis in a way that allows graphical representation.
It provides a generalisation of the formula (see [1]):

7(v) b
[ syt [ 1(@)do=b50) - o1 (2
1(a) a
which has a certain pedigree—see 2], [3] and particularly [4], where a proof
is given in the case where f and f -1 are assumed only to be integrable.

We shall use the (Riemann-)Stieltjes integral as given, for instance, in [7]. |

We deal only with definite integrals.
We begin by recalling the formula for integration by parts for the Stieltjes |

integral. Let u,v:[c,d] ~ R, and assume the integral fcd u dv exists. Then

(1)

d d
/c udv+ /c vdu = u(d)v(d) — u(c)v(c) (2)

Figure 1
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