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‘We argue as follows. Let z,y,r be elements of R with zy # 0. Then Periodic Functions

(yz—=zy)™ = yz—=y implies that (yz)" = yz = 0. Similarly, (z(ry}—(ry)z)" =
z(ry) — (ry)z implies that zry = 0. A simple induction argument now shows
that all nilpotent elements are central. Thus R is commutative.
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Of course, R need not be a field, as the example (Z4, @, ®) shows.

Finally, we are indebted to Professor T.J. Laffey who has supplied the
following ingenious alternative proof of Theorem 1.

Let R be a finite ring with unity 1, let T = T(R) be its group of units and
suppose that T # R\ {0}. Let 0 £z € R\T andlet o ={t €T |zt = z}.
We note that Tj is a subgroup of T and that V = {zv | v € T } is a subset of
R\ (T u{0}), with |V| = |T|/|To|- Let W = {t— 1|t € To}. We note that
|W| = |To| and that W ¢ R\ T, since t — 1 € T and zt = z implies z = 0.
Hence |R| > |T|+|V|+1=|T|+|T|/|To| + 1 and also |R| > |T|+ |To|. Hence
we deduce that |R| — |T| > max(|To|,|T|/|To| + 1. So |R| - |T| = +/|R| + 1.

This article arose out of correspondence between the author and Mark
eneghan regarding certain inconsistencies in the treatment of periodic func-
ons in our secondary school texts. A complete and rigorous treatment of
his topic requires the introduction of such concepts as convergent sequence,
ontinuity, greatest lower bound, induction and linear independence. We have
ried to minimize the impact of these concepts and at the same time to clarify
he situation regarding the sum of periodic functions.

Jefinition 1 A function f : R +— R is periodic if there exists a # 0 such that

flz+a)=f(z) forallzeR. (1)
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};;%fusing induction and our first remark.

%(3) If @ and b are periods of f then a-+b is also a period of f, since f(z+a+b) =
flz+a) = f(z).
Jie+a) = 1)

gel.’" trr.zentc ofl Matgen;atics %Example 1 Let f be given by f(z) = sinz. Then f is periodic since f(z +
niversity College Cork. ' %2';7) = f(z) for all z € R.

Example 2 Let f be given by

f(a) = 0 if z is rational
1 if z is rrational

B %If e and z are rational and y irrational then a + z is rational and a + y is
irational, and hence f(z+ a) = 0 = f(z) and f(y +a) = 1 = f(y). Thus
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every rational number is a period of f. If b is irrational and z is rational the
b+ z is irrational and f(z 4 b) = 1 # f(z) and hence b is not a period of f,

Examples 1 and 2 are typical of the only cases that can occur, as t},
following proposition demonstrates.

Proposition 1 If f is a periodic function then exactly one of the followiy
holds:

(a) there exists a sequence (), of positive periods of f which converges tJ
gero;

(b) there exists a positive number a such that na, n = 0,£1,42,... form

the periods of f. 311
Proof If (a) does not hold then there exists a positive number § such thy
the interval [0,6) does not contain a positive period of f. We claim that i
interval of the form [a,a + §) contains two distinct periods of f. Suppog
otherwise, so that there exist periods b and ¢ with a < b < ¢ < a+ § for som
a. By Remarks (1) and (3) c — b is also a period of f, but since 0 < ¢ —b <|
this is a contradiction. Hence our claim is proven.

Now consider the intervals I; = [0, 6], I = [§, 26],...,I, = [(n—1)6, né],..
Since f is periodic at least one of these intervals contains a period of f. Le
ny be the least positive integer such that I,, contains a period of f. We hay
seen that I,, can contain only one period. This is then the smallest positiv
period of f. We denote it by a. By Remark (2), na, n = 0,+1,+2,... an
periods of f. Suppose b is a further period. Then there exists an integer 1
such that na < b < (n + 1)a. By Remarks (1) and (3) (n + 1)a — b is also
period of f. Since 0 < (n+ 1)a —b < a this is a contradiction, and so no sucl
b exists. This completes the proof.

