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NOTES

; 7} that a certain teacher, nameless of course,

There 15 2 Slfzg ggxfef;:aisl:o,) itllzormed the school inspector t'hat he/she

n > certa_m }s:;r Int:ermediate Certificate class to always choose B in the mul-

advxsed }fls/ art of the Mathematics paper as he/she had done a survey of‘

tiple cho}ce pfeW years and B had come up more often than any other.. L

thii pre;'::: will be no multiple choice questions when the new Intermediat
believe

Certificate syllabus is examined.

Wedderburn’s Theorem Revisited (Again)

Des MacHale
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The bound |R|— +/|R| is the best possible because of the existence of Zy3,
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which has exactly p? — p invertible elements for any prime p, but yet is not a
field.

Another formulation of Wedderburn’s theorem is the following: If R is a
finite ring with unity and every non-zero element of R is invertible, then R is
commubative.

This naturally leads to the following question: If R is a finite ring with
unity, can we force the conclusion that R is commutative by assuming that
a proper subset of the non-zero elements are invertible? The purpose of this
note is to prove the following:
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Theorem 2 Let R be a finite ring with unity. If every non-sero ring commu-
tator [z,y] = zy — yz of R is invertible then R is commutative.

Proof Let ¢ = [z,y| # 0. Consider the sequence ¢, c?,¢®, ... Since R is finite,
¢* = ¢/ for some § > ¢ > 1. By hypothesis, ¢ is invertible, so ¢/~% = 1 and
thus ¢/~**! = ¢, R now satisfies the hypothesis of a theorem of Herstein [1],
[a,b]™(#®) = [a, b] for n(a,b) > 1. If we are prepared to invoke the full power
of this theorem, it follows at once that R is commutative. Alternatively, we
can use the following more elementary result of Herstein [2]: If R is a finite
ring in which every nilpotent element is cenméral, then R is commutative.
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‘We argue as follows. Let z,y,r be elements of R with zy # 0. Then Periodic Functions

(yz—=zy)™ = yz—=y implies that (yz)" = yz = 0. Similarly, (z(ry}—(ry)z)" =
z(ry) — (ry)z implies that zry = 0. A simple induction argument now shows
that all nilpotent elements are central. Thus R is commutative.
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f

Seédn Dineen

Of course, R need not be a field, as the example (Z4, @, ®) shows.

Finally, we are indebted to Professor T.J. Laffey who has supplied the
following ingenious alternative proof of Theorem 1.

Let R be a finite ring with unity 1, let T = T(R) be its group of units and
suppose that T # R\ {0}. Let 0 £z € R\T andlet o ={t €T |zt = z}.
We note that Tj is a subgroup of T and that V = {zv | v € T } is a subset of
R\ (T u{0}), with |V| = |T|/|To|- Let W = {t— 1|t € To}. We note that
|W| = |To| and that W ¢ R\ T, since t — 1 € T and zt = z implies z = 0.
Hence |R| > |T|+|V|+1=|T|+|T|/|To| + 1 and also |R| > |T|+ |To|. Hence
we deduce that |R| — |T| > max(|To|,|T|/|To| + 1. So |R| - |T| = +/|R| + 1.

This article arose out of correspondence between the author and Mark
eneghan regarding certain inconsistencies in the treatment of periodic func-
ons in our secondary school texts. A complete and rigorous treatment of
his topic requires the introduction of such concepts as convergent sequence,
ontinuity, greatest lower bound, induction and linear independence. We have
ried to minimize the impact of these concepts and at the same time to clarify
he situation regarding the sum of periodic functions.

Jefinition 1 A function f : R +— R is periodic if there exists a # 0 such that

flz+a)=f(z) forallzeR. (1)
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};;%fusing induction and our first remark.

%(3) If @ and b are periods of f then a-+b is also a period of f, since f(z+a+b) =
flz+a) = f(z).
Jie+a) = 1)

gel.’" trr.zentc ofl Matgen;atics %Example 1 Let f be given by f(z) = sinz. Then f is periodic since f(z +
niversity College Cork. ' %2';7) = f(z) for all z € R.

Example 2 Let f be given by

f(a) = 0 if z is rational
1 if z is rrational

B %If e and z are rational and y irrational then a + z is rational and a + y is
irational, and hence f(z+ a) = 0 = f(z) and f(y +a) = 1 = f(y). Thus
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