Remarks (4) If case (a) of Proposition 1 applies then, using our earlier re
marks, it is not difficult to show that the periods of f form a dense subset d
R.

(5) If f is continuous and (a,)y, is a sequence of periods of f which converge
to a, it is easy to see that a is also a period of f. Hence, using (4), we cai
conclude that if a continuous function f has a sequence of periods which con:
verges to O then f is a constant function.

(6) If one is willing to use the concept of greatest lower bound then the prod
of Proposition 1 can be shortened.
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Definition 2 If case (b) of Proposition 1 applies to f then the smallest pos-
itive period of f is called the period of f.

Thus we have singled out a special period of f. The statement “f has
period a” should be read as “f is a periodic function and the period of f is a”.

Combining Proposition 1 and Remark 5 we see that if f is a non-constant,
continuous periodic function and a is a period of f then there exists a positive
integer n such that the period of f is a /n. To determine n one must investigate
further the function f.

Example 8 Let f(z) = sinz. By Example 1, f is periodic and the period of
f is 2 /n for some positive integer n. .

Now f(0) = 0 = sin(2x/n). If n > 2 then 27/n < « and sin(27/n) > 0.
Hence n < 2. We now check n = 2. Since f(r/2+27/2) = f(37/2) = —1 and
f(x/2) = 1 it follows that 2 is not the correct value for n. Hence n = 1 and
the period of f is 2. . ‘ '

This result can, of course be obtained from a graph; while this suffices in
practise, it is not a full proof.

We now consider the sum f + g of two periodic functions (the case f — ¢
is handled in the same fashion).

Lemma 1 If f and g are periodic and k is a common period of f and g then
k is also a period of f + g.

The proof is obvious.

Remark (7) If k is the period of both f and g, this does not give us precise
information on the period of f + g as the following example shows.

Example 4 Let f(z) = sinz + cos(z/2), and let g(z) = sinz — cos(z/2). It
is easily seen that f and g are periodic and that 4 is the period of both
functions (see Example 6). (f + g)(z) = 2sinz and so the period of f + g is
2m.

Example 5 Let f(z) = sin az + cos bz where a and b are non-zero real num-
bers. We shall now show that f is periodic if and only if a/b is a rational

number. N
We confine ourselves to the case where a and b are both positive; the other
cases are handled similarly.
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Suppose first that a/b is rational. Let a/b = p/q where p and q are positive
integers. Then 27p/a = 27wq/b = k, say.
Let g(z) = sinaz and h(z) = cosbz. Since

2w . 27\ | ; .
g(z+—)=sm a(z-}-T) = gin(az + 27) = sin az = g(z)
a

and

h (z—f— 2%) =cos |b (:c + 2%) = cos(bz + 27) = cosbz = h(z)

we have that 27 /a is a period of g and 27 /b is a period of h. By Remark (2)

2 2 .
k=p— = q—1r is a common period of g and h. Hence by Lemma 1 k is a

period of f = g+ h and so f is a periodic function
Conversely, suppose that f = g+ h is periodic. Let k be a non-zero period
of f. Then f(0) = f(k) = f(—k) = 1. Hence
sin(ak) + cos(bk) = 1
sin(—ak) + cos(bk) = 1
and this implies cosbk = 1 and sin ak = 0. Therefore bk = 2nx and ak = mx
for some integers n,m and so % = Zﬂ is a rational number.
n

The example above shows how to construct non-periodic functions which
are sums of periodic functions; sin z + cos(\/iz), for instance, is not periodic.
In our next example we show how to find the period of sin az + cos bz.

Example 6 Let a = Py where p and g are positive integers which have no

common factors. By Example 5 f(z) = sin(az) + cos(bz) is periodic, and we
wish to find its period.

We introduce an auxiliary function g(z) = sin(pz) + cos(gz). Then g is
also periodic, and f and g are related as follows:

() = =) +=(o52)
gl-=z = sin|{p-z )| +cos|qg—-z
q q q

sin(az) + cos(bz) + f(z)

and f(%z) - g(%%z)=g(z).

NOTES 5

We now find a relationship between the periods of fand g. If l is a period of
f then

g(ﬁgz) -2 (f=+0)) =1 (Ze+1) = £ (%) = o)

b, . . ;
Hence -1 is a period of g. Since the period of a continuous periodic function

is the smallest positive period, it follows that
. b
(the period of g) < F (the period of f)
Similarly, if k is a period of g then %k is a period of f. Hence

(the period of f) < % (the period of g)
Therefore, we have
(the period of f) = % (the period of g)
We now proceed to show that the period of g is 2. Since g(z + 27) =
sin p(z+27)+cos g(z+27) = sin(pz+2)+cos(gz+27) = sin pz-+cos 9z = g(z),

it follows that the period of g is 27 /o for some positive integer . We must
show that o = 1. Now

. . 2
81N pZ + cos ¢z = sin [p (z+ ?ﬂ-)] + cos [q <z+ 21)]
a

Hence
. . 27 2w
sSmpz—sm |p|T+— )| =cos |qg|z+ — — CO8 ¢z ,
a a
and . s
2 cos (pz + B—) sin (—p—-) = —2sin (qz + g_) sin (q_ﬂ-) ,
a a a a
so that

cos (pa: - %) sin (%r) = sin (qz - %r) sin (%r) (2)
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i iction. Since
e o # 1; we shall show that this leads to a contradiction

Now suppos ast one of p/c and ¢ [ is not an integer.

p and g have no common factor, at le

Suppose that p/a is not an integer. Then the left hand side of (2) is not zero,

and hence the same is true of the right hand side, .
also not an integer. Similarly, if we assume that g/ is
follows that p/c is not an integer. Therefore we have

T
sing—aéO.
o

which implies that ¢/a is
not an integer, then it
sin ik #0 and
a
If we differentiate (2) 4n times we get
4 P™\ sin (B5) = 4"sin(q$+ﬂ)8in(£)
p"cos(pz—i-: sin | q - .
Letting z = 0 we get

3

Now if p # g then when n — 00 the left hand side of (3) tends t;)l either E o
co. However, the right hand side of (3) is a non-zero constant}.l emf p ; 4{
Since p and ¢ have no common factors, this can occur only when p=¢ =1

In this case, (2) becomes
1r . T
cos (:v+ —) = sin (:z:+ ;)
o

and hence tan(z + 7/a) = 1 for all z. If we let £ = —m/a we obtain i
contradiction, and hence we must have a = 1.

To summarise the above, we have shown the following:. the p;.nc})ld of
in(pz)+cos(gz) is 2, and the period of sin((p/q)bz) +cos(bz) is 2.1rq/ w enhp
and h no common factor. We can use this to find t {
eriod of sinnz + sin nz, where m and n are arbitrary positive mtegers; }:e;
fnakin no assumption about common factors. Let d = gcd(m, n). T'heI} _erl
. ! such that m = m'd, n = n'd and gcd(m',n) =
that the period of sin nz + cosmz 18

and q are positive integers wit

are positive integers m,
Letting a = m and b = n we see
m' 2w

Zw_n: = ged(m,n)

Y’

NOTES

Similarly, the period of sin(z/n) + cos(z/m) is

2rnm
ged(m, n)

Periodic functions of the form sin az+sin bz and cos az+cos bz are treated
in the same way, and simple functions such as sin az cos bz can be reduced to
the cases discussed above by the use of appropriate trigonometric identities.

At this point, the reader may well ask the following questions:

a) Is there any criterion for decidin g if the sum of periodic functions is peri-
P P
odic?

(b) Are there any general methods of determining the period of a sum from
the periods of the component functions?

(c) How does one determine the period of a general trigonometric polynomial
i.e., a linear combination of powers of the functions sin z and cos z?

(d) How large is the class of functions consisting of trigonometric polynomials?

A special case of question (a) is answered in Example 5. The same method
can be used to obtain the following general result:

Proposition 2 Let f and g be continuous periodic functions such that f +g
is non-constant. Let a and b be non-gero periods of f and g respectively. Then
f + g is periodic if and only if a/b is rational; furthermore, every period of
f + g has the form na/m for some integers n and m.

This result is not true in general without the assumption of continuity.

Asregards (d), the Stone-Weierstrass theorem shows that every continuous
periodic function can be approximated uniformly by trigonometric polynomi-
als, and the theory of Fourier Series shows that every continuous periodic
function is the (pointwise) infinite sum of sines and cosines. Thus, by consid-
ering sums of sines and cosines, one is led to a very large class of functions, and
there is no general simple method for calculating the period of a trigonometric
polynomial.

There are, however, a number of techniques which can be used for arbitrary

periodic functions, and which may help to locate the period. We briefly discuss
these in our final example.
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Example 7 The function f(z) = 3sinz — 4sin® z has period 27/3. The
easiest way to see this is to note that f(z) = sin3z. In the gemeral case,
however, we may not have such a nice formula for f, or we may be considering
something like sin 16z expanded in sines and cosines and may not recognise
the simple form of the function. Hence, we illustrate some techniques for
finding the period without using the fact that f (z) = sin 3z.

First, one checks easily that f is not constant. Now, since sin z has period
27, we know that the period of f is 27 /n for some positive integer n. If 27 /n
is the period of f then, since f(0) =0 and f(z) =sinz (3 - 4 sin® z), we must
have either sin(27/n) =0 or 3 —4sin®(27/n) = 0. Now sin(27/n) = 0 implies
n < 2 and 3 — 4sin’(27/n) =0 implies sin(27/n) = +4/3/2. Since f(z) >0
for small positive values of z it follows that the first positive zero of f is at
least /3. Hence 2m/n 2 /3, ie. n < 6. It remains therefore to check the
casesn=1,...,6.

Now f >0 on [0,7/3], and the factorisation sin z (3 — 4 sin® z) shows that
f<0on /3, 27/3]. Hence 21 /n > 2x/3, giving n < 3. Since 27 is a period
of f, it suffices to check the cases n = 2 and n =3.

n = 2: Since f(r/2) # f(37/2) we cannot have n = 2.

n = 3: Checking some values of z such as /6 and /2, one finds that
n = 3 is not ruled out. Hence we check to see if 27/3 is a period of f.
Now

2 1 3
sin (z+—3lr-> = —Esinz+-\£2——cosx

. 2 1. 3 . 3
sm2 (a:+ _;3,7[) = Zsmza:— —\/Z—jsmxcosz+zcos2x.

Hence

e+

1
-2-(—sinz+\/§cosz) (3—sin2:a:+2\/5-3-sin:z:<:osz—Elcos2 a:)

sin z (—sinz+\/§cosa:) (s'ma:+\/§cosa:)
sin z (3 cos? £ — sin? :v) =sing (3 — 4sin? a:)
f(=)

Hence 27/3 is a period of f, and therefore it is the period of f.

NOTES

To summarise the methods used in this example:

(1) By inspection, find one period of the function (the smaller the better).

(2 Loc'a.te some geros of f. The period is at least equal to the maximum
distance between adjacent zeros. If it is not possible to find any zeros,

try to locate points at which f takes the same value and proceed as
above.

(3) The first step rules out all but a finite number of possible values. Using

(2), check these values at a number of points. This will generally rule
out most values.

(4) Finally, check which of the remaining values are periods of f.
At some stage one should also check that the function is non-constant. If one

begins to get a constant value for f while carrying out the above steps, one
should try to prove that f is constant.
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